浅论高等数学中的极限思想(最终版)

时间:2019-05-14 09:07:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅论高等数学中的极限思想(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅论高等数学中的极限思想(最终版)》。

第一篇:浅论高等数学中的极限思想(最终版)

浅论高等数学中的极限思想

谷亮

(辽宁铁道职业技术学院 辽宁 锦州 121000 中国)

摘要: 极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学思想,本文从极限的定义、极限思想的价值、教学中如何渗透极限思想几个方面进行了简要论述。

关键词:高等数学,极限,极限思想、教学

一、极限的概念

1、数列极限:设{xn}为一个数列,a为一常数,若0,总存在一个正整数N,使得

limxnaxna{x}nNn当时,有,称a是数列的极限。记作n

2、函数极限:设函数f(x)在点a的某去心邻域内有定义,A为一常数,若0,总存在一个正数,使得当的极限。记作xa0xa。

时,有

f(x)A,称A是当x趋向于a时函数f(x)limf(x)Axa,xa,x,x,极限的定义类似。自变量变化过程还包括:在数学发展的过程中,出于不同需要,还引进了不同意义下的极限概念,比如在集论中引进了集列的上、下极限的概念,在无穷级数论中引进级数绝对收敛与条件收敛的概念,以及在函数逼近论中引进了一致逼近、平均逼近等的极限概念.无论怎样定义,其本质都是一样的,都是从有限观念发展到无限观念的过程。

二、极限思想的价值

极限思想揭示了变量与常量、无限与有限的关系,通过极限思想,我们可以从有限来认识无限,以直线近似代替曲线,以不变认识变化,从量变认识质变。因此,极限思想具有由此及彼的创新作用,极限思想方法也广泛用于微分方程、积分方程、函数论、概率极限理论、微分几何、泛函分析、函数逼近论、计算数学、力学等领域。

生活中也有这样的例子:一张饼,第一天吃它的一半,第二天吃它的一半的一半,第三天吃它的一半的一半的一半,„„如此这样,这张饼能吃得完吗?显然是永远吃不完的,虽然饼越来越小,但还是有的。只能说,这张饼的极限为零,但绝不是零。这就是一种极限思想的具体写照。

极限思想不仅非常重要,它也是学生难以理解掌握的重要概念,它贯穿整个数学体系,是一种非常重要的数学思想,它是人类发现并解决数学问题的非常重要手段,它能很好地展现出数学的思维之美,在高等数学的教学过程中起着相当重要的作用,恰当的应用极限思想不仅可以将一些问题简化,开辟解决问题的新途径,通过分析、总结、归纳得出极限概念中各变量具有的变化特征和内在练习,分析变化过程中的各种规律,还可以培养学生的数学思维,提高学生解决问题的素质能力,因此,使学生能够灵活运用极限思想有重要的意义。

三、将极限思想渗透到课堂教学中

1、课堂上介绍一些体现极限思想的典故

比如,中国古代的哲学家庄周在《庄子天下篇》中说:“一尺之棰,日取其半,万世不竭”,将木棰长度的变化归结为一个无限的过程中去研究,我国古代数学家刘徽割圆术中“割之弥细,所失弦少,割之又割,以至于不可割,则与圆合体而无所失矣”,他用圆的内接正n边形的边长代替圆的周长,n越大,正n边形的边长就越接近圆的周长,这都蕴涵了极限思想。通过这些有趣的小故事,小典故,不仅让学生回顾历史,从中体验和感受极限思想的妙处,还能激发学生学习高数的兴趣和积极性。

2、讲授新知识时渗透极限思想

在教学中,讲授新知识的同时体现极限思想,这样可以使学生对新知识有一个更好更深入的的理解,达到很好的教学效果。在教学中能够渗透极限思想的地方有很多,比如求曲线上任一点的切线斜率、圆面积、变速运动物体的瞬时速度、曲边梯形面积、曲顶柱体的体积等都是通过这种极限思想得以引入课题并解决问题的,还有空间集合体中圆柱、圆锥之间相互转化,圆锥是圆柱的上底逐渐缩小的一种极限状态,也体现了一种动态的极限思想。

3、体现极限思想的数学概念

高等数学中的许多概念都是利用极限来描述的,体现极限思想的数学概念比比皆是,不胜枚举,下面就举几个这样的例子:(1)函数连续的概念中就用到极限式:

xx0limf(x)f(x0)

(2)导数的概念中有极限式:

f(x0)limf(x0x)f(x0)ylimx0xx0x

(3)定积分的概念也是通过分划、取近似、求和、取极限得到的:abbf()xf(x)dxlim0ii1bbni

(4)无穷区间上的广义积分的定义也是通过有限区间的定积分取极限得到的:af(x)dxlimf(x)dxba,bbf(x)dxlimaf(x)dxa,0af(x)dxlimf(x)dxlimf(x)dxa0

(5)级数的收敛性也是用极限式定义的:若级数

un1nlimsns{s}n的部分和数列的极限n存在,称级数un1n为收敛的,否则该级数称为发散的。

(6)无穷小的定义也是用极限来描述的:若有xalimf(x)0,称f(x)为此自变量的变化过程中的无穷小量。

(7)二元函数f(x,y)在有界闭区域D上的二重积分的定义也用到了极限,f(x,y)dlimf(,)Dd0iii1ni

(8)二元函数f(x,y)在曲线L上的第一型曲线积分也是用极限定义的:Lf(x,y)dslimf(i,i)sid0i1n

(9)多元函数偏导数也是用极限来定义的,以二元函数为例,f(x,y)关于x的偏导数为:

f(x0x,y0)f(x0,y0)flimx(x0,y0)x0x,关于y的偏导数类似。

4、解决问题时利用极限思想

高等数学中的许多问题都是通过极限的思想方法来解决的,下面简单的举两个例子。(1)如何求平面上曲边梯形的面积?

计算梯形的面积公式是我们所熟知的,但曲边梯形面积是不能依此求得的,可以通过极限思想方法,利用无限分割,以直代曲、用无数个小矩形面积无限逼近曲边梯形的面积通过取极限最终来解决这个问题;(2)如何求圆面积?

我们可以设定情境,就是在不知圆面积公式的情况,是怎么考虑圆面积的,当然,也是利用极限思想方法,通过圆内接正多边形,无限增加内接正多边形的边数,利用内接正多边形的面积无限逼近圆面积的方法来解决的;

除了上述两个问题,还有解决物体的瞬时速度、平面曲线的弧长、曲顶柱体的体积等问题都是利用极限思想方法来解决的。教师可以在教学中恰当选取问题,让学生逐步紧跟教师思路,利用极限思想一步一步解决问题,不仅是教学效果事半功倍,还能增加学生对数学的学习兴趣,提高学生用极限思想方法解决相关问题的能力。

四、结束语

综上所述,极限思想是高等数学教学中的重点与难点,贯穿于整个高等数学体系,在教学中教师要有意识的将极限思想渗入其中,通过恰当的方法让学生更好的理解极限的概念和极限的思想方法,让学生体会到极限思想的作用和妙处,体会“以直代曲、化零为整、化圆为方、以不变代变、以有限找无限”等的极限思想,培养学生对数学的学习兴趣,提高学生应用数学知识,利用极限思想方法解决各种问题。

参考文献:

[1]陈刚、米平治.关于高等数学中的极限思想的研究 [J].工科数学.2001,6(17)[2]张魁元、赵建华,大学数学.北京:高等教育出版社,2004 [3]施红英.对微积分“极限”思想方法教学的思考[J].甘肃广播电视大学学报,2005(9)

第二篇:高等数学-极限

《高等数学》极限运算技巧

(2009-06-02 22:29:52)转载▼ 标签: 分类: 数学问题解答

杂谈 知识/探索

【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如: 这道题的基本接替思路是,检验形式是“式,最后直接套用公式。

第二种是取对数消指数。简单来说,“

”,然后选用公式,再凑出公式的形

”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

(本文著作权归个人所有,如需转载请联系本人。)

第三篇:高等数学极限总结

我的高等数学 学我所学,想我所想

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!

我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

我的高等数学 学我所学,想我所想

1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。

2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

我的高等数学 学我所学,想我所想

第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式

我的高等数学 学我所学,想我所想

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。

第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如:道题的基本接替思路是,检验形式是“式,最后直接套用公式。

”,然后选用公式,再凑出公式的形第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

第四篇:高等数学极限复习题

高等数学复习资料二

川汽院专升本极限复习题

一 极限计算

二 两个重要极限

三 用无穷小量和等价

第五篇:极限在高等数学中的地位

极限在高等数学中的地位

摘要:1821年柯西(1789―1857)在《分析教程》中,对极限概念的基本有了明确的叙述,并以极限概念为基础,对“无穷小量”、级无穷数的“和”等概念给出了比较明确的定义。后经过波尔察诺、魏尔斯特拉斯、戴德金、康托等人的卓越工作,又进一步把极限论建立在严格的实数理论基础上,并且形成了描述极限过程的ε-δ语言。微积分理论基础的严密化,使微积分跃进和扩展为现代数学的重要领域。本文将着重讨极限思想在高等数学中的广泛应用,从而体现极限在高等数学中的地位。

关键词:极限的定义,极限在高等数学中的应用,极限思想对数学发展的影响。

Position limit in Higher Mathematics

Abstract: in 1821, Cauchy(1789-1857)in the “analysis” of the concept of limit, the basic with a clear narrative, and taking the limit concept as the foundation, to “infinitesimal”, infinite number of concepts such as “and” gives a clear definition.After the excellent work, Weierstrass, Dai Dejin Cantor Bolzano, et al., and further the limit theory establishment in the real theory on the basis of strict, and the formation of the description of limit process epsilon Delta language.Rigorous calculus theory, the calculus Yuejin and extended important field of modern mathematics.Widely used in this paper will focus on pleasing limit thought in higher mathematics, which reflects the position limit in higher mathematics.Keywords: definition of limit, limit in higher mathematics, limit effects of ideas on the development of mathematics.1 极限的定义

意即

使

不等式|Xn-a|<ε刻划了Xn与a的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明Xn与a可以接近到任何程度。然而,尽管ε有其任意性,但一经给出正整数N,ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数,那么ε/2,ε的平方等等同样也是任意该定义常称为数列极限的 ε—N定义。

函数极限:分为x→∞,x→+∞,x→-∞,x→Xo,,运用ε-δ定义,以x→Xo,f(x)在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ 时,对

小的正数,因此定义中不等式|Xn-a|<ε中的 ε可用ε/2,ε的平方等来代替。同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数.另外,定义1中的Xn-a|<ε也可改写成Xn-a|≦ε。数列极限与函数极限的定义

数列极限:设 {Xn} 为实数列,L 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于L,定数 L称为数列 {Xn} 的极限,并记作,或Xn→L(n→∞)读作“当

n 趋于无穷大时,{Xn} 的极限等于 或 趋于 L”。若数列 {Xn} 没有极限,则称 {Xn} 不收敛,或称 {Xn} 为发散数列。应的函数值f(x)都满足不等式: |f(x)-A|<ε,那么常数A就叫做函数f(x)当 x→x。时的极限。极限在高等数学中的应用

3.1极限在微分,积分中的体现: 积分定义:设函数f(x)在区间[a,b]上连续,将区间[a,b]分成n个子区间[a,x0],(x0,x1],(x1,x2],„,(xi,b],可知各区间的长度依次是:△x1=X0-a,△x2=X1-x0,„,△xi=b-xi.在每个子区间(xi-1,xi)任取一点ξi(i=1,2,„,n),作和式(见右下图),设λ=max{△x1,△x2,„,△xi}(即λ属于最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a,b]的定积分,其中:a叫做积分下限,b叫做积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。

微分定义: 设函数y = f(x)在x.的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx)− f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。应用实例:已知方法,就其微分解

:,应用极限极限思想

在刚才的讨论中我们看到,无论是微分还是积分的定义,都用到了极限的思想,即当函数定义域内的某一变量,以一个非常非常小的值变化时,讨论函数的各种变化。应用极限思想,形成了高等数学当中的微商、积分等互逆性计算。归纳导数、积分在极限思想的运用当中有以下共同特性:分割、近似及取极限。以上共同过程均是在分割并且细小化之后,应用中等数学之中的常量关系来处理高等数学微积分当中的变量关系问题,并通过极限思想以降低误差,让无法解决的无规律变化问题能够联系到极限思想,从而让所计算出来的结果更加精确,这也就为解决问题提出了一种新思维,即应用运动与变化之方式来处理问题,从而展示出极限思想深刻的辩证性。总结

极限思想在很久的古代既已经产生,并在近代的微分和积分的定义,应用中得到了广泛地展现。

(1)极限的精确定义对微积分的定义有重大意义。

(2)极限思想是微积分的基本思想。

(3)极限是高等数学研究基本问题的基

础工具。

(4)极限的分析方法具有极大的实用性,是架立在抽象与实体,巨大与极小之间的一 座重要桥梁。6 [参考文献] [1]施红英.对微积分“极限”思想方法教学的思考[J].甘肃广播电视大学学报,2005(9)..[1] Shi Hongying.Thinking on the teaching of calculus “limit” thinking method [J].Journal of Gansu Radio and Television University, 2005(9)[2]叶 林.极限思想的发展与微积分的建立[J].内蒙古民族大学学报(自然科学版),2008.[2] leaf forest.Develop and calculus limit theory [J].Journal of Inner Mongolia University for the Nationalities(NATURAL SCIENCE EDITION), 2008 [3]翁祖荫;;关于黎曼—斯蒂吉司积分的乘积型求积公式[J];浙江大学学报(工学版);1980年03期.[3] Weng heritage;Riemann Stieltjes integrals;a product type quadrature formula [J];Journal of Zhejiang University(Engineering and Technology Edition);1980 03 period [4]张开菊;;关于极限若干计算方法的研究[J];新课程(教研);2011年08期.[4] Zhang Kaiju;[J];Study on several methods for computing the limit;the new curriculum(Research);2011 08 period [5]丁进忠;;微元问题的处理方法[J];物理通报;2011年09期.[5] Ding Jinzhong;processing method;micro problem [J];physics Bulletin;2011 09 period

下载浅论高等数学中的极限思想(最终版)word格式文档
下载浅论高等数学中的极限思想(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学函数极限练习题

    设f(x)2x1x,求f(x)的定义域及值域。 设f(x)对一切实数x1,x2成立f(x1x2)f(x1)f(x2),且f(0)0,fa,求f(0)及f(n).(n为正整数) 定义函数I(x)表示不超过x的最大整数叫做x的取整函数,若......

    高等数学思想

    高等数学思想方法 第一章 函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我 们在运用微积分解决实际问题时, 首先......

    高等数学极限总结[最终定稿]

    【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基......

    大学 高等数学 竞赛训练 极限

    大学生数学竞赛训练一(极限)一、计算解:因为原式又因为所以。二、计算解:因为所以。三、计算解:设,则因为,所以。四、计算解:因为,所以五、设数列定义如下证明:极限。证明:方法一、考虑......

    高等数学极限方法总结(5篇范例)

    摘要:数列极限的求法一直是数列中一个比较重要的问题, 本文通过归纳和总结, 从不同 的方面罗列了它的几种求法. 关键词:高等数学、数列极限、定义、洛比达法则、 英文题目Limit......

    高等数学求极限的14种方法

    高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 xx0 (1)若A0,则有0,使得当0|xx0|时,f(x)0; (2)若有0,使得当0|xx0|时,f(x)0,则A0。 2. 极限分为函数极限、数列极限......

    《高等数学Ⅰ》08级半期测试题(极限

    《高等数学Ⅰ》半期练习题 一.填空:(本题共10小题,每题2分,总分20分) cosx1)在x0处连续,应补充定义f(0) .x22x,则其反函数f1(x)的导数[f1(x)] . 2、设 yf(x)1x1、要使f(x)arccos(......

    高等数学测试题一(极限、连续)答案

    高等数学测试题(一)极限、连续部分(答案) 一、选择题(每小题4分,共20分) 1、 当x0时,( )无穷小量。 111A xsin B ex C lnx D sinx xxx13x1x1的2、点x1是函数f(x)1。 3xx1A 连续点......