第一篇:综合法
2.2.1直接证明与间接证明⑴-------综合法
【学习目标】
结合已经学过的数学实例,了解直接证明的两种基本方法之一:综合法。
【重点难点】
1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;
2.会用综合法证明问题;了解综合法的思考过程。
3.根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。
【教学过程】
【复习】1两类基本的证明方法:和。
2直接证明的两种方法
【新课导学】
知识点一综合法的应用
问题:已知a,b0,求证:a(b2c2)b(c2a2)4abc。
思考过程:首先,分析待证不等式的特点。不等式的右端是,左端是。据此,只要,就能使得不等式左、右两端具有相同的形式。
其次,寻找转化的依据及证明中要用的其他知识。本例应用了就能实现转化,是证明的依据。
最后,给出具体证明。
这样,从已知条件、重要不等式x2y22xy和不等式的基本性质,通过推理的出结论成立。
证明:
新知1.综合法定义
一般地,利用,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法。
2.综合法的要点:
3.综合法的证明过程用框图可表示。
【讲解例题】
例1在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形。
分析:这是一道三角、几何和数列的综合题。首先把已知条件进行语言转换,即和;接着把隐含条件显性化,即将A,B,C为三角形内角明确表示为。然后再寻找条件与结论的联系,利用把边和角联系起来,建立边和角之间的关系,进而判断三角形的形状。
反思:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来。
课堂练习:
1.求证:对于任意角,cos4sin4cos2
2.《全优课堂》75页基础训练
课堂小结:
1.综合法是从已知的P出发,得到一系列的结论Q1,Q2,(可知),直到最后的结论是Q.由
因导果,其逐步推理,实际上是寻找它的必要条件。
综合法是中学数学证明中最常用的方法,运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题。
2.综合法证明问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹。
3.综合法解题的步骤:⑴分析条件,选择方向;⑵转化条件,组织过程;⑶适当调整,回顾反思。
如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”。
作业:
第二篇:综合法和分析法
课题综合法与分析法课时 1课时课型 新授课 使用说明及学法指导
1.先精读教材P60-P64内容,用红色笔进行勾画,再针对导学案的问题,二次阅读教材部分内容,并回答,时间为15分钟.2.找出自己的疑惑和需要讨论的问题准备课上讨论和质疑.3.必须记住的内容:综合法和分析法证明不等式.学习目标
1.理解并掌握综合法与分析法;2.会利用综合法和分析法证明不等式
3.高效学习,通过对典型案例的探究,激发学习数学激情.学习重点
会用分析法证明问题;了解分析法的思考过程.学习难点
根据问题的特点,选择适当的证明方法.一.预习自学
1.常用直接证明方法有和
2.综合法:一般的,利用已知条件和某些数学、、等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫综合法.综合法的思维过程的全貌可概括为下面形式:“已知→可知1→可知2→…结论”.3.分析法:一般的,从要证明的结论出发,逐步寻求使成立的条件,直至最后,把证明的结论归结为判定一个为止,这种证明方法叫做分析法,分析法的思维过程的全貌可概括为下面形式:“结论→需知1→需知2→…已知”..如果a,bR, 那么a2b22ab.当且仅当时, 等号成立..如果a,bR,那么ab当且仅当时, 等号成立..如果a
2bc
a,b,cR, 那么
3
当且仅当时, 等
号成立.40.如果a,b,cR, 那么
baab、caa
b
bc
二、合作交流
1.若a,b,c是不全相等的实数,求证:a
2b2
c2
abbcca. 证明:∵a,b,cR,∴a2
b2
≥2ab,b2
c2
≥2bc,c2
a2
≥2ac
变式训练
已知a,b,c0,且不全相等,求证:a(b2c2)b(c2a2)c(a2b2)6abc
2.用分析法证明 求证:3621.达标检测
1.下列说法不正确的是()
A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法
C.综合法与分析法都是直接证法D.综合法与分析法在同一题的证明中不可能同时采用
2.分析法是()
A.执果索因的逆推法B.执因导果的顺推法 C.因果分别互推的两头凑法D.逆命题的证明方法 3.以下数列不是等差数列的是()
A.B.π2,π5,π8
C.D.20,40,60 4.若P=a+a+7,Q=a+3+a+4(a≥0),则P、Q的大小关系是()
A.P>QB.P=QC.P<QD.由a的取值确定 5.已知
a,b
是不相等的正数,x
y,y,则
x的大小关系
是.6.用分析法证明(:15(2)
7.已知a,b,cR,abc1,求证:(1a
1)(1b
1)(1c
1)8
8.已知a,b,cR,abc1,求证:1a
11b
c
9
变式.已知a,b,c是两两不相等的正实数,bca
acb
bc
a
b
ac
3
综合法与分析法各有何特点?
【思考·提示】 分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻求它的充分条件;综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点,有些具体的待证命题,用分析法或综合法均能证明出来,往往选择较简单的一种.平时我们常用分析法探索解题思路,然后用综合法书写步骤.
第三篇:综合法分析法
综合法分析法
学习目标:
结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.高考题:1.(2012安徽理19)
(Ⅰ)设x1,y1,证明xy111xy;xyxy,logablogbclogcalogbalogcblogac.(Ⅱ)1abc,证明
2、(2010全国卷1文数)(10)设alog32,bln2,c52则
(A)abc(B)bca(C)cab(D)cba 1教材分析:分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。
通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。通过本节的学习,使学生了解直接证明的基本方法----综合法,了解综合法的思考过程、特点;培养学生的数学计算能力,分析能力,逻辑推理能力。本节的教学应该是比较成功的。
考点预测:1.高考题多以选择题和填空为主,是高考常考内容;
2.主要考察综合法。
授课过程:
一、复习准备:
1.提问:基本不等式的形式?
2.讨论:如何证明基本不等式ab(a0,b0).2(讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)
二、讲授新课:
教学例题:
综合法证题
例
1、已知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)
2证明:左-右=2(ab+bc-ac)
∵a,b,c成等比数列,∴b2ac
acac 又∵a,b,c都是正数,所以0bac≤2
∴acb
∴2(abbcac)2(abbcb2)2b(acb)0
∴a2b2c2(abc)2
abba例
2、已知a,bR,求证abab.本题可以尝试使用差值比较和商值比较两种方法
进行。
证明:1)差值比较法:注意到要证的不等式关于
a,b对称,不妨设ab0.ab0
aabbabbaabbb(aabbab)0,从而原不
等式得证。
2)商值比较法:设ab0,aabbaa1,ab0,ba()ab1.bb ab故原不
等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差
(或作商)、变形、判断符号。
例
3、若实数x1,求证:3(1x2x4)(1xx2)2.证明:采用差值比较法:
3(1x2x4)(1xx2)
2=33x23x41x2x42x2x22x
3=2(x4x3x1)
=2(x1)2(x2x1)13=2(x1)2[(x)2].2
413x1,从而(x1)20,且(x)20, 24
13∴2(x1)2[(x)2]0, 24
∴3(1x2x4)(1xx2)2.分析法证题
例1.设a、b是两个正实数,且a≠b,求证:a3+b3>
a2b+ab2.
证明:(用分析法思路书写)
要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)
只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。
而由已知条件可知,a≠b,有a-b≠0,所以(a-b)
2>0显然成立,由此命题得证。
(以下用综合法思路书写)
∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2
>0
亦即a2-ab+b2>ab
由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>
(a+b)ab
即a3+b3>a2b+ab2,由此命题得证
例
2、已知a,b,c,d∈R,求证:ac+bd≤(a2b2)(c2d2)
分析一:用分析法
证法一:(1)当ac+bd≤0时,(2)当ac+bd>0时,欲证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2)
即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d
2即证2abcd≤b2c2+a2d2
即证0≤(bc-ad)2
因为a,b,c,d∈R,所以上式恒成立,综合(1)、(2)可知:分析二:用综合法
证
二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)
=(ac+bd)2+(bc-ad)2≥(ac+bd)2 ∴(a2b2)(c2d2)≥|ac+bd|≥ac+
分析三:用比较法 证法三:∵(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)2≥0,∴(a2+b2)(c2+d2)≥(ac+bd)2 法
∴(a2b2)(c2d2)≥|ac+bd|≥ac+bd,即ac+bd≤(a2b2)(c2d2)例
3、设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.证明:(用分析法思路书写)
要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)
只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。
而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。
(以下用综合法思路书写)
∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0
亦即a2-ab+b2>ab
22由题设条件知,a+b>0,∴(a+b)(a-ab+b)>(a+b)ab
即a3+b3>a2b+ab2,由此命题得证.课堂小结
分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到所有的已知P都成立;
比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.1、a,b,cR,求证
abc)
2、设a, b, c是的△ABC三边,S是三角形的面积,求证:c2a2b24ab.略证:正弦、余弦定理代入得:2abcosC4absinC,即证:2cosCC,即:CcosC2,即证:sin(C)1(成6
立).新学案31页6、7,33页3、4.作业:教材P52 练习2、3题.
第四篇:综合法和分析法
《综合法和分析法(1)》导学案
编写人:马培文
审核人:杜运铎
编写时间:2016-02-24 【学习目标】
结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。【重点难点】
1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2.会用综合法证明问题;了解综合法的思考过程。
3.根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。【学法指导】
① 课前阅读课文(预习教材P85~P89,找出疑惑之处)② 思考导学案中的探究问题,并提出你的观点。
【知识链接】
复习1
两类基本的证明方法:
和
。复习2
直接证明的两中方法:
和
。知识点一
综合法的应用 问题
已知a,b0, 求证
a(b2c2)b(c2a2)4abc。
新知
一般地,利用
,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法。反思
框图表示
因导果。
【典型例题】
例
1111变式
已知a,b,cR,abc1,求证
(1)(1)(1)8。
abc
要点
顺推证法;由已知a,b,cR,abc1,求证:
1119 abc
小结
用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明。
例2
在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形。
变式
设在四面体PABC中,ABC90,PAPBPC,D是AC的中点.求证
PD垂直于ABC所在的平面。
小结
解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来。
【基础达标】
A1.求证
对于任意角θ,cos4sin4cos2。
B2.A,B为锐角,且tanAtanB3tanAtanB3,求证
AB60.(提示:算tan(AB))。
【归纳小结】
综合法是从已知的P出发,得到一系列的结论Q1,Q2,,直到最后的结论是Q.运用综合
法可以解决不等式、数列、三角、几何、数论等相关证明问题。【知识拓展】
综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法。【当堂检测】
1.已知x,yR,则“xy1”是“x2y21”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.如果a1,a2,a8为各项都大于零的等差数列,公差d0,则()
A.a1a8a4a5
B.a1a8a4a5
C.a1a8a4a5
D.a1a8a4a5
3..设P1111,则()log211log311log411log511A.0P1
B.1P2
C.2P3
D.3P4
3314.若关于x的不等式(k22k)x(k22k)1x的解集为(,),则k的222范围是。
ab,yab,则x,y的大小关系是5.已知a,b是不相等的正数,x2____。
【能力提升】
bcaacbabc1.已知a,b,c是全不相等的正实数,求证
3。
abc
2.在△ABC中,证明
cos2Acos2B11。2222
【学习反思】
① 基础知识 ___。
② 学习方法___。
③ 情感认知 __。
高二数学选修2-2
abab____________________________________________________________
_______________________________
第五篇:直接证明(综合法)
2.2.1直接证明(综合法)
一、复习准备:
1.已知 “若a1,a2R,且a1a21,则
2.已知a,b,cR,abc1,求证:114”,试请此结论推广猜想.a1a21119.abc
先完成证明 → 讨论:证明过程有什么特点?
二、讲授新课:
1.教学例题:
例1:已知a, b, c是不全相等的正数,求证:a(b2 + c2)+ b(c2 + a2)+ c(a2 + b2)> 6abc.练习:已知a,b,c是全不相等的正实数,求证
例2:在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形.bcaacbabc3 abc
练习:已知ABC的3个顶点的坐标分别为A(5,2),B(1,2),C(10,3),求证:ABC为直角三角形。
例3. 求证:对于任意角θ,cos4sin4cos2.例4.已知:如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD..求证:PC⊥BD.2.练习:
① A,B
为锐角,且tanAtanBAtanBAB60.② 已知abc, 求证:
3.小结:
114.abbcac2