分析法与综合法论文

时间:2019-05-14 21:42:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分析法与综合法论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分析法与综合法论文》。

第一篇:分析法与综合法论文

目录

内容摘要和关键词„„„„„„„„„„„„„„„„„„„„„„„„„„

21.分析法与综合法„„„„„„„„„„„„„„„„„„„„„„„„„2

2.分析法与综合法在高中解题的体现„„„„„„„„„„„„„„„„„2

2.1 分析法„„„„„„„„„„„„„„„„„„„„„„„„„„„„

32.2 综合法„„„„„„„„„„„„„„„„„„„„„„„„„„„„3

2.3 分析综合法„„„„„„„„„„„„„„„„„„„„„„„„„„

43.给高中生在做几何证明题时的建议„„„„„„„„„„„„„„„„„5 参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

5分析法与综合法在高中几何证明题的应用

专业:数学与应用数学学号:201013007212姓名:宾婉伶 组名:第十一组201013007215秦丹 指导老师:沈阳老师201013007168蒙玲艳201013007160杨姗姗201013007213严燕飞

【内容摘要】推理与证明是数学的基础思维过程,也是人们学习和生活中经常使用的思维方式,本文主要通过分析证明题中经常出现的分析法与综合法来帮助高中生解决几何证明题。分析法与综合法属于直接证明,在数学中,分析法是一种从结果追溯到产生这一结果的原因的思维方法,而综合法则是从原因推导到由原因产生的结果的思维方法。

【关键词】分析法;综合法;几何;证明

1分析法与综合法

在科学史、哲学史上很早就提出了分析与综合的问题,两千多年前的《几何原本》用演绎推理的方式来表现思维进程,书中就已经出现了综合法与分析法这两种基本的演绎证明方法。所谓综合法,从方法论的角度讲,即从事物各部分、方面、因素、层次的特点、属性出发,寻找它们之间的内在联系,然后加以概括与上升(即综合),从而在整体上把握事物的本质与规律的一种思维方法。所谓分析法,从方法论的角度讲,就是把研究对象分解为它的各个组成部分、方面、因素、层次,然后分别加以研究,从而认识事物的基础或本质的一种思维方法。中学数学解题中的综合法是一种“由因导果”的逻辑推理方法,而分析法则是一种“执果索因”的逻辑推理方法。2分析法与综合法在高中解题的体现

数学证明是引用一些真实的命题来确定某一命题正确性的一种思维方式,而数学结论的正确性必须通过逻辑推理的方式加以证明。从结构形式来看,证明由论题、论证、论据三部分构成。证明的过程是把论据作为推理的前提,应用正确的推理形式推出论题的过程。数学证明的关键在于构建从已知到求证的命题逻辑链,找出构建途径,打通推理要道。要证明某个命题成立,有两类基本的证明方法:直接证明与间接证明。现在,我们主要研究的是直接证明中的分析法与综合法。2.1分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,要把证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)这种证明的方法叫做分析法。

例1(10年全国高考数学理科卷1)正方体ABCDA1B

1C1D1中,BB1与平面

ACD

1所成角的余弦值为

2ABCD

A

1A

C B 1

C1

答案:D

分析法思考:要求BB1与平面ACD1所成角的余弦值,则要找到BB1与平面ACD1所成的角,即要找到DD1与平面ACD1所成的角,设DO平面ACD1,则DD1O为索要找的角,此时只须求出sin的值即可得到cos,而求sin只需求DO的值,DD1

DO与DD1分别看作三棱锥DACD1与三棱锥D1ACD的高,故求 DO与DD1可利用体积相等来求,从而得到本道题答案为D。

综上可见,分析法执果索因,四位目标明确,常常根底渐进,有利于构思推理程序。2.2综合法

综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题的证明方法。简单地说,综合法则是从原因推导到由原因产生的结果的思维方法。其特点和思路是“由因导果”。

例2(09年全国高考数学文科卷)如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E

BC

1分别为AA1、B1C的中点,DE⊥平面B1BCC1。证明:AB=AC综合法分析:取BC中点F,连接EF,则

EF

//B1B,从

EF//DA。

E

连接AF,则ADEF为平行四边形,从而AF//DE,又DE⊥平面B1BCC1,故AF⊥平面B1BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。

综上可见,综合法由因导果,形式简单,条理清晰、严谨,有利于推理过程的简明表达。2.3分析综合法

对于前面所说的分析法与综合法虽然都能解决问题,但对于一些比较复杂的证明题,单靠分析法或综合法显得较为困难。在我们平时做题中我们可以发现,事实上我们在做题时一般都不会单一地使用分析法或综合法,而是采用由题设到题断和由题断到题设的“双向”思考,即同时使用综合法和分析法的思考方式进行探索,这样的思考方式,俗称“两头凑”。

例3(11年全国高考数学理科卷2)如图,四棱锥S-ABCD中,AB//CD,BCCD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1,证明:SD平面SAB

证明:由分析法思路,要证SD平面SAB,只须证SD与平面SAB中两条相交的直线都垂直(*)由综合法思路,取AB中点E,连结DE,则四边形BCDE为矩

形,DE=CB=2,连结SE,则SEAB,SE,又SD=1,故EDSESD,所以DSE为直角,由ABDE,ABSE,DESEE得

AB平面SDB,所以ABSD

即SD与两条相交直线AB、SE都垂直,即(*)成立所以SD平面SAB.综上可见,分析综合法,从两个方向思考寻找证题桥梁,可以比较容易找到证题途径,有利于培养数学素养。3给高中生在做几何证明题时的建议

通过上文的分析,我们很清楚地看到,分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,实际上是要寻找它的充分条件。综合法的特点是:从“已知”看“可知”,逐步推向未知,实际上是寻找它的必要条件。从解题思路来看,分析法执果索因,常常根底渐进,有希望成功;综合法由因导果,往往枝节横生,不易奏效。但从表达形式来看,分析法叙述繁琐,综合法形式简单,条理清晰。故分析法有利于思考,综合法有利于表达,我们在实际解题时,应该把分析法与综合法结合起来运用,先用分析法来思考,然后用综合法来表述解题过程。此外,还可以使用分析综合法:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P,若由P可以推出Q成立,就可以证明原命题成立。

【参考文献】

[1]叶立军.初等数学研究.上海:华东师范大学出版社,2008.[2]孙杰远.现代数学教育学.广西:广西师范大学出版社,2004.[3]汤服成.中学数学解题思想方法.广西:广西师范大学出版社,2005.[4]数学课程标准研制组.数学课程标准(实验)解读.江苏:江苏教育出版社,2005.[5]课程教材研究所.普通高中课程标准实验教科书 数学 选修2-2.深圳:人民教育出版社,2007.

第二篇:综合法与分析法(范文模版)

课题:§2.2.1 综合法与分析法(说课稿)

各位评委、各位老师:

大家好!我是来自……..,希望我今天的说课能给大家留下美好的印象。我说课的课题是高中课程标准实验教材数学选修2-2第二章第二节的《综合法与分析法》。我想通过这节课表达一种教学理念——关注学生成长,构建高效课堂。本节说课分教学设计和教学反思两部分。在教学设计部分,我将以“教什么,怎么教,为何这样教”为思路从以下这五个方面进行阐述。 教材分析-------教材编写背景、地位与作用、重点与难点(关于教材分析我将从……三个方向进行说明) 学情分析-------有利因素、不利因素(然后从……两点来对学情进行分析)

 目标分析-------知识目标、能力目标、情感目标(…….是本节课的三大目标) 教法分析-------教法、学法

(之后是从教法与学法来分析如何处理本节课)

 过程分析-------定义、范例、练习、归纳总结、作业(本节课的教学过程我将从………五点来安排) 评价分析-------课程设计、课后感想

(最后是对本节课的课程设计的介绍以及课后的一些感想)

一、教材分析

(关于教材分析首先我要讲的是)

1、教材编写背景

在以前的学习中,学生已经能应用综合法、分析法证明数学命题,但他们对这些证明方法的内涵和特点不一定非常清楚。本节结合学生已学过的数学知识,通过实例引导学生分析这些基本证明方法的思考过程和特点,并归纳出操作流程图,使他们在以后的学习和生活中,能自觉地、有意识的用这些方法进行数学证明,养成言之有理、论证有据的习惯。

2、教材地位与作用

(我们知道)《综合法和分析法》是直接证明中最基本的两种证明方法,是在学习了合情推理与演绎推理的基础上,学习证明数学结论的两种常见方法,他不是孤立存在的,这种证明方法已经渗透到函数、三角函数、数列、立体几何、解析几何等等,可见,直接证明的方法在中学数学里占有极其重要的地位。

综合法与分析法已经与函数、数列、解析几何等问题结合的比较紧密,这类问题重在考察学生的逻辑思维能力,并且立意新颖,抽象程度高,更能体现高观点、低起点,深入浅出的特点

3、教材的重点和难点

教学重点:综合法和分析法的概念及思考过程、特点

教学难点:结合综合法、分析法的思考过程、特点,选择适当的证明方法或把不

同的证明方法结合使用

(本节课的最终目标是能)从实际问题中,命题的条件或结论出发,根据已知的定义、定理、公理,直接推证结果的真实性,从证明过程上认识分析法和综合法的推理过程,学会用综合法和分析法证明实际问题,并且理解分析法和综合法的内在联系(突破本节课难点所在)

二、学情分析

(对于本节课有以下两点值得注意)

1、有利因素

学生在数学的学习中已经初步形成了一定的证明思想,例如初中阶段的几何证明题,高一学习了一元二次不等式,初步证明了一些不等式的问题,在本节课前,学习了合情推理与演绎推理,都为本节课的学习打下了基础

2、不利因素

学生对以学知识的应用意识不强,三角代换、代数式的变形没有目的性,随意性较大。特别是与其他章节知识的交汇存在很大障碍

三、目标分析

根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,我制定本节课的教学目标如下: 知识目标:了解直接证明的两种方法—分析法和综合法;了解分析法和综合法的思考过程、特点(这也是本节课重点所在),能运用综合法分析法证题(解决本节课的难点)。

能力目标:通过综合法和分析法的学习,提升分析解决问题的能力。情感目标:通过分析法和综合法的学习体会数学思维的严密性,同时在以后的生活中能应用这种能力解决现实生活中的问题,帮助身心健康成长.四、教法与学法分析

教法:(因为)本节课是直接证明的复习课,学生容易产生对已学习知识的轻视态度与厌倦心理,较难发挥学生的主观能动性。因此,如果教学方法、策略不合适,很难以达到理想的教学效果。为了贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,我采用了回顾、分析、启发、引导、归纳相结合的教学方法,以及一题多解,错题剖析等教学策略,以帮助学生克服上述心理,激发学生的求知欲、探索欲,体现学生的主体作用。

学法:在引导分析时,要留出空间和时间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法弄清。在促进学生知识体系的构建和数学思想方法的形成的同时,要注意面向全体学生,培养学生多观察、勤思考、勤动手的精神,提高学生合作学习和教学交流的能力

五、教学过程设计

我把整个教学过程分为如下三部分

1、定义引入,考点诠释

2、演练导航,规范方法

3、归纳总结,布置作业

1、定义引入,考点诠释

(定义引入这部分内容的设计意图在于突破本节课的重点:综合法、分析法的定义,思考过程)

引入:因为本节属于推理性证明,所以我以学生熟悉的《名侦探柯南》中一个片段引导学生熟悉有序的逻辑思考过程

(看完影片后我要求学生回答从影片中都有什么收获)

提示:每一个结论的得出都必须有证据存在,已有事实是推理的依据。

①学生演示例1的做题过程

1、在ABC中,三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证:ABC为等边三角形

②教师以推理的结构重组做题过程

(讨论教师书写结构的特点以及看到这种结构的感想)③归纳综合法定义 综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立的方法,又叫顺推证法。

综合法是一种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法,由条件出发,推导出所要证明的结论成立

用P表示已知条件、已有定义、定理、公理等,Q表示所需证明的结论 则框图表示为

特点:由“已知”看“可知”,逐步推向“未知”,其逐步推理实际上是寻找“已知”的必要条件

提示学生把解题过程进行综合法概念转化

P(已知条件)Q1 1Q3P(定义)Q2 2Q 3P(定理)Q5Q6Q7Q83

P(已知条件)Q44

Q8QQ9 Q3总结综合法证明问题的步骤

第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系和区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法

第二步:转化条件,组织过程.把题目的已知条件转化成解题所需的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简介的语言,清晰的思路

第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取

(例2是一个几何证明题,接下来我做的工作是让学生)分析例2思考过程,写出思考过程

(分析完之后教师提示这个过程就是分析法)类比例1总结做题过程得出分析法的定义及流程图

分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、公理等)

分析法是“执果索因”,步步寻求上一步成立的条件,它与综合法是对立统一的两种方法

用Q表示要证明的结论,则分析法可得框图表示为

特点:从“未知”看“需知”,在逐步靠近“已知” 分析法的做题步骤

用分析法证明数学命题时,一定要恰当的用好“要证”、“只需证”、“即证”等词语.2、演练导航,规范方法

做一个综合法与分析法综合使用的例题,熟悉综合法与分析发的使用,突破本节课的难点

3、归纳总结、布置作业

(学生总结什么是综合法,什么是分析法,联系与区别)

分析法和综合法是对立统一的两种方法,分析法的证明过程恰好是综合法的分析、思考过程,即综合法是分析法的逆过程。混淆了他们之间的区别和联系易产生思维障碍,要注意两种证明方法的书写格式,否则易产生逻辑上的错误.六、评价分析

设计意图:数学总结,教师完善.复习课在很大程度上就是一个归纳总结的过程,特别是注意事项的总结.让学生养成善于总结的好习惯,是对学习知识的升华过程.防范错误于未然也是我们追求的目标,可见,归纳总结是非常重要的.同时必要的训练也是提高学生解题能力的重要途径.课后反思:通过本节课的讲授,我进行了以下四个方面的反思:

1、力求达到教师主导学生主体的教学理念,积极参与到探索、发现、讨论、交流的学习活动中去。在动手实践、师生交流、合作探究、生生互动中一次次产生思维火花,使课堂教学成为学生亲自参与的丰富数学思想场所,充分体现了课堂中学生的主体地位。

2、在突破重点问题上,通过学生自主探究、合作交流,质疑等教学方式,引导学生体会逻辑过程,使问题自然流畅,层层递进,体现高效课堂。

3、设计愉快的引入环节让同学们在愉悦的心情中发散思维,体会推理带来的兴奋情绪,同时希望能提高同学们对生活细节的把握,为以后的人际交往打下基础.4、本节课在课堂的把握上还是有所欠缺,引导不是很到位,这是日后我要改进的地方.我的说课到此结束,谢谢各位!

第三篇:分析法与综合法

实验中学高二数学(理科)学案日期:审核人:班级:_________姓名:_________等级:

——————————————————————————————————————————————————————————————————————————————————————————————————

2.2分析法与综合法

学习目标:

1.结合已经学过的数学实例,了解直接证明的分析法;

2.会用分析法证明问题;了解分析法的思考过程.3.根据问题的特点,结合综合法、分析法的思考过程、特点,选择适当的证明方法.二.【使用说明及学法指导】

1.先精读一遍教材,用红色笔进行勾画,再针对导学案问题导学部分二次阅读并回答提出的问题;

2.限时完成导学案合作探究部分,书写规范。

3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;

三.自学指导:

证明方法可以分为直接证明和间接证明

1.直接证明分为和

2.直接证明是从命题的或出发,根据以知的定义,公

里,定理,推证结论的真实性。

3.综合法是从推导到的方法。而分析法是一种从追溯到的思维方法,具体的说,综合法是从已知的条件出

发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步

寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。综

合法是由导,分析法是执索。

【预习自测】

【我的疑惑】

课中案 一.【教学重点与难点】: 重点: 分析法的思维过程及特点 难点:分析法的应用 二.合作、探究、展示 变式1求证

实验中学高二数学(理科)学案日期:审核人:班级:_________姓名:_________等级:

—————————————————————————————————————————————————————————————————————————————————————————————————— 例2在四面体SABC中,SA面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足

为F,求证AFSC.三.课堂检测

1.2,其中最合理的是()

A.综合法B.分析法C.反证法D.归纳法

ba2.不等式①x233x;②2,其中恒成立的是()ab

A.①B.②C.①②D.都不正确

【课堂小结】

1.知识方面

2.数学思想方法

课后案

1.已知yx0,且xy1,那么()xyxyA.xy2xyB.2xyxy 22

xyxyC.x2xyyD.x2xyy 22

2.若a,b,cR,则a2b2c2abbcac.

第四篇:综合法和分析法

课题综合法与分析法课时 1课时课型 新授课 使用说明及学法指导

1.先精读教材P60-P64内容,用红色笔进行勾画,再针对导学案的问题,二次阅读教材部分内容,并回答,时间为15分钟.2.找出自己的疑惑和需要讨论的问题准备课上讨论和质疑.3.必须记住的内容:综合法和分析法证明不等式.学习目标

1.理解并掌握综合法与分析法;2.会利用综合法和分析法证明不等式

3.高效学习,通过对典型案例的探究,激发学习数学激情.学习重点

会用分析法证明问题;了解分析法的思考过程.学习难点

根据问题的特点,选择适当的证明方法.一.预习自学

1.常用直接证明方法有和

2.综合法:一般的,利用已知条件和某些数学、、等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫综合法.综合法的思维过程的全貌可概括为下面形式:“已知→可知1→可知2→…结论”.3.分析法:一般的,从要证明的结论出发,逐步寻求使成立的条件,直至最后,把证明的结论归结为判定一个为止,这种证明方法叫做分析法,分析法的思维过程的全貌可概括为下面形式:“结论→需知1→需知2→…已知”..如果a,bR, 那么a2b22ab.当且仅当时, 等号成立..如果a,bR,那么ab当且仅当时, 等号成立..如果a

2bc

a,b,cR, 那么

3

当且仅当时, 等

号成立.40.如果a,b,cR, 那么

baab、caa

b

bc

二、合作交流

1.若a,b,c是不全相等的实数,求证:a

2b2

c2

abbcca. 证明:∵a,b,cR,∴a2

b2

≥2ab,b2

c2

≥2bc,c2

a2

≥2ac

变式训练

已知a,b,c0,且不全相等,求证:a(b2c2)b(c2a2)c(a2b2)6abc

2.用分析法证明 求证:3621.达标检测

1.下列说法不正确的是()

A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法

C.综合法与分析法都是直接证法D.综合法与分析法在同一题的证明中不可能同时采用

2.分析法是()

A.执果索因的逆推法B.执因导果的顺推法 C.因果分别互推的两头凑法D.逆命题的证明方法 3.以下数列不是等差数列的是()

A.B.π2,π5,π8

C.D.20,40,60 4.若P=a+a+7,Q=a+3+a+4(a≥0),则P、Q的大小关系是()

A.P>QB.P=QC.P<QD.由a的取值确定 5.已知

a,b

是不相等的正数,x

y,y,则

x的大小关系

是.6.用分析法证明(:15(2)

7.已知a,b,cR,abc1,求证:(1a

1)(1b

1)(1c

1)8

8.已知a,b,cR,abc1,求证:1a

11b

c

9

变式.已知a,b,c是两两不相等的正实数,bca

acb

bc

a

b

ac

3

综合法与分析法各有何特点?

【思考·提示】 分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻求它的充分条件;综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点,有些具体的待证命题,用分析法或综合法均能证明出来,往往选择较简单的一种.平时我们常用分析法探索解题思路,然后用综合法书写步骤.

第五篇:综合法分析法

综合法分析法

学习目标:

结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.高考题:1.(2012安徽理19)

(Ⅰ)设x1,y1,证明xy111xy;xyxy,logablogbclogcalogbalogcblogac.(Ⅱ)1abc,证明

2、(2010全国卷1文数)(10)设alog32,bln2,c52则

(A)abc(B)bca(C)cab(D)cba 1教材分析:分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。通过本节的学习,使学生了解直接证明的基本方法----综合法,了解综合法的思考过程、特点;培养学生的数学计算能力,分析能力,逻辑推理能力。本节的教学应该是比较成功的。

考点预测:1.高考题多以选择题和填空为主,是高考常考内容;

2.主要考察综合法。

授课过程:

一、复习准备:

1.提问:基本不等式的形式?

2.讨论:如何证明基本不等式ab(a0,b0).2(讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)

二、讲授新课:

教学例题:

综合法证题

1、已知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)

2证明:左-右=2(ab+bc-ac)

∵a,b,c成等比数列,∴b2ac

acac 又∵a,b,c都是正数,所以0bac≤2

∴acb

∴2(abbcac)2(abbcb2)2b(acb)0

∴a2b2c2(abc)2

abba例

2、已知a,bR,求证abab.本题可以尝试使用差值比较和商值比较两种方法

进行。

证明:1)差值比较法:注意到要证的不等式关于

a,b对称,不妨设ab0.ab0

aabbabbaabbb(aabbab)0,从而原不

等式得证。

2)商值比较法:设ab0,aabbaa1,ab0,ba()ab1.bb ab故原不

等式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差

(或作商)、变形、判断符号。

3、若实数x1,求证:3(1x2x4)(1xx2)2.证明:采用差值比较法:

3(1x2x4)(1xx2)

2=33x23x41x2x42x2x22x

3=2(x4x3x1)

=2(x1)2(x2x1)13=2(x1)2[(x)2].2

413x1,从而(x1)20,且(x)20, 24

13∴2(x1)2[(x)2]0, 24

∴3(1x2x4)(1xx2)2.分析法证题

例1.设a、b是两个正实数,且a≠b,求证:a3+b3>

a2b+ab2.

证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)

2>0显然成立,由此命题得证。

(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2

>0

亦即a2-ab+b2>ab

由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>

(a+b)ab

即a3+b3>a2b+ab2,由此命题得证

2、已知a,b,c,d∈R,求证:ac+bd≤(a2b2)(c2d2)

分析一:用分析法

证法一:(1)当ac+bd≤0时,(2)当ac+bd>0时,欲证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2)

即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d

2即证2abcd≤b2c2+a2d2

即证0≤(bc-ad)2

因为a,b,c,d∈R,所以上式恒成立,综合(1)、(2)可知:分析二:用综合法

二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)

=(ac+bd)2+(bc-ad)2≥(ac+bd)2 ∴(a2b2)(c2d2)≥|ac+bd|≥ac+

分析三:用比较法 证法三:∵(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)2≥0,∴(a2+b2)(c2+d2)≥(ac+bd)2 法

∴(a2b2)(c2d2)≥|ac+bd|≥ac+bd,即ac+bd≤(a2b2)(c2d2)例

3、设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。

(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0

亦即a2-ab+b2>ab

22由题设条件知,a+b>0,∴(a+b)(a-ab+b)>(a+b)ab

即a3+b3>a2b+ab2,由此命题得证.课堂小结

分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到所有的已知P都成立;

比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.1、a,b,cR,求证

abc)

2、设a, b, c是的△ABC三边,S是三角形的面积,求证:c2a2b24ab.略证:正弦、余弦定理代入得:2abcosC4absinC,即证:2cosCC,即:CcosC2,即证:sin(C)1(成6

立).新学案31页6、7,33页3、4.作业:教材P52 练习2、3题.

下载分析法与综合法论文word格式文档
下载分析法与综合法论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    综合法和分析法

    《综合法和分析法(1)》导学案 编写人:马培文审核人:杜运铎 编写时间:2016-02-24 【学习目标】 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。 【重点难点】......

    2.2.1综合法与分析法

    2.2.1 综合法与分析法一.教学目标:1.知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.过程与方法: 多让学生......

    04分析法与综合法

    分析法与综合法 教学目的: 让学生理解分析法与综合法证明及其关系 让学生学会综合运用分析法与综合法证明数学命题 教学过程: 引例:已知ab0,求证aab 1、综合法是由原因推导到结......

    _直接证明--综合法与分析法

    教学反思:通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧......

    综合法与分析法 2

    高(二)数学选修2-2第二章 推理与证明 导学案 课题:综合法与分析法(2)课型:新课教学目标:知识与技能结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综......

    综合法和分析法习题

    直接证明与间接证明测试题一、选择题1.下列说法不正确的是A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法C.综合法与分析法都是直接证法D.综合法与分析法在同一题的证明......

    2.2.1综合法和分析法

    数学选修1-2第二章推理与证明编号:3姓名:班级:评价:编制人:许朋朋 赵阳领导签字:§2. 2 .1 综合法和分析法一、教学目标:(一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基......

    2.2.1 综合法和分析法

    2.2 直接证明与间接证明2.2.1 综合法和分析法整体设计教材分析在以前的学习中,学生已经能用综合法和分析法证明数学问题,但他们对综合法和分析法的内涵和特点不一定非常清楚.本节......