分析法与综合法(共五则范文)

时间:2019-05-14 15:37:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分析法与综合法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分析法与综合法》。

第一篇:分析法与综合法

分析法与综合法

一、分析法与综合法的定义

1、定义

所谓分析法,是指“执果索因”的思维方法,即从结论出发,不断地去寻找需知,直至达到已知事实为止的方法.

分析法的思维全貌可概括为下面形式:

“结论需知1需知2„已知”.

所谓综合法,是指“由因导果”的思维方法,即从已知条件出发,不断地展开思考,去探索结论的方法.

综合法的思维过程的全貌可概括为下面形式:

“已知可知1可知2„结论”.

二、例题赏析

1、已知:a,bR,且ab,求证:a3b3a2bab2.

证明一:(分析法)要证a3b3a2bab2,即证(ab)(a2abb2)ab(ab),因为ab0,故只需证a2abb2ab,即证a2abb0,即证(ab)0,因为ab,所以(ab)0成立,所以ababab成立.

证明二:(综合法)由ab,知(ab)2222233220,即a2abb0,则aabbab.

222222332

2又ab0,则(ab)(aabb)ab(ab),即ababab.

实际证题过程中,分析法与综合法往往是结合起来运用的,把分析法和综合法孤立起来运用是比较少的.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚好相反,综合法居主导地位,而分析法伴随着它.

特别是,对于那些较为复杂的数学命题,不论是从“已知”推向“未知”,或者是由“未知”靠拢“已知”,都有一个比较长的过程,单靠分析法或综合法显得较为困难.为保证探索方向准确及过程快捷,人们又常常把分析法与综合法两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.上面所言的思维模式可概括为如下图所示:

综合法与分析法是逻辑推理的思维方法,它对于培养思维的严谨性极为有用.把分析法与综合法两者并列起来进行思考,寻求问题的解答途径方式,就是人们通常所说的分析、综合法.

下面举一具体例子加以说明:

2、若a,b,c是不全相等的正数,求证:lg

证明:要证lgablgbclgcaab2lgbc2lgca2lgalgblgc.

222abbccalg(abc),只需证lg222lgalgblgc

abbccaabc. 222abbc≥ab0,≥

但是,2

2只需证

bc0,ca2≥ca0.

且上述三式中的等号不全成立,所以

因此lgab2lgbc2lgca2abbccaabc. 222lgalgblgc.

注:这个证明中的前半部分用的是分析法,后半部分用的是综合法. 例

3、例1 如图1,在四面体AVBC中,VAVBVC,AVBAVC60,BVC90,求证:平面VBC⊥平面ABC.

分析:要证面面垂直需通过线面垂直来实现,可是哪一条直线是我们所需要的与平面垂直的直线呢? 我们假设两平面垂直已经知道,则根据两平面垂直的性质定理,在平面VBC内作VD⊥BC,则VD⊥平面ABC,所以VD即为我们所要寻找的直线.

要证明VD⊥平面ABC,除了已知的VD⊥BC之外,还需要在平面ABC内找一条直线与VD垂直,哪一条呢?

假设已知知道VD⊥平面ABC,则VD与平面ABC内的任意直线均垂直,即必有VD⊥AB,VD⊥AC,但这两个垂直的证明较难入手,还有其他的直线吗?

连结AD呢?假设已经知道VD⊥平面ABC,则必有VD⊥AD.通过计算可得到VDA90,原题得证. 证明:设BC的中点为D,连结VD,AD,因为VBVC,所以VD⊥BC; 设VAVBVC1,因为AVBAVC60,BVC90,22 所以ABAC1,BC2,VDAD,所以VDA90,即VD⊥AD,又已知ADBCD,所以VD⊥平面ABC,又VD平面VBC,所以平面VBC⊥平

面ABC.

4、如图2,在长方体ABCDA1B1C1D1中,证明:平面A1BD∥平面CB1D1.

分析:要证明两平面平行,需在一平面内寻找两条相交直线与另一平面平行.

假设两平面平行已知,则一个平面内的任意直线均与另一个平面平行,所以有A1B,A1D,BD均与平面CB1D1平行,选择任意两条均可,不妨选择A1B,A1D.

要想证明A1B,A1D与平面CB1D1平行,需在平面CB1D1内寻找两条直线分别与A1B,A1D平行,假设A1B,A1D与平面CB1D1平行已知,则根据线面平行的性质定理,过A1B的平面A1BCD1与平面CB1D1相交所得的交线CD1与A1B平行;过A1D的平面

A1DCB1与平面CB1D1相交所得的交线B1C与A1D平行.CD1,B1C即为所要寻找的直线.从而易知CD1,B1C分别与A1B,A1D平行,原题得证.

∥BC,即四边形ABCD为平行四证明:因为ABCDA1B1C1D1为长方体,所以有A1D1 11边形,从而有A1B∥CD1,又已知A1B平面CB1D1,CD1平面CB1D1,进而有A1B∥平面CB1D1;同理有A1D∥B1C,从而有A1D∥平面CB1D1;又已知A1BA1DA1,所以有平面A1BD∥平面CB1D1.

从上面的两例可以看出,分析法的基本思路是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件.同学们可以在学习过程中,沿着这样的解题思路,亲自体验一下分析法在立几证明中的妙用.例

4、设A、B、C是双曲线xy=1上的三点,求证:△ABC的垂心H必在此双曲线上.

分析:如图1-1,设H的坐标为(x0,y0),要证H在此双曲线上,即证x0y0=1.而H是两条高AH与BH的交点,因此需求直线AH、BH的方程,进而从所得方程组中设法推出x0y0=1.

证明:如图1-1,由已知可设A、B、C的坐标分别为,

设点H的坐标为(x0,y0),则

由①式左乘②式右及①式右乘②式左,得

化简可得x0y0(α-β)=α-β. ∵ α≠β,∴x0y0=1. 故H点必在双曲线xy=1上.

解说:本证法的思考过程中,从分析法入手,得出证点H在双曲线xy=1上就是证x0y0=1.这为综合法证明此题指明了目标.在用综合法证明的过程中,牢牢抓住这个目标,去寻找x0、y0的关系式,用式子①与②相乘,巧妙地消去参数α、β、γ,得到x0y0=1.从而避免了解方程的麻烦,提高了解题速度. 练习:

1、设a,bR,a22b26,则ab的最小值是

()

A.2

2B.53C.-3

D.72

2、.在△ABC中,sinAsinCA.锐角三角形

3.观察式子:1A.1B.1C.1D.1122,则△ABC一定是()

B.直角三角形

C.钝角三角形

D.不确定

cosAcosC122321n,1121213253,112213214274,则可归纳出式子为()

13222n112n12n1n2n2n1(n≥2)(n≥2)(n≥2)(n≥2)122213321nn21212121221321n2

4、已知实数a0,且函数f(x)a(x21)(2xa=__________。

1a)有最小值1,则

5、已知a,b是不相等的正数,x_________。

a2b,yab,则x,y的大小关系是

6、若正整数m满足10m1251210m,则m______________.(lg20.3010)

7、a,b,c∈R+,求证:(a+1)(b+1)(a+c)3(b+c)3≥256a2b2c3.8、x,y,z,a均大于1,且logaxyz=9,求证:logxa+logya+logza≥1.9、已知a,b,c都是互不相等的正数,求证(abc)(abbcca)9abc.18.如图,已知PA矩形ABCD所在平面,M,N分别是AB,PC的中点. 求证:(1)MN∥平面PAD;(2)MNCD.

第二篇:综合法与分析法(范文模版)

课题:§2.2.1 综合法与分析法(说课稿)

各位评委、各位老师:

大家好!我是来自……..,希望我今天的说课能给大家留下美好的印象。我说课的课题是高中课程标准实验教材数学选修2-2第二章第二节的《综合法与分析法》。我想通过这节课表达一种教学理念——关注学生成长,构建高效课堂。本节说课分教学设计和教学反思两部分。在教学设计部分,我将以“教什么,怎么教,为何这样教”为思路从以下这五个方面进行阐述。 教材分析-------教材编写背景、地位与作用、重点与难点(关于教材分析我将从……三个方向进行说明) 学情分析-------有利因素、不利因素(然后从……两点来对学情进行分析)

 目标分析-------知识目标、能力目标、情感目标(…….是本节课的三大目标) 教法分析-------教法、学法

(之后是从教法与学法来分析如何处理本节课)

 过程分析-------定义、范例、练习、归纳总结、作业(本节课的教学过程我将从………五点来安排) 评价分析-------课程设计、课后感想

(最后是对本节课的课程设计的介绍以及课后的一些感想)

一、教材分析

(关于教材分析首先我要讲的是)

1、教材编写背景

在以前的学习中,学生已经能应用综合法、分析法证明数学命题,但他们对这些证明方法的内涵和特点不一定非常清楚。本节结合学生已学过的数学知识,通过实例引导学生分析这些基本证明方法的思考过程和特点,并归纳出操作流程图,使他们在以后的学习和生活中,能自觉地、有意识的用这些方法进行数学证明,养成言之有理、论证有据的习惯。

2、教材地位与作用

(我们知道)《综合法和分析法》是直接证明中最基本的两种证明方法,是在学习了合情推理与演绎推理的基础上,学习证明数学结论的两种常见方法,他不是孤立存在的,这种证明方法已经渗透到函数、三角函数、数列、立体几何、解析几何等等,可见,直接证明的方法在中学数学里占有极其重要的地位。

综合法与分析法已经与函数、数列、解析几何等问题结合的比较紧密,这类问题重在考察学生的逻辑思维能力,并且立意新颖,抽象程度高,更能体现高观点、低起点,深入浅出的特点

3、教材的重点和难点

教学重点:综合法和分析法的概念及思考过程、特点

教学难点:结合综合法、分析法的思考过程、特点,选择适当的证明方法或把不

同的证明方法结合使用

(本节课的最终目标是能)从实际问题中,命题的条件或结论出发,根据已知的定义、定理、公理,直接推证结果的真实性,从证明过程上认识分析法和综合法的推理过程,学会用综合法和分析法证明实际问题,并且理解分析法和综合法的内在联系(突破本节课难点所在)

二、学情分析

(对于本节课有以下两点值得注意)

1、有利因素

学生在数学的学习中已经初步形成了一定的证明思想,例如初中阶段的几何证明题,高一学习了一元二次不等式,初步证明了一些不等式的问题,在本节课前,学习了合情推理与演绎推理,都为本节课的学习打下了基础

2、不利因素

学生对以学知识的应用意识不强,三角代换、代数式的变形没有目的性,随意性较大。特别是与其他章节知识的交汇存在很大障碍

三、目标分析

根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,我制定本节课的教学目标如下: 知识目标:了解直接证明的两种方法—分析法和综合法;了解分析法和综合法的思考过程、特点(这也是本节课重点所在),能运用综合法分析法证题(解决本节课的难点)。

能力目标:通过综合法和分析法的学习,提升分析解决问题的能力。情感目标:通过分析法和综合法的学习体会数学思维的严密性,同时在以后的生活中能应用这种能力解决现实生活中的问题,帮助身心健康成长.四、教法与学法分析

教法:(因为)本节课是直接证明的复习课,学生容易产生对已学习知识的轻视态度与厌倦心理,较难发挥学生的主观能动性。因此,如果教学方法、策略不合适,很难以达到理想的教学效果。为了贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,我采用了回顾、分析、启发、引导、归纳相结合的教学方法,以及一题多解,错题剖析等教学策略,以帮助学生克服上述心理,激发学生的求知欲、探索欲,体现学生的主体作用。

学法:在引导分析时,要留出空间和时间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法弄清。在促进学生知识体系的构建和数学思想方法的形成的同时,要注意面向全体学生,培养学生多观察、勤思考、勤动手的精神,提高学生合作学习和教学交流的能力

五、教学过程设计

我把整个教学过程分为如下三部分

1、定义引入,考点诠释

2、演练导航,规范方法

3、归纳总结,布置作业

1、定义引入,考点诠释

(定义引入这部分内容的设计意图在于突破本节课的重点:综合法、分析法的定义,思考过程)

引入:因为本节属于推理性证明,所以我以学生熟悉的《名侦探柯南》中一个片段引导学生熟悉有序的逻辑思考过程

(看完影片后我要求学生回答从影片中都有什么收获)

提示:每一个结论的得出都必须有证据存在,已有事实是推理的依据。

①学生演示例1的做题过程

1、在ABC中,三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证:ABC为等边三角形

②教师以推理的结构重组做题过程

(讨论教师书写结构的特点以及看到这种结构的感想)③归纳综合法定义 综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立的方法,又叫顺推证法。

综合法是一种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法,由条件出发,推导出所要证明的结论成立

用P表示已知条件、已有定义、定理、公理等,Q表示所需证明的结论 则框图表示为

特点:由“已知”看“可知”,逐步推向“未知”,其逐步推理实际上是寻找“已知”的必要条件

提示学生把解题过程进行综合法概念转化

P(已知条件)Q1 1Q3P(定义)Q2 2Q 3P(定理)Q5Q6Q7Q83

P(已知条件)Q44

Q8QQ9 Q3总结综合法证明问题的步骤

第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系和区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法

第二步:转化条件,组织过程.把题目的已知条件转化成解题所需的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简介的语言,清晰的思路

第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取

(例2是一个几何证明题,接下来我做的工作是让学生)分析例2思考过程,写出思考过程

(分析完之后教师提示这个过程就是分析法)类比例1总结做题过程得出分析法的定义及流程图

分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、公理等)

分析法是“执果索因”,步步寻求上一步成立的条件,它与综合法是对立统一的两种方法

用Q表示要证明的结论,则分析法可得框图表示为

特点:从“未知”看“需知”,在逐步靠近“已知” 分析法的做题步骤

用分析法证明数学命题时,一定要恰当的用好“要证”、“只需证”、“即证”等词语.2、演练导航,规范方法

做一个综合法与分析法综合使用的例题,熟悉综合法与分析发的使用,突破本节课的难点

3、归纳总结、布置作业

(学生总结什么是综合法,什么是分析法,联系与区别)

分析法和综合法是对立统一的两种方法,分析法的证明过程恰好是综合法的分析、思考过程,即综合法是分析法的逆过程。混淆了他们之间的区别和联系易产生思维障碍,要注意两种证明方法的书写格式,否则易产生逻辑上的错误.六、评价分析

设计意图:数学总结,教师完善.复习课在很大程度上就是一个归纳总结的过程,特别是注意事项的总结.让学生养成善于总结的好习惯,是对学习知识的升华过程.防范错误于未然也是我们追求的目标,可见,归纳总结是非常重要的.同时必要的训练也是提高学生解题能力的重要途径.课后反思:通过本节课的讲授,我进行了以下四个方面的反思:

1、力求达到教师主导学生主体的教学理念,积极参与到探索、发现、讨论、交流的学习活动中去。在动手实践、师生交流、合作探究、生生互动中一次次产生思维火花,使课堂教学成为学生亲自参与的丰富数学思想场所,充分体现了课堂中学生的主体地位。

2、在突破重点问题上,通过学生自主探究、合作交流,质疑等教学方式,引导学生体会逻辑过程,使问题自然流畅,层层递进,体现高效课堂。

3、设计愉快的引入环节让同学们在愉悦的心情中发散思维,体会推理带来的兴奋情绪,同时希望能提高同学们对生活细节的把握,为以后的人际交往打下基础.4、本节课在课堂的把握上还是有所欠缺,引导不是很到位,这是日后我要改进的地方.我的说课到此结束,谢谢各位!

第三篇:分析法与综合法

实验中学高二数学(理科)学案日期:审核人:班级:_________姓名:_________等级:

——————————————————————————————————————————————————————————————————————————————————————————————————

2.2分析法与综合法

学习目标:

1.结合已经学过的数学实例,了解直接证明的分析法;

2.会用分析法证明问题;了解分析法的思考过程.3.根据问题的特点,结合综合法、分析法的思考过程、特点,选择适当的证明方法.二.【使用说明及学法指导】

1.先精读一遍教材,用红色笔进行勾画,再针对导学案问题导学部分二次阅读并回答提出的问题;

2.限时完成导学案合作探究部分,书写规范。

3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;

三.自学指导:

证明方法可以分为直接证明和间接证明

1.直接证明分为和

2.直接证明是从命题的或出发,根据以知的定义,公

里,定理,推证结论的真实性。

3.综合法是从推导到的方法。而分析法是一种从追溯到的思维方法,具体的说,综合法是从已知的条件出

发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步

寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。综

合法是由导,分析法是执索。

【预习自测】

【我的疑惑】

课中案 一.【教学重点与难点】: 重点: 分析法的思维过程及特点 难点:分析法的应用 二.合作、探究、展示 变式1求证

实验中学高二数学(理科)学案日期:审核人:班级:_________姓名:_________等级:

—————————————————————————————————————————————————————————————————————————————————————————————————— 例2在四面体SABC中,SA面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足

为F,求证AFSC.三.课堂检测

1.2,其中最合理的是()

A.综合法B.分析法C.反证法D.归纳法

ba2.不等式①x233x;②2,其中恒成立的是()ab

A.①B.②C.①②D.都不正确

【课堂小结】

1.知识方面

2.数学思想方法

课后案

1.已知yx0,且xy1,那么()xyxyA.xy2xyB.2xyxy 22

xyxyC.x2xyyD.x2xyy 22

2.若a,b,cR,则a2b2c2abbcac.

第四篇:综合法和分析法

课题综合法与分析法课时 1课时课型 新授课 使用说明及学法指导

1.先精读教材P60-P64内容,用红色笔进行勾画,再针对导学案的问题,二次阅读教材部分内容,并回答,时间为15分钟.2.找出自己的疑惑和需要讨论的问题准备课上讨论和质疑.3.必须记住的内容:综合法和分析法证明不等式.学习目标

1.理解并掌握综合法与分析法;2.会利用综合法和分析法证明不等式

3.高效学习,通过对典型案例的探究,激发学习数学激情.学习重点

会用分析法证明问题;了解分析法的思考过程.学习难点

根据问题的特点,选择适当的证明方法.一.预习自学

1.常用直接证明方法有和

2.综合法:一般的,利用已知条件和某些数学、、等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫综合法.综合法的思维过程的全貌可概括为下面形式:“已知→可知1→可知2→…结论”.3.分析法:一般的,从要证明的结论出发,逐步寻求使成立的条件,直至最后,把证明的结论归结为判定一个为止,这种证明方法叫做分析法,分析法的思维过程的全貌可概括为下面形式:“结论→需知1→需知2→…已知”..如果a,bR, 那么a2b22ab.当且仅当时, 等号成立..如果a,bR,那么ab当且仅当时, 等号成立..如果a

2bc

a,b,cR, 那么

3

当且仅当时, 等

号成立.40.如果a,b,cR, 那么

baab、caa

b

bc

二、合作交流

1.若a,b,c是不全相等的实数,求证:a

2b2

c2

abbcca. 证明:∵a,b,cR,∴a2

b2

≥2ab,b2

c2

≥2bc,c2

a2

≥2ac

变式训练

已知a,b,c0,且不全相等,求证:a(b2c2)b(c2a2)c(a2b2)6abc

2.用分析法证明 求证:3621.达标检测

1.下列说法不正确的是()

A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法

C.综合法与分析法都是直接证法D.综合法与分析法在同一题的证明中不可能同时采用

2.分析法是()

A.执果索因的逆推法B.执因导果的顺推法 C.因果分别互推的两头凑法D.逆命题的证明方法 3.以下数列不是等差数列的是()

A.B.π2,π5,π8

C.D.20,40,60 4.若P=a+a+7,Q=a+3+a+4(a≥0),则P、Q的大小关系是()

A.P>QB.P=QC.P<QD.由a的取值确定 5.已知

a,b

是不相等的正数,x

y,y,则

x的大小关系

是.6.用分析法证明(:15(2)

7.已知a,b,cR,abc1,求证:(1a

1)(1b

1)(1c

1)8

8.已知a,b,cR,abc1,求证:1a

11b

c

9

变式.已知a,b,c是两两不相等的正实数,bca

acb

bc

a

b

ac

3

综合法与分析法各有何特点?

【思考·提示】 分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻求它的充分条件;综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点,有些具体的待证命题,用分析法或综合法均能证明出来,往往选择较简单的一种.平时我们常用分析法探索解题思路,然后用综合法书写步骤.

第五篇:综合法分析法

综合法分析法

学习目标:

结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.高考题:1.(2012安徽理19)

(Ⅰ)设x1,y1,证明xy111xy;xyxy,logablogbclogcalogbalogcblogac.(Ⅱ)1abc,证明

2、(2010全国卷1文数)(10)设alog32,bln2,c52则

(A)abc(B)bca(C)cab(D)cba 1教材分析:分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。通过本节的学习,使学生了解直接证明的基本方法----综合法,了解综合法的思考过程、特点;培养学生的数学计算能力,分析能力,逻辑推理能力。本节的教学应该是比较成功的。

考点预测:1.高考题多以选择题和填空为主,是高考常考内容;

2.主要考察综合法。

授课过程:

一、复习准备:

1.提问:基本不等式的形式?

2.讨论:如何证明基本不等式ab(a0,b0).2(讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)

二、讲授新课:

教学例题:

综合法证题

1、已知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)

2证明:左-右=2(ab+bc-ac)

∵a,b,c成等比数列,∴b2ac

acac 又∵a,b,c都是正数,所以0bac≤2

∴acb

∴2(abbcac)2(abbcb2)2b(acb)0

∴a2b2c2(abc)2

abba例

2、已知a,bR,求证abab.本题可以尝试使用差值比较和商值比较两种方法

进行。

证明:1)差值比较法:注意到要证的不等式关于

a,b对称,不妨设ab0.ab0

aabbabbaabbb(aabbab)0,从而原不

等式得证。

2)商值比较法:设ab0,aabbaa1,ab0,ba()ab1.bb ab故原不

等式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差

(或作商)、变形、判断符号。

3、若实数x1,求证:3(1x2x4)(1xx2)2.证明:采用差值比较法:

3(1x2x4)(1xx2)

2=33x23x41x2x42x2x22x

3=2(x4x3x1)

=2(x1)2(x2x1)13=2(x1)2[(x)2].2

413x1,从而(x1)20,且(x)20, 24

13∴2(x1)2[(x)2]0, 24

∴3(1x2x4)(1xx2)2.分析法证题

例1.设a、b是两个正实数,且a≠b,求证:a3+b3>

a2b+ab2.

证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)

2>0显然成立,由此命题得证。

(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2

>0

亦即a2-ab+b2>ab

由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>

(a+b)ab

即a3+b3>a2b+ab2,由此命题得证

2、已知a,b,c,d∈R,求证:ac+bd≤(a2b2)(c2d2)

分析一:用分析法

证法一:(1)当ac+bd≤0时,(2)当ac+bd>0时,欲证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2)

即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d

2即证2abcd≤b2c2+a2d2

即证0≤(bc-ad)2

因为a,b,c,d∈R,所以上式恒成立,综合(1)、(2)可知:分析二:用综合法

二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)

=(ac+bd)2+(bc-ad)2≥(ac+bd)2 ∴(a2b2)(c2d2)≥|ac+bd|≥ac+

分析三:用比较法 证法三:∵(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)2≥0,∴(a2+b2)(c2+d2)≥(ac+bd)2 法

∴(a2b2)(c2d2)≥|ac+bd|≥ac+bd,即ac+bd≤(a2b2)(c2d2)例

3、设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。

(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0

亦即a2-ab+b2>ab

22由题设条件知,a+b>0,∴(a+b)(a-ab+b)>(a+b)ab

即a3+b3>a2b+ab2,由此命题得证.课堂小结

分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到所有的已知P都成立;

比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.1、a,b,cR,求证

abc)

2、设a, b, c是的△ABC三边,S是三角形的面积,求证:c2a2b24ab.略证:正弦、余弦定理代入得:2abcosC4absinC,即证:2cosCC,即:CcosC2,即证:sin(C)1(成6

立).新学案31页6、7,33页3、4.作业:教材P52 练习2、3题.

下载分析法与综合法(共五则范文)word格式文档
下载分析法与综合法(共五则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    综合法和分析法

    《综合法和分析法(1)》导学案 编写人:马培文审核人:杜运铎 编写时间:2016-02-24 【学习目标】 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。 【重点难点】......

    分析法与综合法论文

    目录内容摘要和关键词„„„„„„„„„„„„„„„„„„„„„„„„„„21. 分析法与综合法„„„„„„„„„„„„„„„„„„„„„„„„„22. 分析法与综合法在......

    2.2.1综合法与分析法

    2.2.1 综合法与分析法一.教学目标:1.知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.过程与方法: 多让学生......

    04分析法与综合法

    分析法与综合法 教学目的: 让学生理解分析法与综合法证明及其关系 让学生学会综合运用分析法与综合法证明数学命题 教学过程: 引例:已知ab0,求证aab 1、综合法是由原因推导到结......

    _直接证明--综合法与分析法

    教学反思:通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧......

    综合法与分析法 2

    高(二)数学选修2-2第二章 推理与证明 导学案 课题:综合法与分析法(2)课型:新课教学目标:知识与技能结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综......

    综合法和分析法习题

    直接证明与间接证明测试题一、选择题1.下列说法不正确的是A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法C.综合法与分析法都是直接证法D.综合法与分析法在同一题的证明......

    2.2.1综合法和分析法

    数学选修1-2第二章推理与证明编号:3姓名:班级:评价:编制人:许朋朋 赵阳领导签字:§2. 2 .1 综合法和分析法一、教学目标:(一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基......