第一篇:动车组概论课程总结
高速列车及转向架技术
课程学习总结
院系:班级:姓名:学号:成绩:
大学
2014年6月15日
这学期,我们学习了高速列车及转向架技术这门课程,该课程内容主要涵盖我国动车组车体技术、转向架技术、牵引供电、制动技术等几方面。作为本专业的一门专业概论课,老师对课程内容做了总体讲解,让同学们自主学习国产动车组车体结构、转向架技术、网络控制技术、车端连接设备,主要通过学习小组分工完成PPT并为同学们讲解,加深了我对课程内容的印象。我将从下述几方面对本门课程做学习总结。
一、高速铁路概述
2007年,我国铁路实施第六次提速,铁路客运速度达到并超过200km/h,标志着我国已进入高速铁路国家的行列。世界上第一条高速铁路是1959年4月5日动工,1964年7月竣工,1964年10月通车的日本的东京━━大阪的东海道的新干线,至今已40多年过去,高速列车从东海道新干线的0系,发展了100系、200系、300系、400系、500系、700系、El系(MAX)、E2系、E3等,其以动力分散为主,大编组、高功率、小轴重为特点,列车运行密度大,定员多,旅客输送量大;安全性能好,旅客死亡事故少。
法国在1981年建成了它的第一条高速铁路,长425公里的TGV东南线,时速达270km/h;1989年长308公里的TGV大西洋线投入运行,时速为300km/h;2007年底推出最高运行时速为350 km/h的AGV高速列车,均采用动力集中方式及铰链式车厢,注重系统的安全性与可靠性,线路要求高标准高质量。
德国1985年制造出ICE型高速列车,ICE第一代列车(ICE1)于1988年就跑出了400km/h的速度,随后改进制成ICE第二代(ICE2)和ICE第三代(ICE3)产品;由于ICE3要在莱茵-科隆间线路上运行,该线路设计坡度为40‰、并以300km/h运行,为了有足够的粘着力,故该车采用动力分散型。
高速铁路与其他运输方式相比,具有其独特的技术优势:
1)速度快:从节约总旅行时间来看,在距离200-1000公里范围内优于高速公路和飞机;
2)舒适度和安全度:既有高速铁路在运营中很少发生伤亡事故,且旅客乘坐舒适;
3)能耗低:以每人每公里的能耗比为(高速铁路:小汽车:飞机)1:5.79:5.25;
4)占地少:高速铁路比高速公路占地少,四车道高速公路占地宽26米,双线铁路占地宽20米;
5)环境保护:高速铁路一般采用电力牵引,基本无空气污染,如考虑火电厂污物排放量,则高速铁路、小汽车、飞机的二氧化碳排放量之比为1:3.0:4.1。
二、我国CRH动车组简介
通过从世界高速铁路技术发达国家引进高速动车组,经过中国南车、北车集团的消化、吸收、再创新,中国铁路形成了具有自主品牌的CRH系列高速动车组。在先进、成熟、经济、适用、可靠的方针指导下,中国高速铁路在系统集成、轻量化、高速转向架、交流传动高速受流、高速制动、网络控制、人机工程、节能环保等方面达到了世界先进水平。已开行的CRH动车组有CRH1、CRH2,CRH3,CRH5,CRH380A等型。
1、“和谐号”动车组特点 :
“和谐号”动车组普遍采用交流传动及动力分散式。“和谐号”车头为可降低空气阻力的流线形。运行时速达200km/h以上,最高可达350km/h。“和谐号”列车通过电脑控制行车,电子显示驾驶数据。“和谐号”列车的座位划分为一等座及二等座。一等座为2+2排列方式,二等座为3+2排列方式。座椅可调节,座向可以转180度,附有可折叠的茶几。车内部设计注重人性化、自动调节温度的空调、所有车门都是电动塞拉门、还有使用卧铺的型号用于较长途的线路,200km/h级别车主要在既有线路上运行,300km/h级别的车主要在高速专用线路上运行。
2、CRH动车组关键技术
我国CRH系列动车组引入的都是动力分散式的动车组,均为8辆编组,可重联运行。动车组在总体布置、可靠性设计、列车控制与管理、复合制动等方面均达到了世界先进水平。下面简要介绍几个关键技术:
1)车体结构的空气动力学设计
高速列车的车体外型设计与列车空气动力学密切相关,车头部趋于扁形、端部鼻锥部设计成带锥度的椭圆形,可减少列车运行时的空气阻力、表面压力冲击波、交会压力波等,并改善尾部涡流影响。整个车身断面呈鼓形、车身底部用裙板遮住,有利于减小空气阻力、缓解列车交会压力波及横向阻力、侧滚力矩的作用;表面平滑光整、风挡与车身保持齐平,避免形成空气涡流;头部外形与车身外形还需做到严格相切。
2)车体轻量化技术
车体、车内设备以及走行部(转向架)重量的减轻实现了列车的轻量化,不仅可以减少原材料的消耗,降低牵引功率,提高列车运行速度,改善列车启动和制动性能,而且可有效减小轮轨间的动力作用,减小振动和噪声,增加机车和线路的使用寿命,达到节能和环保的要求。
车体轻量化是一个综合工程,需要从材料、结构、工艺等多个方面进行考虑。直观体现在重量的变轻上,具体可分为车体结构轻量化、转向架轻量化、车内设备、变电系统的轻量化,这些反映了一个国家的综合设计及制造水平。
3)高速转向架技术
高速列车转向架必须解决其高速运行时的稳定性、平稳性和良好的曲线通过能力等关键技术问题,以保证高速列车安全行驶、乘坐舒适、减少维修。其主要特点:焊结构架,无摇枕,空气弹簧悬挂,有回转阻尼装置,加装轴箱弹性定位装置,抗蛇行装置,抗侧滚装置等。
4)高速受流技术
受电弓在接触网下以机车运行速度运动中完成受流,受流过程包括多种机械运动形式和电气状态变化:受电弓相对于接触导线的滑动摩擦;受电弓上下振动;受电弓由于机车横向摆动而形成的横向振动;接触网上下振动,并形成行波沿导线向前传播;受电弓和接触导线之间发生的水平和垂直方向撞击;弓网离线发生电弧,受电弓受流中,电流发生剧烈变化等。所以,弓网受流过程是一个复杂的机械、电气过程,随着列车速度的提高,上述各种运动加剧,维持弓网之间的良好接触性能愈加困难,受流质量也随之下降,当列车速度超过受流系统的允许范围外,受流质量将严重恶化,影响列车取流和正常运行。在高速条件下,受流系统的性能与常规电气化铁路的受流质量是不同的,系统所需解决的问题也不尽相同,高速受流技术是高速铁路的关键技术之一。
5)制动技术
现代高速动车组采用动力分散模式,列车制动由电气制动和空气制动复合而成,包括制动控制系统和制动执行系统。控制系统由制动信号发生、传输装置和制动控制装置组成;执行系统即基础制动装置,常见的有闸瓦制动和盘形制动。由于运行速度高,黏着系数小,制动距离要求短,动车组均设有高性能电阻防滑器,进行防滑控制,充分利用黏着。
6)车端设备
车端设备是车体与车体间的重要连接设备,连接列车间的车钩装置、风挡及空气、电气连接等,包括:自动车钩、半自动车钩、过渡车钩及缓冲装置、列车通信总线连接、制动控制线连接、高中低压供电母线连接、直流供电母线连接、电路电气设备连接、电缆连接、列车管和总风管及车钩解钩空气管路连接等。
现在动车组技术快速发展,速度不断提高,表现在以提高试验速度为基础,不断提高运营速度;电力牵引传动系统向功率大、体积小、重量轻、高可靠性和低成本方向发展;列控技术向着移动闭塞、自动驾驶、GSM-R无线信号传输方向发展,以取代落后的轨道电路、地面信号机等设备;车内环境和设备不断改善,提高了旅客乘坐舒适度和服务质量;转向架向着无摇枕设计方向发展等都是高速动车组的发展方向;环境保护是制约轨道交通发展的一大难题,因此在提速、节能之外,降噪、减振是轨道交通技术进步的另一个方向。
三、结语
我们这个学习小组自主学习了CRH3的车体结构、CRH5的转向架技术、CRH3的列车网络控制技术,并分工完成PPT向同学们讲解。在做CRH3的车体结构时,通过查找资料首先让我对动车组有了基本的了解,再是CRH3的车体结构内容完成后,CRH3车体的基本结构及其参数、外形设计理念、各项制造技术的引进与创新等给我留下深刻印象。在做CRH5的转向架时,其独特的万向轴牵引传动、Z字形牵引拉杆、体悬式电机、轴箱双拉杆定位等转向架知识让我收获不少。在做CRH3的列车网络控制技术时,让我了解到列车网络控制技术的先进性和复杂性,对CRH3的TCN网络、WTB总线、MVB总线有了初步了解,并对其信息传输、控制技术的实现有了概括性的学习了解。在完成学习任务时,大家分工合作,查找相关书籍和网络资料,最后整合到一起,通过自己的学习理解再以易懂的方式向同学们讲解,这不仅对自己所作部分内容理解还对整体内容有系统性的学习,还加深自己对所做内容的印象。在完成自己的学习任务时,我们也向其他组的同学学习了解了其他不同车型的相应内容,通过几次的自主学习让我受益匪浅。
通过该课程的学习,我了解了国内外高速铁路的现状与发展,国内外高速列车的先进技术,对我国的动车组有了较为全面的认识,学习了我国动车组的几大关键性技术。通过国内外高速列车技术的对比学习,我发现我国的动车组技术与世界先进水平的差距,我们国家的高速列车技术
发展还处在引进、消化吸收、改革创新阶段,离自主研发、实现技术完全国产化还有一定的距离。因此,我国高速铁路的蓬勃持续发展不会停止,这需要大量的科研、技术人员的不懈努力,我们在学习国外先进动车组技术的同时,更要增强自主创新和开发能力,研制出拥有自主知识产权的中国品牌。这就要求我们更好的学习专业课程知识,将理论联系实际,学以致用,将来在工作中发挥自己的才能,以期为促进我国高速铁路的持续快速发展贡献自己的绵薄之力。
第二篇:高速铁路和动车组课程论文
动车组技术论文 I
《动车组技术》课程论文
高速铁路和动车组浅析
班级:交通设备
姓名: 学号:
任课老师:刘堂红
时间:2013/12/30
动车组技术论文
II
摘要
本文首先简要介绍了我国机车车辆的发展概况,导出发展高速动车组的必要性。接着介绍各国高速铁路的概况,指出日、德、法等高速动车组技术领先国家最具特色的技术,引出中国从这些国家引进系列动车组关键技术并消化吸收再创新实现我国铁路跨越式发展的必然。其次重点介绍了我国CRH系列动车组总体、转向架、交流传动、制动、节能环保等几大关键技术。最后展望了中国高速铁路和动车组未来的发展方向。
关键词: 机车车辆;动车组;高速铁路;技术;发展
动车组技术论文 III
ABSTRACT This article briefly describes the development of rolling stock, the need to export the development of high-speed EMU's move.Then introduce the countries high-speed rail overview, noting Japan, Germany, France and other EMU technology leader in the country's most distinctive technique, leads to China from these countries to introduce the series EMU key technologies and absorption and innovation to achieve China's railway leapfrog development inevitable.Secondly highlights of CRH series EMU overall, bogie, AC drive, braking, energy saving and environmental protection several key technologies.Finally, some future development direction of China's high-speed trains.Key words: rolling stock;EMU;high-speed rail;technology;development动车组技术论文 IV
目录
1、我国机车车辆的发展状况...............................
1
1.1 我国机车车辆的发展历程.................................
1
1.2 我国动车组的发展历程...................................
2、高速铁路及高速列车概论..................................
2.1 我国高速铁路概况.......................................
2.2 日本新干线.............................................
2.3 法国GTV..............................................
2.4 德国ICE...............................................
2.5 中国CRH..............................................
3、CRH关键技术............................................
4、我国高速铁路和动车组展望................................
5、结束语..................................................
参考文献...................................................
1
3 3 4 4 4 5 7 9 10 11
动车组技术论文 V
动车组技术论文 1
1.我国机车车辆的发展概况
1.1 我国机车车辆的发展历程
我国铁路机车车辆工业的发展,大体经历3阶段:
一是通过仿制起步,培育开发能力,闯过产业发展的幼稚期。
解放前,我国没有一辆自己制造的机车,少数工厂只能担当维修任务。新中国成立后,从仿造国外机车着手,1952年制造出第1台蒸汽机车,1958年开始制造内燃机车和电力机车。通过仿制,培养了中国自己的技术力量,建立了自己的机车车辆制造业。60年代末,国产内燃、电力机车已经批量生产并投入运营,机车车辆工业成功地渡过了产业发展的幼稚期。
二是引进吸收,自主创新,渡产业发展的成长期。
伴随着我国改革开放,铁路机车车辆工业进入了成长期。70年代,在引进、消化国外产品的基础上加强自主开发,研制了东风4型、韶山3型等第2代内燃、电力机车。进入80年代,铁路抓住扩大开放的机遇,利用技贸结合的方式引进国外机车产品,通过消化吸收,自主创新,在内燃机车的柴油机、电力机车的控制技术、半导体技术等核心技术领域取得了突破,大幅度提高了国产电力、内燃机车的技术水平和工艺水平。我国自行研制的东风
5、东风
6、东风
7、东风8型大功率内燃机车和韶山
4、韶山
6、韶山7型电力机车,以及应用新型转向架、制动机、车钩、缓冲器的客车和货车,技术含量不断提高,制造工艺日趋成熟,为铁路扩能、重载,提供了急需的技术装备。90年代初,为了支持铁路运输业应对日趋激烈的竞争形势,机车车辆工业着手研制提速机车车辆,取得了重大突破。与此同时,铁路机车车辆工厂通过密集投资,引进和自行研制了先进的工艺装备及生产线,进行了大规模的技术改造,制造工艺和开发能力上了一个新台阶。
三是适应铁路发展需要,全面提升产业技术水平,进入产业发展的成熟期。
进入90年代中期,我国已经形成了具有很强开发制造能力的机车车辆工业体系。机车车辆工业在研制生产满足重载需要的机车车辆后,又相继开发成功东风4D、东风
11、韶山
8、韶山9等准高速机车和25型提速客车,适应了提速的需要。1994年底,广深准高速铁路开行了时速160km旅客列车;此后不久,全路进行了4次大规模提速,旅客列车最高时速达到200km。以批量生产重载、提速机车车辆为标志,我国机车车辆工业开始进入产业发展的成熟期。2000年以来,具有我国自主知识产权的交流传动高速电力机车“奥星”号落成出厂;我国生产的“先锋”号交流传动电动车组在广深线创造了250km/h的试验速度。这标志着我国在铁路牵引动力技术的前沿领域开始融入国际发展大趋势。
1.2 我国动车组的发展历程
我国于20世纪90年代开始研发动车组。中国首列DMU型双层内燃动车组是一种理想的中、短途轨道运输工具。唐山机车车辆厂于1998年自行开发研制成功,并于当年6月在南昌至九江间投入运行。设计速度120km/h,总定员540人。动车组技术论文 2 中国首列液力传动内燃动车组,1998年底由四方机车车辆厂研制,并于1999年2月在南昌至九江和南昌至赣州间投入运行。设计速度140km/h,总定员450人。液力传动内燃动车组目前正在运行的有9组,其中2组在南昌铁路局,7组在哈尔滨铁路局。“新曙光”号准高速双层内燃动车组于1999年8月由戚墅堰机车车辆厂和南京浦镇车辆厂联合研制完成,并于当年10月在沪宁线上投入商业运行。最大运营速度180km/h,总定员1140人
“春城”号电动车组,长春客车厂为迎接“99”昆明世界园艺博览会开发制造的中国首列商业运行电动车组。该电动车组为无污染的环保型绿色交通工具。具有普通旅客列车所无法比拟的灵活编组、机动开行的优点,又具有公路交通工具无法比拟的速度快、运量大、效率高、投资省、安全性好的优点。动车组总功率为2160kW,设计速度120km/h。
“先锋”号交流传动电动车组,是南京浦镇车辆厂负责总体研制的我国第一列交流传动动力分散电动车组,首列电动车组命名为“先锋”号。列车运营速度200km/h,最高试验速度250km/h,总定员424人。
“中原之星”交流传动电动车组,适用于中、短途快速旅客运输。由株洲电力机车厂、四方机车车辆股份有限公司、株洲电力机车研究所三家单位联合研制生产。首列动车组于2001年10月生产下线,配属郑州铁路局,于郑武线上运营。最高运营速度160km/h,总定员1178人。
“大白鲨”高速电动车组,株洲电力机车厂研制的中国第一台正式进入高速领域的动力集中式高速动车组,是我国强大机车家族的又一精心完美之作。最大速度200km/h。
“蓝箭”交流传动高速电动车组是为满足广深线“小编组、高密度、高速度”的公交化客运要求,由株洲电力机车厂、株洲电力机车研究所、长春客车厂和广铁集团于2000年共同研制的新一代交流传动高速电动旅客列车组。基本编组定员为421人,连挂编组定员约800人。最大速度220km/h。
“中华之星”高速电动车组,该电动车组将成为我国京沈快速客运通道的主型列车及未来高速铁路的中短途高速列车和跨线快速列车。列车最高运营速度可达270km/h,是目前我国商业运行时速最快的电动车组。2002年11月27日,“中华之星”在秦沈客运专线综合试验中,成功创造了中国铁路的最高速度321.5km/h。该动车组广泛地采用了国内、外的先进技术,列车的整体技术性能达到国外同类产品的先进水平。CRH和谐号动车组在后文重点介绍。
动车组技术论文 3 2.高速铁路及高速列车概论
2.1 我国高速铁路总述
高速铁路一般是指运行速度达200公里/小时以上的铁路,是由适合于高速运行的基础设施、固定设备、移动设备、完善且科学的安全保障系统和运输组织方法有机结合起来的庞大的系统工程,是当代高新技术的综合集成。
根据我国2004年制定的《中国铁路中长期发展规划》,到2020年,为满足快速增长的旅客运输需求,建立省会城市及大中城市间的快速客运通道,规划“四纵四横”铁路快速客运通道以及四个城际快速客运系统。建设客运专线1.2万公里以上,客车速度目标值达到每小时200公里及以上。2008年,中国拥有了第一条时速超过300公里的高速铁路——京津城际铁路,拉开了中国高速铁路建设和运营的序幕,2009年中国又拥有了世界上一次建成里程最长、运营速度最高的高速铁路——武广客运专线。而2010年—2012年,中国将建成以北京为中心的8小时高速铁路交通圈。根据2008年新调整的中长期铁路网规划,到2012年,中国铁路营运里程将增加到11万公里,其中高速铁路客运专线建成1.8万公里。到2020年,计划用6万亿修建5万公里高速铁路。
铁路“十二五”规划的总体目标是:铁路新线投产总规模达3万公里,“十二五”末全国铁路运营里程将由现在的9.1万公里增加到12万公里左右,其中,快速铁路4.5万公里左右,西部地区铁路5万公里左右,复线率和电化率分别达到50%和60%以上。按照这个规模,“十二五”期间将安排投资2.8万亿元。与“十一五”相比,铁路投产新线增长87.5%,完成投资增长41.4%。要赶快形成北京为中心到各个省会八小时高速铁路网,整体规模还以2008年调整过的(中长期铁路网)规划为准。
动车组需求也将迅速放出。到2015年,我国将建成5万公里的快速铁路网,全路投入运营的动车组达到1500列以上,到2010年底全国动车存量估计约500标准列,整个十二五期间投入运营的动车组数量将远超过1000列,按5万公里快速铁路里程计算,每公里0.7节动车组,每8节动车组组成一列计算,我们预计2020年动车组总量约4350列,远期存量将达到5000-6000列。
目前中国拥有的高速铁路有京津城际,昌九城际,哈大线,武广客运专线,郑西高速铁路,温福线,京石线,汉宜线,港深广,京沪线等。其中京沪高铁已于5月11日开始进入运行试验阶段,预计6月底正式开通运营。而4月25日,我国昆明至新加坡的高速铁路开工建设。据悉,这条泛亚高铁线路应在2020年建成通车,届时从昆明到新加坡,坐火车只要10多个小时。
截至2010年底,中国新建高铁营业里程5149公里,另有在建里程1.7万公里。营业里程已经达到7531公里,是全世界高铁运营里程最长、在建规模最大的国家。同时也是技术最全、集成能力最强、运行速度最高的国家。
目前全世界投入实际运营的最高速度,仍是京津城际高铁的350公里。事实上,中国的高铁速度代表了目前世界的高铁速度。作为中国第一条真正意义上的高速铁路,京津高铁从一问世就站在世界前沿,创造了运营速度、运量、节能环保、舒适度四个世界第一。中国仅仅用了5年时间,就跨越了发达国家半个世纪的高速铁路发展历程。
目前全国高铁里程为8358公里,2011年将有12条高速铁路线建成使用,新增里程4715公里,全年投资额为6393亿元。除了2011年新增高铁里程4715公里外,铁道部已经细化了整个“十二五”期间的高铁投资计划,其中,2012年预计新增高铁里程3038公里,投资安排为3303亿元;2013年预计新增高铁里程2667公里,投资安排为3650亿元;2014年预计新增高铁里程为4421公里,投资安排为5429亿元;2015年预计新增高铁里程3847公里,投资安排为3434亿元。动车组技术论文 4 2.2日本新干线
日本的高速列车以动力分散为主,大编组、高功率、小轴重。1964年10月,日本先于其他国家开通了世界第一条高速铁路--东海道新干线(东京--新大阪的高速客运专线),最高运行时速为210公里。至今已40多年过去,高速列车从东海道新干线的0系,发展了100系、200系、300系、400系、500系、700系、El系(MAX)、E2系、E3等。
新干线里最受关注的车辆,是运营速度最快,体现出九十年代高科技水准的500系电动车组。生产于1995-1998年,16辆编组,最高运行时速为300公里。500系的车头流线型可谓十足,弯曲部分长达9米多。远远看过去,500系就象一条细长的蛇。所有新干线车辆中,流线型最好的就数500系了。
700系名为铁路之星Rail Star,这是日本最新也是最先进的一款电动车组。正式投入运行是在1999年3月11日。700系C sets模式每组车有16节车厢,E sets 模式有8节车厢。最高运营时速为285km/h。由于车体采用了中空铝型材,700系重仅708吨。车的编组方式为12动4拖,功率13200kw。700系全长约400米,共载1323名乘客。700系的车体是用铝合金压制成的中空外壳,内部填充的是吸音,防震的复合材料。
日本高速铁路的发展有以下几个特点:高速列车采用动力分散型,轴重小,这样的设计使得列车的安全性增强;线路中桥隧比重大,线路的标准不断提高;列车运行密度大,定员多,旅客输送量大;安全性能好,旅客死亡事故少
2.3 法国GTV 法国高速铁路线上采用的电动车组在牵引动力上的布置与日本不同,它采用的是动力集中式,只在列车两端的头车(或与头车相临的客车的一端)装有牵引动力装置。法国第一条铁路线(巴黎东南新干线)于1972年动工,1983年投入运用。运用TGV-PSE电动车组,最高运行时速为270公里。在巴黎东南新干线通车后,法国继续扩大高速铁路线,1990年大西洋新干线(巴黎--勒芒、图尔)正式通车,采用TGV-A电动车组,最高运行时速为300公里。“欧洲之星”高速列车是法国TGV列车的派生系列,目前运行在伦敦至巴黎和布鲁塞尔之间、该车载客量794人、12根动轴,总功率12000kw,时速达300km/h,编组型式为2L18T,铰接式转向架。法国高速铁路发展的特点是:动车组采用动力集中方式及铰链式车厢;多电流制供电与简单链型悬挂接触网,能使用一般线路的1500V3000V直流供电,也能使用高速线25KV交流供电;采用符合ETCS标准的TVM列车控制系统;注重系统的安全性与可靠性;线路要求高标准高质量。
2.4 德国ICE
德国是铁路客运速度提高较快的国家之一。1962年德国研制的“莱茵金子”号客车的构造速度已达160km/h,1974年ET403型电动车组的最高运行速度为160km/h,1977年提高到200km/h。1985年制造出ICE型高速列车。由5辆车组成的ICE列车于1985年交付试验。头车和尾车为动车,各长20.8m,自重78.2t,采用三相交流牵引装置,每辆动车的功率为4200kw。中间3辆拖车的长度均为24.34m。
德国的ICE第一代列车(ICE1)于1988年就跑出了400km/h的速度,列车编组为2 辆动力头车牵引10--14节客车不等。该列车的设计把乘客的舒适度 放在首位,由于德国铁路穿越隧道较多,故对列车的密封性设计也仿效日本新干线列车进行设计,为欧洲第一代气密性列车,动车组技术论文 5 随后改进制成ICE第二代(ICE2)和ICE第三代(ICE3)产品。由于ICE3要在莱茵-科隆间线路上运行,该线路设计坡度为40‰、并以300km/h运行,为了有足够的粘着力,故该车采用动力分散型。
德国高速铁路发展有其一定特点:它采用三相交流传动技术;计算机控制列车制动;轻型车体构造;列车有自诊断技术;统一调度指挥。
2.5 中国CRH 中国铁道部将所有引进国外技术、联合设计生产的CRH动车组车辆均命名为“和谐号”。通常用来指2007年4月18日起在中国铁路第六次提速调图后开行的CRH动车组列车。CRH 为英文缩写,全名China Railways High-speed,中文意为“中国铁路高速”,是中国铁道部对中国高速铁路系统建立的品牌名称。中国铁路开行的CRH动车组已知有CRH1、CRH2,CRH3,CRH5,CRH380A等型。
型号介绍:
CRH1:
中国南车集团四方机车车辆股份有限公司与加拿大庞巴迪的合资公司——青岛四方-庞巴迪铁路运输设备有限公司(BST)生产。原型车以庞巴迪为瑞典AB提供的Regaina C2008为基础,CRH1A为8节车厢编组座车动车组,200公里级别(营运速度200KM/h,最高速度250KM/h)。CRH1B为16节大编组座车动车组。CRH1E为16节车厢的大编组卧铺动车组。
CRH2:
中国南车集团四方机车车辆股份有限公司联合日本川崎重工,引进川崎重工业的新干线E2-1000型动车组技术,南车四方机车车辆股份有限公司负责国内生产。CRH2A为8节车厢编组座车动车组,200公里级别(营运速度200KM/h,最高速度250KM/h)。CRH2B 为16节大编组座车动车组,CRH2E 为16节大编组卧铺动车组。CRH2C为8节车厢编组座车动车组,300公里级别,作为京津城际高速铁路的用车,标称时速300公里,最高营运时速为350公里。
CRH3:
中国北车集团 唐山轨道客车有限责任公司联合德国西门子,引进西门子ICE3(Velaro)技术,由北车唐山轨道客车有限责任公司负责国内生产。CRH3C为8节车厢编组座车动车组,300公里级别(营运速度330KM/h,最高速度380KM/h),作为京津高速铁路的用车。CRH3D为16节车厢的大编组座车动车组。
CRH5:
中国北车集团长春轨道客车股份有限公司联合法国阿尔斯通,引进法国阿尔斯通的Pendolino宽体摆式列车技术,取消了装设的摆式功能,车体以法国阿尔斯通为芬兰国铁提供的SM3动车组为原型。由北车长春轨道客车股份有限公司负责国内生产。CRH5A为8节车厢编组座车动车组,200公里级别(营运速度200KM/h,最高速度250KM/h)。
CRH380A:
2010年9月,铁道部下发《关于新一代高速动车组型号、车号及坐席号的通知》,正式将四方机车车辆股份的CRH2-380型动车组型号名称更改,其中短编组动车为CRH380A,而长编组动车为CRH380AL。CRH380A采用与CRH2C一样的6动2拖的编组方式,牵引功率为9600千瓦,使用SS400+型高速受电弓,以及在受电弓的两侧为立体围护整流罩。列车设有二等座车/观光车(ZEG)1辆(1车)、一等座车(ZY)2辆(3车、4车其中3车带有一等包厢)、二等座车(ZE)4辆(2、6、7、8车)和二等座车/餐车(ZEC)1辆。其中观光座采用2+2方式布置,一动车组技术论文 6 等包厢采用3+0方式布置,一等座采用2+2方式布置,二等座为2+3布置。除了带酒吧的二等座车外,其他车厢所有座位均能旋转。首列CRH380A于2010年5月正式下线。
“和谐号”动车组特点 :
“和谐号”动车组普遍采用交流传动及动力分散式。“和谐号”车头为可降低空气阻力的流线形。运行时速达200公里以上,最高可达350公里。“和谐号”列车通过电脑控制行 车,电子显示驾驶数据。“和谐号”列车的座位划分为一等座及二等座。一等座为2+2排列方式,二等座为3+2排列方式。座椅可调节,座向可以转180度,附有可折叠的茶几。车内部设计注重人性化。自动调节温度的空调。所有车门都是电动塞拉门。还有使用卧铺的型号用于较长途的线路。200公里级别车主要在既有线路上运行,300公里级别的车主要在高速专用线路上运行。
3.CRH关键技术 动车组技术论文 7 通过从世界高速铁路技术发达国家引进高速动车组,经过中国南车.北车集团的消化、吸收、再创新,中国铁路形成了具有自主品牌的CRH系列高速动车组。在先进、成熟、经济、适用、可靠的方针指导下,中国高速铁路在系统集成、轻量化、高速转向架、交流传动高速受流、高速制动、网络控制、人机工程、节能环保等方面达到了世界先进水平。下面简要介绍几个关键技术。
CRH动车组总体技术:
我国CRH系列动车组引入的都是动力分散式的动车组,均为8辆编组,可重联运行。动车组在总体布置、可靠性设计、列车控制与管理、复合制动等方面均达到了世界先进水平。
CRH动车组车体轻量化技术:
车体、车内设备以及走行部(转向架)重量的减轻实现了列车的轻量化,不仅可以减少原材料的消耗,降低牵引功率,提高列车运行速度,改善列车启动和制动性能,而且可有效减小轮轨间的动力作用,减小振动和噪声,增加机车和线路的使用寿命,达到节能和环保的要求。
轻量化主要有三大优点:一是节能;二是减小对轨道的破坏;三是改善振动噪声引起的环境问题。节能主要体现在牵引和制动消耗的能量上,重量越轻,所需牵引和制动功率就越小。列车超重,对轨道的振动冲击越严重,易造成轨道的破坏。重量越大,振动噪声越大。
列车轻量化是一个综合工程,需要从材料、结构、工艺等多个方面进行考虑.直观体现在重量的变轻上。具体可分为车体结构轻量化、转向架轻量化、车内设备、变电系统的轻量化,这些反映了一个国家的综合设计及制造水平。
CRH动车组交流传动技术
现代高速列车和动车组几乎全都采用了先进成熟的交流传动技术。交流传动电力牵引的列车一般来说主要由受电弓从接触网上将单相交流电引入列车,经过主变压器进行变压后向主变流器输入,变成需要的直流电,再经过逆变器逆变成牵引电机所需的三相交流电,简称交一直一交传动。
CRH动车组高速受流技术
接触网——受电弓受流系统的受流过程是受电弓在接触网下,以机车速度运动中完成的,受流过程是一个动态过程,这一动态过程包括了多种机械运动形式和电气状态变化:受电弓相对于接触导线的滑动摩擦;受电弓上下振动;受电弓由于机车横向摆动而形成的横向振动;接触网上下振动,井形成行波沿导线向前传播;受电弓和接触导线之间发生的水平和垂直方向撞击;弓网离线发生电弧,受电弓受流中,电流发生剧烈变化等等,所以,弓网受流过程是一个复杂的机械电气过程。随着列车速度的提高,上述各种运动加剧,维持弓网之间的良好接触性能愈加困难,受流质量也随之下降,当列车速度超过受流系统的允许范围外,受流质量将严重恶化,影响列车取流和正常运行。在高速条件下,受流系统的性能与常规电气化铁路的受流质量是不同的,系统所需解决的问题也不尽相同,高速受流技术是高速铁路的关键技术之一。
CRH动车组制动技术
现代高速动车组采用动力分散模式,列车制动由电气制动和空气制动复合而成,包括制动控制系统和制动执行系统。控制系统由制动信号发生、传输装置和制动控制装置组成;执行动车组技术论文 8 系统即基础制动装置,常见的有闸瓦制动和盘形制动。由于运行速度高,黏着系数小,制动距离要求短,动车组均设有高性能电阻防滑器,进行防滑控制,充分利用黏着。
CRH动车组节能环保技术
4.我国高速铁路和动车组展望 动车组技术论文 9 随着世界高速铁路技术的不断发展,高速列车的商业运行速度迅速提高。旅行时间的节约,旅行条件的改善,旅行费用的降低,再加上国际社会对人们赖以生存的地 球环保意识的增强,使得高速铁路在世界范围内呈现出蓬勃发展的强劲势头,高速铁路将在21世纪获得迅速发展。因此,世界各地都正在计划进一步加快高速铁路的建设。由此可见,更为密集的高速铁路网目前看 来前途一片光明。
与世界许多国家相比,我国高速铁路的发展有更加广阔的空间。我国国土东西跨度5400公里,南北相距5200公里,这决定了中长距离客货运量需求巨大,而 铁路是经济又快捷的交通运输方式,因此有很大的发展潜力。从1998年到现在,中国已有20多个城市研究发展高速铁路。中国高速铁路的建设和发展,将会给国内外 铁路建设者带来巨大的商机,同时促进世界和区域经济的提速和发展,为世界经济的腾飞做出巨大的贡献。
展望未来10年、20年世界铁路的发展,基本不会改变轮轨粘着的状况,因此,铁路动车和动车组的扩大运用和技术水平的提高仍有广阔的空间和充分的余地。今后一个时期内,动车和动车组发展的基本方向仍朝着更安全、更快速、更环保、更舒适和更便利的趋势发展。为此,进一步突破传统设计概念,大胆采用先进的电子技术和现代控制技术,进一步加强、加速和提高机械电子技术在铁路动车组设计、制造、运用、检修等个方面的应用,乃是全面提高铁路动车组技术的根本。
为了实现上述目标,铁路运输和铁路工业部门的科技人员,面临着许多技术难题有待解决,归纳起来主要体现在结构动力相互作用、轮轨作用力和控制系统方面。最简单的理解就是用电子控制取代机械控制,实现机电一体化。机电一体化技术在机车车辆研究开发中,主要用于悬挂系统、牵引系统和制动系统。机电一体化的内容就是充分利用电子控制技术,用动作器、传感器、处理器和控制器等电子器件,创造出机械和电子最优协同工作的方式,而不是在原来的机械系统中,简单地增加某种电子控制器件。
随着越来越多的电子技术和电子器件应用在铁路动车组上,出现更多的新系统和新产品将成为可能。如对驱动车轮转动的牵引电动机实行单独控制,并利用它获得导向作用,同时取消笨重而复杂的机械驱动装置,于是使产生了“车轮电动机”这样的新概念。
目前我国铁路在路网规模、运输密度、电气化里程、年旅客周转量和货运周转量等许多主要指标都跻身世界前列。我国机车车辆的制造和运用形成了完整的体系和规模,水平不断提高。我国动车组的发展正处在引进先进技术、联合设计生产、打造中国品牌阶段,我们的目标是立足国产化,促进我国动车组的健康持续发展。为此,我国铁路运用部门和工业系统通过加强协作、相互支持,努力在我国动车组的发展过程中逐步并尽快实现以跟踪模仿为主向以自主创新为主的深刻转变,努力提高产品的国产化率和整体水平,打造出在国内外市场上具有强劲竞争力的中国品牌。
5.结束语 动车组技术论文 10
通过本次课程的学习,我不仅了解了国内外高速铁路的现状与发展,更对各种动车组有了较为全面的认识,了解了动车组的几大关键性技术。此外,在近一段时间内,我国高速铁路的蓬勃持续发展不会停止,因此,我们要抓住机遇,在学习国外先进动车组技术的同时,增强自主创新和开发能力,研制出拥有自主知识产权的中国品牌。这要求我们更好的学习专业知识,将来在工作中发挥自己的才能,促进我国动车组的持续快速发展!
动车组技术论文 11
参考文献
[1]刘转华.动车组技术.西南交通大学出版社,2010(01).[2]宋永增.动车组概论.北京交通大学出版社,2012(01).[3]佟立本.高速铁路概论.中国铁道出版社,2012(01). [4]吴礼本.国外铁路高速列车.中国铁道出版社,1994(01).
第三篇:动车组制动名词术语总结
制动名词术语总结
Analog Convert电空模拟转换 AGTU: Air Generation & Treatment Unit供风及供风处理单元 AGU: Air Generation Unit供风单元 Air Dryer空气干燥器 ATP: Auto Train Protection列车自动防护 ATU: Air Treatment Unit供风处理单元 BCU: Brake Control Unit制动控制单元 BLCU: Brake logic Control Unit制动逻辑控制单元 BFC: Tread Brake Actuator踏面制动器 BFCF: Tread Brake Actuator + Parking Portion踏面制动器+停放制动 BP: Brake Pipe制动管/列车管 Brake Control制动控制 Brake Disc/Disk制动盘 Compatibility Test兼容性试验 DBV: Driver’s Brake Valve司机制动阀 Distributing Valve(空气)分配阀 DMU: Diesel Motor Unit内燃动车组 EBCU: Electronic Brake Control Unit电子控制单元 ED: Electro Dynamic(Brake)电制动 Electric Magnet Valve电磁阀1
Emergency Exhaust Valve紧急排风阀 EMU: Electro Motor Unit电动车组 Endurance Test耐久试验 EP: Electro Pneumatic电空 EPM: Electro Pneumatic Modulator电空调制器 LCU: Locomotive Control Unit机车控制单元 MP: Main Pipe总风管 MU: Multiple Unit重联机车 MVB: Multi Vehicle Bus多功能车辆总线 NC: Normal Close常闭型(电磁阀)NO: Normal Open常开型(电磁阀)Option:选项 Pantograph Compressor辅助(受电弓)压缩机 “O” Ring“O”型圈 RAMS: Reliability, Availability, Maintainability, Safety可靠性、有效性、可维护性和安全性 Routine Test and Inspection例行试验与检验 Rubber Pad橡胶垫 RV: Relay Valve中继阀 Sanding Device撒砂装置 Screw Compressor螺杆压缩机 Shutoff Valve Seat Cushion遮断阀座衬垫
TCU: Traction Control Unit牵引控制单元 Type Test型式试验 WSP: Wheel Slide Protection防滑器 WTB: Wire Train Bus绞线式列车总线
第四篇:动车组答案
第一章 动车组基础知识
1.简述高速铁路特点及其列车划分方式。a)特点:(1)速度快,旅行时间短。
(2)客运量大。(3)准时性好,全天候。
(4)安全舒适可靠。
(5)能耗低。(6)污染轻。(7)效益高。(8)占地少。b)划分方式: 普通列车:最高运行速度100一160 km/h; 快速列车:最高运行速度160—200 km/h;
高速列车:最高运行速度≥ 200km/h。2.简述动车组的定义、类型及关键技术。
(一)定义:动车组:亦称多动力单元列车,是由动车和拖车或全部动车长期固定联挂在一起运行的铁路列车。(二)类型:1.按牵引动力的分布方式分:①动力分散动车组②动力集中动车组 2.按动力装置分:①内燃动车组(DMU)②电力动车组(EMU): 3.按服务对象分:①长途高速动车组②城轨交通动车组
(三)关键技术:动车组总成、车体、转向架、牵引变压器、牵引变流器、牵引电机、牵引控制系统、列车网络 控制系统、制动系统。
3.简述动车组车辆的组成及其作用。
① 车体:容纳运输对象之所,安装设备之基。② 走行部(转向架):车体与轨道之间驱动走行装置。③ 牵引缓冲连接装置 :车体之间的连接装置。④ 制动装置:车辆的减速停车装置。⑤ 车辆内部设备:服务于乘客的车内固定附属装置。⑥ 车辆电气系统:车辆电气系统包括车辆上的各种电气设备及其控制电路。按其作用和功能可分为主电 路系统、辅助电路系统和控制电路系统3个部分。4.解释动车组车辆主要技术指标及其标记的含义。①.自重:车辆本身的全部质量。
②.载重/容积:车辆允许的最大装载质量和容积。③.定员:以座位或铺位计算。(定员=座席数+地板面积*每平方米地板面积站立人数。)④.轴重:车轴允许负担的最大质量(包括车轴自重)。
⑤.每延米轨道载重:车辆总质量/车辆全长(站线有效利用指标)。⑥.通过最小曲线半径:调车工况能安全通过的最小曲线半径。⑦.构造速度:安全及结构强度允许的最大速度。⑧.旅行速度:路程/时间,即平均速度。最高试验速度,最高运行速度。⑨.持续速度:在全功率下能长时间连续运行的最低速度称为持续速度。
⑩.轮周牵引力:动轮从牵引电动机获得扭矩,通过轮轨相互作用在轮周上产生的切向反力。⑪.粘着牵引力:机把受粘着条件限制而得到的牵引力,称为粘着牵引力 ⑫.持续牵引力:在全功率下,对应于持续电流的引力称为持续牵引力。
⑬.车钩牵引力:克服动车本身的运行阻力以后,传到车钩处用于牵引列车运行的那部分牵引力。⑭.标称功率:各牵引电动机输出轴处可获得的最大输出功率之和。
⑮.车辆全长、最大高度、最大宽度:车辆两端车钩钩舌内侧距离(19.8m/29.7m);车顶最高点至轨顶面距离(3.25m);车体最宽处尺寸(2.6m)。
⑯.车辆换长:是车辆换算长度标记。当车钩处于锁闭位置时,车辆两端车钩钩舌内侧面间距离(以
m为单位)除以11 m所得之值,为该车辆换算长度数值。⑰.车辆定距:相邻转向架中心距
⑱.转向架固定轴距:转向架前后车轴中心距。
⑲.车钩高和地板面高:钩舌外侧面和地板面至轨顶的距离。5.何谓限界?包括哪几种类型?
为防止车辆运行时与建筑物及设备发生接触而设置的横断面最大允许尺寸轮廓。包括:机车车辆限界(车限)和建筑限界(建限)。建筑限界和机车车辆限界均指在平直线路上两者中心线重合时的一组尺寸约束所构成的级限轮廓。
类型:
1、无偏移限界
2、静偏移限界
3、动偏移限界
6.线路包括那几种?轨道由那几部分组成?
线路平面构造:直线、曲线、缓和曲线、道岔 线路纵断面构造:上下坡段、竖曲线、平道。
第二章 转向架结构原理及基本部件
1.简述转向架的组成及其分类。
①组成:㈠轮对:走行导向。
㈡轴箱:降低摩擦阻力,化滚动为平动。
㈢一系悬挂装置:用以固定轴距,保持轮对正确位置,安装轴承等。缓冲轴箱以上部分的振动,以
减轻运行中的动作用力。㈣构架:安装基础。
㈤二系弹簧悬挂:也叫车体支承装置:是车体与转向架的连接装置。㈥基础制动装置:是制动机产生制动力的部分。
㈦电机驱动装置:将电能变成机械能转矩,通过降低转速,增大转矩,将牵引电动机的功率传给轮对。
②分类:1.按轴数分类:两轴bo-bo;三轴co-co。
2.按传动装置分:(1)动力转向架:单动力轴转向架、双动力轴转向架(2)非动力转向架
3.按悬挂装置分:A、按弹簧悬挂方式分类:一系、二系 B、按轴箱定位方式分类:有导框轴箱定位转向架 无导框轴箱定位转向架:拉板式、转臂式、拉杆式 C、按车体支承方式分类:(1)按中簧跨距分:内侧悬挂、中心悬挂、外侧悬挂。(2)按载荷传递形式分:心盘集中承载、心盘部分承载、非心盘承载。
(3)按中央悬挂装置的结构分:有摇动台、无摇动台、无 摇枕转向架。
D、按车体支撑装置连接形式分:铰接式、非铰接式 4.按导向方式分:自导向径向转向架、迫导向径向转向架、机车径向转向架 5.按摆动方式分:自然摆转向架、强制摆转向架 3.轮对有何特点?
2轮+1轴,过盈连接,轮轴同转 4.简述车轴和车轮各部分的名称。踏面、轮缘、轮辋、辐板、辐板孔、轮毂、轮毂孔 5.空心车轴有何好处?车轮踏面为什么有一定斜度?
㈠空心车轴⑪减轻了自重⑫因而减轻了簧下质量,⑬减小了蛇形运动。从而改善了列车运行平稳性,减小了轮轨之间的动力作用。
㈡踏面需要做成一定的斜度,其作用是:
1、便于通过曲线
2、可自动调中
3、踏面磨耗沿宽度方向比较均匀
6.简述滚动轴承轴箱的类型。
类型:圆柱滚动轴承与轴箱(目前客车常用);圆锥滚动轴承(目前货车常用)7.简述弹性悬挂装置的类型及其特点。
类型及特点:
1、按位置分:一系悬挂装置:在轮对与构架之间,也称为轴箱悬挂装置 二系悬挂装置:在车体和构架之间,也称为中央悬挂装置
2、按作用分:缓冲装置:主要起缓和冲动的弹簧装置;(中央弹簧、轴箱弹簧)
减振装置:主要起衰减振动的减振装置;(垂向、横向、纵向和抗蛇行减振器)定位装置:主要起定位作用的定位装置。(轴箱定位、中央定位、抗侧滚扭杆)
3、按结构形式分:螺旋弹簧、空气弹簧、橡胶弹簧、扭杆弹簧、环弹簧 8.简述空气弹簧系统的组成及其工作原理。
㈠特点:变刚度、等高度、三维弹性、自带减振功能。空重车自振频率相当 ;单独支重;省去垂向减振器。㈡组成:空气弹簧本体、高度控制阀、差压阀、附加气室、滤清器 ㈢工作原理:(1)压力空气缓冲:由压力空气实现。列车管→空气弹簧风缸→空气弹簧主管→空气弹簧连接
管→高度控制阀→空气弹簧本体和附加气室。(2)变压力、变刚度、等高度
A.保压:正常载荷时,h=H,进排气通路均关闭,保压;
B.充气:增载时,车体下沉,h
一侧空气弹簧自动放气,以防车体倾覆。
(4)节流减振:由气嘴实现。气嘴节流减振代替垂向减振器。9.简述车辆上常见减振器的类型及其工作原理。㈠摩擦式减振器:借摩擦面的相对滑动产生阻尼
㈡液压减震器①特点:自调节特性(振幅大时,衰减量也大)。
②组成:活塞、进油阀、缸端密封、上下连接、油缸、贮油筒、防尘罩等。③工作原理:利用液体黏滞阻力作负功来吸收振动能量(小孔节流阻尼)
A.拉伸状态:活塞杆向上运动,B腔油液的压力增大,压差使其经过心阀的节流孔 流入A腔。油液通过节流孔时产生大小与的流速、节流孔的形状和大小有关的阻力。B.压缩状态:活塞杆向下运动,受到活塞压力的A腔油液通过心阀的节流孔流入B 腔而产生阻力。
C.油量调节:活塞杆有一定体积,当活塞上下运动时,A腔和B腔体积变化不相等。为保证减振器正常工作,在油缸外增加一贮油筒(C腔)实现油量调节。
10.简述驱动装置的类型及典型驱动装置的特点。
㈠作用:实现能量转换,产生轮对驱动力距。㈡类型:(1)轴悬式(半悬式):牵引电机重量一半支撑载车轴,一半悬挂在构架上。轴悬式又有刚性及弹性 之分。
(2)架悬式(或称全悬挂式):牵引电机支撑在构架上。(3)体悬式:牵引电机安装在车体上。
11.简述基础制动装置的类型及其特点。
㈠空气制动:利用压缩空气,通过制动缸活塞和杠杆作用在闸瓦或制动夹钳的压力,在踏面或制动盘上产生
摩擦,把机车动能转化为热能并逸散到大气中。包括制动控制系统和制动执行系统
㈡闸瓦制动:通过闸瓦压紧车轮,通过机械摩擦产生制动作用,高速时制动力不够,不是高速列车主要制动 方式
㈢盘形制动: 通过制动闸片与制动盘之间的机械摩擦产生制动作用,散热好,有较好的高速制动性能,高速制
动时制动块磨损加快,热载荷大时易产生裂纹不能确保安全 ①轴盘制动:制动盘压装在车轴内侧
②轮盘制动:制动盘安装在车轮两侧或一侧 12.摩擦制动包括闸瓦制动、盘形制动、磁轨制动
13.动力制动包括电阻制动、再生制动、电磁涡流轨道制动、电磁涡流转子制动等
第三章 典型转向架
1、简述德国、日本和法国转向架的结构特点?
2、简述CRH2转向架的横向、纵向及垂向力的传递路线。①.垂向力(即重力):车体→橡胶空气弹簧→构架侧梁→轴箱圆弹簧→轴箱→车轴→车轮→钢轨 ②.横向力(离心力等):车轮→车轴→轴箱→轴箱圆弹簧+转臂定位销(力较小时)/轴箱止档(力较大时)→ 构架侧梁→橡胶空气弹簧(力较小时)/构架横梁→横向橡胶止档(力较大时)→牵引中心销→车体
③.纵向力(牵引力或制动力):(轮轨间粘着)车轮→车轴→轴箱→轴箱转臂定位销→构架侧梁→构架横梁→牵
引拉杆→牵引中心销→车体→车钩
3、简述CW-200K转向架的横向、纵向及垂向力的传递路线。(实验报告)
4、简述地铁转向架的结构特点。
转向架安装于车体与轨道之间,用来牵引和引导车辆沿轨道行驶,承受并传递车体与轨道之间的各种载荷并缓和其动力作用。一般由构架、轮对轴箱装置、弹簧悬挂装置和制动装置等组成,有动力转向架和非动力转向架之分,动力转向架装有牵引电机及传动装置。
5、简述低地板转向架、法国RX656转向架及独立回转转向架的结构特点。第四章 车体结构及总体布置
1.简述车体的类型及组成。
类型:㈠按材料分:耐候钢车体、不锈钢车体、铝合金车体
㈡按承载方式分:底架承载式车体、侧墙和底架共同承载式车体、整体式承载车体 组成:底架、侧墙、车顶、前端墙(或车头)、后端墙、波纹地板或空心型材加强的地板构成一个带门窗切口 的博壁筒形整体承载结构。2.简述CRH动车组车体组成特点。
(1)车体采用铝合金整体承载筒形结构
(2)车体的断面形状可分为鼓形断面、梯形断面和矩形断面。
(3)底架、侧墙和车顶采用大型空心截面的挤压铝型材拼焊而成。中空挤压型材,长度可达车体全长。(4)整体装配车体:车体基本由6大部件即地板、车顶、两个端墙及两个侧墙装配而成。
3.简述车体轻量化、防火和隔声降噪的措施。(————————————不考——————————)
㈠车体轻量化措施:①采用新材料、新工艺:铝合金、不锈钢、蜂窝型复合材料、纤维复合增强塑料、玻璃 钢
②改变车体结构:改变车体强度结构
改变车体工艺结构:采用大型中空挤压铝型材结构 采用纤焊的铝蜂窝铝合金结构 采用航空骨架式铝合金结构 采用大型挤压型材的焊接结构
㈡防火措施:(1)结构抗火 2)隔断火源3)防止火灾蔓延4)车门设计应有利于乘客的疏散(5)车内应设
有灭火相辅助照明设备6)车辆难燃化7)加强车内的巡回检查,引导旅客安全疏散㈢隔声降噪的措施:①隔声措施:①采用双层墙结构
②在车体金属(如地板)表面涂刷防振阻尼层 ③采用双层车窗 ④车内选用吸声效果好的高分子聚合材料 ⑤提高车体气密性
②降噪措施:A、削弱噪声源发出噪声强度的措施 B、提高车体隔声性能的措施
4.简述铝合金车体的特点。
车体主要承载构件采用大型中空挤压铝型材,以提高构件刚度,充分发挥材料承载能力,满足轻量化要求,减小了焊接工作量,维修期增长 分为四种形式:
第一种,铝板和实心型材结构: 车体由铝板和实心型材通过铆钉、连续焊接进行连接。第二种,板条骨架结构: 车体由铝板和纵向加固件应用气体保护焊的溶焊而成。
第三种,大型开口型材结构: 车体由板皮和纵向加固件组成高强度大型开口型材整体结构通过焊接。第四种,大型空心截面结构: 车体结构为与车体等长的大型中空型材通过自动连续焊接互相连接。
5.简述CRH动车组的布置特点。
动车组车辆总体布局按空间位置一般可分为:车内布置、车顶布置、车下布置3部分。由于车上空间尽可能用于安装旅客服务设施,因此,动力设备分散在各节车的车下设备舱中,车上除司机室及其通道外,没有专门的设备间。以CRH5为例,总体空间布局一般划分为:车头(导流罩、自动车钩)、车上布置【司机室、客室、车辆连接(风挡)】、车顶布置(受电弓、空调机组等)、车下设备舱
6.简述动车组上的主要设备组成及其作用。7.简述车门的类型、组成及其特点。
类型:按作用分:侧门、内端门、外端门、小间门(包括乘务室门、卫生间门等)。按开启方式分:自动门、手动门。
按驱动方式不同区分:风动式车门、2、电动式车门 按开启特点分:(1)内藏嵌入式侧移门(2)外侧移门(3)塞拉门(4)外摆式车门
第五章 车端连接装置
一.填空题
1.牵引缓冲装置包括(车钩)、(缓冲器)、及(车钩复原装置)三部分。2.牵引缓冲器装置的构造、(性能)及(状态)在很大程度上 影响列车运行的(纵向)平稳性。3.车钩由(钩头)、(钩身)、(钩尾)等3部分组成。4.按连结紧密程度分:非刚性自动车钩(普通自动车钩)和刚性自动车钩(密接式车钩)。5.密接式车钩类型包括:前端(自动车钩)、半永久车钩和过渡车钩。6.缓冲器就其结构来说,可分为(弹簧摩擦式)、(橡胶摩擦式)和(液-气式缓冲器)三类。7.风挡装置有三种型式:铁风挡装置、橡胶风挡装置和(折叠风挡装置)。二.简答题
1.钩缓作用及传力过程
• 钩缓作用:连挂、牵引和缓冲三种功能。
• 连接定距(连接列车中的各车辆,并使之保持一定距离),• 传力缓冲(传递牵引力,传递和缓和纵向冲击力)。
• 钩缓作用及传力过程 • 当列车牵引时:车钩→钩尾销→ 钩尾框→后从板→缓冲器→前从板→前从板座→牵引梁。• 当列车压缩时:车钩→钩尾销→ 钩尾框→前从板→缓冲器→后从板→后从板座→牵引梁。
由此可见,钩缓装置无论是承受牵引力还是冲击力,都要经过缓冲器将力传递给牵引梁,这样就有可能使车辆间的纵向冲击振动得到缓和和消减,从而改善了运行条件,保护车辆及货物不受损坏。
2.车钩三态功能是什么?
(1)闭锁位置(连挂状态):锁闭状态,为牵引时所用。
(2)开锁位置(解钩状态):一种闭而不锁的状态,为摘车时所用。
(3)全开位置(待挂状态):为挂钩作准备。相互连接两车钩,必须有一个处于全开位,另一个处于什么位置都可以。3.密接式车钩特点
a)可实现真正的“密接”;
b)可实现机械、电路和气路三路连接; c)可以实现自动解钩; 4.柴田式密接车钩的工作原理(1)闭锁过程
连挂时,钩头凸锥插入相邻车钩的凹锥孔内,钩头内侧面压迫相邻车钩钩舌逆时针转动40o,解钩风缸弹簧受压变形;当量钩舌连接面完全接触后,形成一个球体,在解钩风缸弹簧复原力的作用下,在凹锥孔内顺时针转动40o后恢复原状,完成车辆连挂,车钩处于连挂状态(闭锁位置)。(2)解钩过程
自动解钩时,司机操纵解钩阀,压缩空气由总风缸进入解钩风缸,使活塞向前推动解钩杆并带动钩舌逆时针转动40o 而使车钩处于待解状态(开锁位置)。
手动解钩时,依靠人力推动解钩杆使使车钩处于待解状态(开锁位置)。5.缓冲器的作用及其工作原理 作用:缓冲器用来缓和列车在运行中由于机车牵引力的变化或在起动、制动及调车作业时车辆相互碰撞
而引起的纵向冲击和振动。缓冲器有耗散车辆之间冲击和振动的功能,从而减轻对车体结构和装载货物的破坏作用。
工作原理:缓冲器的工作原理是借助于压缩弹性元件来缓和冲击作用力,同时在弹性元件变形过程中利用摩擦和阻尼吸收冲击能量。其中橡胶缓冲器借助于橡胶分子内摩擦和弹性变形起到缓和冲击和消耗能量的作用。6.缓冲器的主要性能参数 ①.行程:缓冲器受力后产生的最大变形量。此时弹性元件处于全压缩状态,如再加大压力,变形量也不再 增加。
②.最大作用力:缓冲器产生最大变形量时所对应的作用外力。
③.容量:缓冲器在全压缩过程中,作用力在其行程上所作的功的总和称为容量。它是衡量缓冲器能量大小 的主要指标,如果容量太小,则当冲击力较大时就会使缓冲器全压缩而导致车辆刚性冲击。④.能量吸收率:缓冲器在全压缩过程中,被阻尼所消耗的能量与缓冲器容量之比。一般要求不低于70%。⑤.初压力:缓冲器的静预压力。初压力的大小将影响列车起动加速度。
第六章 城市轨道交通动车组
1.简述磁悬浮列车的类型、特点及其工作原理。类型:常导磁吸型、超导磁斥型 特点:常导磁吸型:利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸引上来,悬空运行,悬浮 的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400-500公里,适合于城市间的长距离快速运输。
超导磁斥型:使用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行,这种磁悬浮列
车的悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。工作原理:磁力悬浮、导向,线电机驱动 2.简述导轨交通的类型与工作原理。
类型:1中央导向方式、2侧面导向方式
工作原理:
1、中央导向方式: 线路中央设导向轨,车辆底架下部对应部位设导向轮。走行橡胶轮在两根主
梁上行驶,导向轮贴靠线路中央凸出的导向轨导向。
2、侧面导向方式: 线路两侧矮墙上设导向轮滚道,车辆走行装置外侧水平配置导向轮。走行轮
在线路上行驶,导向轮沿线路两侧的导向轨滚动导向。3.简述单轨车辆的类型与工作原理。类型:(1)跨坐式独轨铁路:车体重心在轨道梁上方,运行时车体跨坐在轨道梁上。
(2)悬挂式独轨铁路:车体重心在轨道梁下方,转向架悬吊着车体沿轨道梁运行。
工作原理:㈠跨坐式:车辆骑行于轨道梁上方,车辆底部有走行轮,在车体的两侧下垂部分还有导向轮和稳定
轮,夹行于轨道梁两侧,保证车辆沿轨道安全平稳行驶
㈡悬挂式:车辆悬挂于轨道梁下方,轨道梁为下部开口的箱型钢架梁,车辆走行轮与导向轮均置于 箱型梁内,沿梁内设置的轨道行驶。车辆改变行车方向时。通过梁内可动轨的水平移动实现
第七章 轨道车辆牵引理论
1、作用于列车的力及其产生原因 ①牵引力:动轮受牵引电机驱动转矩作用后,在轮轨粘着作用下,在轮轨作用点处产生的指向列车运行方向的
切向力称为轮周牵引力。
②制动力:制动装置对轮对形成一个力矩,从而在轮轨接触处产生一个车轮对钢轨的纵向作用水平力。③列车阻力:列车运行时,受到的与列车运行方向相反,而且是司机不能控制的阻止列车运行的外力,称为列
车阻力,简称阻力。阻力分为基本阻力和附加阻力两大类。
2、车轮空转的原因、危害及防治
A、空转的原因:当轮轨间出现最大粘着力后,若继续加大驱动转矩,轮轨间的粘着关系被破坏,使轮轨间出
现相对滑动的现象,称为“空转”。
B、空转的危害:动转出现空转时,轮轨将依靠滑动摩擦力传递切向力,这就大大削弱了传递切向力的能力,同时造成动轮踏面的擦伤。因此,机车在牵引运行中,应尽量防止出现动轮的空转。
C、防治措施(1)在设计时,尽量选择合理的结构参数,使轴载荷转移降至最小.以提高粘着重量的利用率。
(2)合理而有控制地撤砂。特别在直线轨道上,轨面条件恶劣时,撤砂可大大提高粘着系数。(3)采用增粘闸瓦,可提高制动时的粘着系数,防止车轮滑行。(4)采用性能良好的防空转装置。
3、轴重转移的原因、危害及防治
(1)定义:机车在牵引工况时机车产生牵引力时,各轴的轴重会发生变化,有的增载,有的减载,这种现象称为
牵引力作用下的轴重转移,轴重转移又称轴重再分配。
(2)原因:牵引力是发生轴重转移的根本原因。在机车运用中产生牵引力时,由于车钩距轨面有一定的高度,与 轮周牵引力不在同一高度,后部列车作用于车钩的拉力与轮周牵引力形成一个力偶,使前转向架减载,后转向架增载。
(3)危害:1对个别驱动的机车轴重减少最大的轮对,将首先发生空转。这样,机车粘着牵引力的最大值,必然
受到达个轮对空转的限制。
2空转发生后,牵引力立即下降,机车走行部、传动机构的正常工作受到影响;牵引电机也可能损坏;
轮对和钢轨增加了额外的非正常磨耗。
3个别轮对的轴重增加,使机车远行中的动作用力增加,并将对钢轨造成破坏。(4)防治:1 牵引电动机的顺置: 2货运机车大刚度弹性旁承。低位牵引:降低转向架牵引力向车体传递点距轨面的高度。
4在制造和维修方面,要注意保持动轮等直径、各牵引电动机相同的特性。
5合理撒砂,设防空转装置(在电力机车采用前、后转向架电动机分别供电,使轴重减载的前转向架电动机减小电流,而增载的后转向架电动机增大电流。这有可能获得较大的粘着重量利用率)
4、车轮抱死滑行的原因、危害及防治
原因:制动力大于粘着条件所允许的最大值,产生相对滑动,车轮的制动力变为滑动摩擦力,数值立即减小,车轮被闸瓦.’抱死”,轮子在钢轨上继续滑行,这种现象 称为.’滑行’ 危害:’抱死滑行’时制动力大为降低,车轮与钢轨的接触面会被擦伤,因此,应尽最避免。防治:①在大型货车制动机上设置有空、重车调整装置。②在盘形制动车辆上设踏面清扫器
③采用增粘闸瓦,可提高制动时的粘着系数,防止车轮滑行。④设电子防滑器。
5、列车运行方程式与列车运行状态方程式:
运行状态:①牵引状态,牵引电动机通电转动,将电能变为机械能,驱动机车使列车运行;②惰行状态,牵引电动机不通电,列车靠惯性运行
③制动状态,在列车车上加制动力,使列车减速运行。
第八章 轨道车辆动力性能分析与评价
1、机车车辆动力学的研究内容与目的
研究内容:①研究机车车辆在运行中产生的力学过程; ②掌握车体、转向架的振动规律;
③以便合理设计机车车辆有关结构,正确选定弹簧装置、轴箱定位装置、横动装置、减振器等的 参数;
④并为有关零部件的强度计算提供必要数据。
研究目的:① 研究自由振动求知固振频率,以便知道发生共振时的机车机车车辆速度。② 研究受迫振动是为求知需要的阻尼和迫振振幅、迫振加速度,以便知道机车机车车辆运行的
平稳程度及其对线路的动作用力。
③研究蛇行稳定性问题,以便采取有效措施来提高高速机车机车车辆的蛇行临界速度。
2、坐标系与振动形式
(1)侧滚:绕x轴的回转振动;(2)伸缩:沿x轴的往复振动(3)点头:绕y轴的回转振动;(4)横摆:沿y轴的往复振动(5)摇头:绕z铀的回转振动;(6)浮沉:沿z铀的往复振动
滚摆:由于弹簧对称支撑于车体下部,车体横摆时,其重力与弹簧支持力形成的力矩使车体车滚,即产生横摆时肯定发生侧滚,横摆与侧滚的耦合振动称为滚摆。滚心在车体重心之上的滚摆称为上心滚摆。滚心在车体重心之下的滚摆称为下心滚摆。
蛇行运动:指的是具有一定踏面斜度的轮对,沿直线运行时,受到微小的激扰后,产生一种一面横向往复摆动,一面绕铅垂中心转动,中心轨迹城波浪形的特有运动。
3、一系悬挂机车车辆特点
4、蛇行运动临界速度
临界速度
可见,减小踏面等效斜率je及减轻轮对质量m,能提高轮对蛇行运动稳定性,当je=0时,即用圆柱形踏面时,Vc→∞时不会产生蛇行运动。
说明因为Ky和Kx的存在,弹性定位轮对的临界速度要比自由轮对的高得多。减小踏面等效斜率je及轮对质
量m,增大轮对定位刚度Kx、Ky及重力刚度对稳定有利。
5、曲线通过研究的内容
1、分析类型
曲线通过有两个相互联系的研究内容:几何曲线通过和动力曲线通过。
2、几何曲线通过
研究机车与线路的几何关系和机车自身有关部分在曲线上的相互几何关系。研究机车的几何曲线通过;
也为研究动力曲线通过提供有关数据。几何曲线通过主要解决的问题(1)确定机车所能通过的曲线的最小半径和为此目的所需的轮对横动量;(2)给出机车转向架通过曲线时的转心位置;(3)确定在曲线上机车转向架对于车体的偏转角(4)确定车体与建筑限界的关系等(校验内容:将两转向架皆置于最大外移位置以校验车体端部是否能通过限界;将两转向架皆置于最大偏斜位置以校验车体中部是否能通过限界。)。
3、动力曲线通过
研究机车以不同速度通过曲线时与线路的相互作用,探讨机车安全通过曲线的条件和措施并为机车和线
路的强度计算以及轮绦磨耗提供有关数据。A.限速原因:
在曲线上,机车机车车辆速度所受的限制可以归纳为以下几方面:列车在曲线上的未平衡加速度、侧压
力、轨枕力、轮缘磨耗因数和防止车轮爬越钢轨。
B.限速依据:
1.保证乘务员的舒适感:gc<0.04g时无明显感觉;gc=0.05g时能察觉,无不适感;gc=0.077g时,能
长期承受;gc=0.1g时能短期承受。
2.轮软间作用的侧压力使钢轨产生横向应力和变形:为防止钢轨应力过高或出现永久变形而使轨距展宽,侧压力不能过大。对于轴荷200kN的机车,在50kg/m的焊接轨上,侧压力限为70kN;在鱼尾板连接的轨上,限为60kN 3.轨枕力可能引起轨枕永久横移:轴荷重200kN,轨枕力的最大值最多50kN,而容许的是65kN。4.大轮缘力有使车轮爬越钢轨的可能:以脱轨系数控制
2、径向转向架
径向转向架就是将转向架上的前后轮对通过一定的方式连接起来,使其摇头运动相互耦合,从而使轮对轴线指向
轨道曲线半径的方向,达到径向调节的目的。
径向转向架一般可分为自导向径向转向架和迫导向径向转向架两种
3、车辆动力性能评价
(1)平稳性:舒适性。Sperlring的“平稳性指标”,SNCF的“疲劳时间”(2)稳定性(稳定性脱轨、抗倾覆稳定性): 安全性。机车车辆在线路上运行时受到各种力的作用,在最不利的
组合情况下,这些力会破坏机车车辆的正常运行条件,使轮轨脱离接触,造成机车车辆脱轨或倾覆事故。这种情况成为机车车辆失去运行安全性。评价指标:脱轨系数、轮重减载率、倾覆系数
(3)曲线通过性能:导向机理。第九章 结构强度设计
1.强度计算的内容有哪些?
1、受力分析 研究运行过程中,零部件所承受的载荷及其组合。
2、应力计算 以材料力学、弹性力学等为基础,用有限元法确定零部件的应力、应变及稳定性等。
3、强度评价 确定评价强度、刚度和耐久性的方法和指标,并进行评价。2.作用在车体和转向架上的载荷分别有哪些?因何引起?简述其三要素。
1、垂向静载荷=车体自重+车辆载重(定员数*每定员折算重量)+整备重量
2、垂向动载荷Pd=Kdy*Pst
3、车体侧向力=风力+离心力
4、扭转载荷:当前转向架进入缓和曲线,而后转向架仍处于平直道时产生的载荷。
5、纵向力:牵引力及纵向惯性力
6、修理时加于上的载荷
3.简述有限元分析的基本思路及有限元软件分析三步曲。4.简述强度试验的目的和类型。
试验目的:鉴定及其主要零部件的强度、刚度和稳定性。试验类型:
1、车体静强度试验
2、车体刚度试验
3、转向架静强度试验
4、转向架主要零部件疲劳试验
5.简述强度设计方法的类型、强度条件及理论依据。
类型:
1、静强度设计
2、疲劳强度设计
3、损伤容限设计
4、可靠性设计
5、优化设计 强度条件(略)理论依据(略)第十章 轨道交通车辆设计
1.简述车辆设计的类型及内容。
车辆设计是车辆生产的第一道工序。从设计的前后顺序,一般可分为:方案设计、技术设计及施工设计三个阶段。从设计的内容上又可分为车辆总体设计及车辆零、部件设计两大部分
第五篇:高速动车组总结报告
高速动车组的几项关键技术
摘要:对我国高速动车组的几项关键技术进行分析并指出其发展方向。关键词:高速铁路,动车组,关键技术 概述
2004年10月铁道部组织完成了140列时速200km动车组的采购项目合同签订,成功引进了川崎重工(与四方机车车辆股份有限公司合作)、庞巴迪(与青岛BSP股份公司合作)、阿尔斯通(与长春轨道客车股份公司合作)的动车组先进技术,05年11月又引进西门子(与唐山机车车辆厂合作)的动车组先进技术,成立合资公司进行动车组的生产,至今国产化工作进展顺利。动车组的组成及主要技术参数
CRH1:5M+3T,8节编组,动力分散装置,421吨,总牵引功率5500kw,总长213.5m,车辆宽度3.328m,车辆高4.04m。
CRH2:4M+4T,8节编组,动力集中装置,359.7吨,总牵引力4800kw,总长201.4m,车辆宽度3.38m,车辆高3.7m。
CRH3:4M+4T,8节编组,动力分散装置,425.08吨,总牵引力8800kw,总长200m,车辆宽度3.265m,车辆高3.89m。
CRH5:5M+3T,8节编组,动力集中装置,451.3吨,总牵引力5500kw,总长211.5m,车辆宽度3.2m,车辆高4.27m.
3 动车组的几项关键技术
3.1牵引传动系统
CRH1:(1)系统组成。该动车组中有2动1拖和1动1拖两种基本动力单元,其中2动1拖得基本动力单元位于整车的两端。(2)网侧高压电气设备。主要包括受电弓、主断路器、避雷器、电压和电流互感器、接地开关等。(3)牵引变压器。一个基本动力单元有1个,全列共计3个。采用芯式结构、车体下吊挂、油循环强迫风冷方式。具有1个原边绕组(25kv,1600kvA),4个牵引绕组(930v,4X400kvA),1个谐振滤波电抗器(1000V)。外形尺寸(LXWXH)为3900X2200X730(mm),重4200kg。(4)牵引变流器。全列共计5个(2M1T基本动力单元有2个、1M1T基本动力单元有1个)。采用车下吊挂、水冷却方式。(5)牵引电动机。每个动力车4个牵引电机,全列共计20个。牵引电动机为三相鼠笼式异步电动机,采用架悬、强迫风冷方式,通过绕性浮动齿式连轴节连接传动齿轮。电机额定功率为265KW,额定电压1287V,转差率0.012,重596kg,效率94%。(6)系统性能。动车组牵引功率5300KW,满足动车组运营速度200km/h和最高试验速度250km/h的要求。定员载荷的动车组平直道上的起动加速度大于0.6m/s²;200km/h运行时,其剩余家加速度不小于0.1m/s²。
CRH2:(1)系统组成。该动车组中有2动2拖为一个基本动力单元。一个基本动力单元的牵引传动系统主要由网侧高压电气设备、一个牵引变压器、2个牵引变流器、8台三相交流异步牵引电动机等组成。(2)网侧高压电气设备。主要包括受电弓、主断路器、避雷器、电流互感器、接地保护开关等。(3)牵引变压器。一个基本动力单元有1个,全列共计2个。采用壳式结构、车体下吊挂、油循环强迫风冷方式。具有1个原边绕组(25kv,3060kvA),2个牵引绕组(1500v,2X1285kvA),1个辅助绕组(400V,490kvA)。采用铝线圈、轻量耐热材料和环保型硅油,实现了小型化、轻量化;外形尺寸(LXWXH)为2570X2300X835(mm),仅重2910kg,效率大于95%。(4)牵引变流器。全列共计4个(1个基本动力单元有2个)。采用车下吊挂、液体沸腾冷却方式。(5)牵引电动机。每个动力车4个(并联)牵引电动机,全列共计16个。牵引电动机为4极三相鼠笼式异步电动机,采用架悬、强迫风冷方式,通过绕性浮动齿式连轴节连接传动齿轮。电机额定功率为300KW,额定电压2000V,转差率0.014,重440kg,效率94%。
CRH5:1)系统组成。该动车组包括两个基本动力单元,3动1拖动力单元和2动2拖动力单元。的牵引传动系统主要由1套网侧高压电器设备、1个牵引变压器、3/2个牵引变流器、6/4台三相交流异步牵引电动机等组成。全列共计2个受电弓,动车组正常时是一个受电弓运行,另一个受电弓备用。(2)网侧高压电气设备。主要包括受电弓、主断路器、避雷器、高压电流互感器、高压电压互感器、接地保护开关等。(3)牵引变压器。一个基本动力单元有1个,全列共计2个。采用芯式结构、车体下吊挂、油循环强迫风冷方式。具有1个原边绕组(25kv,5735kvA),6个牵引绕组(1770v,6X955.8kvA),外形尺寸(LXWXH)为4800X2335X727(mm),效率94%。(4)牵引变流器。一个基本动力单元有2或3个,全列共计5个。采用车下吊挂、水冷却方式。(5)牵引电动机。每节动力车2个,一个基本动力单元有6或4个,全列共计10个。牵引电动机为6极三相鼠笼式异步电动机,采用车体下悬挂、强迫风冷方式,通过万向轴连接至安装在转向架上的变速箱。电机额定功率为564KW,电气效率93.5%,机械传动效率97.5%。(6)系统性能。CRH5动车组最高运营速度200km/h,最高试验速度250km/h的要求,动车组总功率5500kw。定员载荷的动车组平直道上的起动加速度为0.5m/s²;200km/h运行时,其剩余家加速度不小于0.15m/s²。
3.2高速转向架。
CRH1:该动车组转向架是以AM96转向架为原型进行设计的,后者在中国和欧洲都用在高速运行的列车上,在轮对、轴箱、一、二系悬挂装置、齿轮箱和牵引装置、制动装置等各部件上均采用了成熟的技术。这就确保了它在高速列车要求的速度和附载方面,符合UIC518规定的运行品质和可靠性要求。CRH1动车组的每辆车都装有两个转向架,因车型不同,有两种类型的转向架:动车转向架和拖车转向架。CRH2:由川崎重工负责方案选型和技术设计,转向架以川崎重工为东日本铁路公司提供的E2-1000系动车组转向架为原型,其M转向架的型号为DT206,T转向架为TR7004。为适用于中国铁路,对原型车转向架方案进行了部分变更设计。
CRH5 :在TVA-S104转向架基础上改进设计,TVA-S104转向架由阿尔斯通公司于2002年设计,应用于西班牙Lanzaderas动车组上。该转向架源于意大利ETR系列摆式动车组转向架,并经国内长春轨道客车股份有限公司提出相关的技术要求改进而来。为适应中国的线路,轮对内侧由1360mm改为1353mm;车轮踏面形式重新设计后采用XP55型车轮踏面。
3.21转向架轻量化技术。3.22转向架悬挂技术。3.23转向架驰动技术。3.24牵引电动机悬挂技术。3.3高速制动技术。3.4 动车组车顶设备 3.41 CRH1动车组
在2、7号车设受电弓及附属装置,受电弓工作高度最低5300mm,最高6500mm。动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。3.42 CRH2动车组
在4、6号车设受电弓及附属装置,安装高度4m时,受电弓工作高度最低4888mm,最高6800mm,最大升弓高度7000mm。动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。3.43 CRH3型动车组 每车车顶均设有空调机组
在2、7号车设受电弓及附属装置,受电弓工作高度为4950~6500mm,动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。3.44 CRH5型动车组 每车车顶均设有空调机组
在每个动车(1、2、4、7和8号车)的车顶还设有制动变阻器
在3、6号车设受电弓及附属装置,受电弓工作高度为5300~6500mm,动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。3.5 车体结构
CRH1型动车组车体: 不锈钢焊接结构;车门处地板距轨面高度1270mm,并设有翻板脚蹬装置;可以适应300~1200mm的站台高度
CRH2型动车组车体:车体采用铝合金结构;车门处地板距轨面高度1300mm,适合1100~1200mm站台
CRH3型动车组车体:车体采用铝合金结构;地板距轨面高度1260mm,固定脚蹬 CRH5型动车组车体:车体采用铝合金结构;车门处地板距轨面高度1270mm,并设有翻板脚蹬装置,可以适应300~1200mm的站台高度 结论
高速动车组的大量应用必将促进国家经济的快速发展。随着人们对高速动车组的扩大需求,高速动车组技术也将有更大的进步,同时管理机制也会更加完善。
参考文献:高速动车组总体及转向架:西南交通大学出版社