第一篇:2014考研数学备考重点解析——定积分的计算和证明
2014考研数学备考重点解析——定积分的计算和证明
1.定义:b
af(x)dxlimf(k)xk 0k1n
2.可积性:
1)必要条件:f(x)有界;
2)充分条件:f(x)连续或仅有有限个第一类间断点;
3.计算1)b
af(x)dxF(b)F(a)
2)换元法
3)分部积分法
4)利用奇偶性,周期性
5)利用公式 n1n31,n偶nnnn222(1)2sinxdx2cosxdx 00n1n32,n奇nn23
(2)
4.变上限积分:π0xf(sinx)dx20f(sinx)dx x
af(t)dt
1)连续性:设f(x)在[a,b]上可积,则
2)可导性:设f(x)在[a,b]上连续,则
变上限求导的三个类型: xaxaf(t)dt在[a,b]上连续。f(t)dt医学考研论坛在[a,b]上可导且(f(t)dt)f(x).ax
(x)(1)f(t)dtf((x))(x)f((x))(x)(x)
(x)x(2)f(x,t)dt例1:F(x)(tx)f(t)dx 0(x)
bdx2(3)f(x,t)dt例2:sin(xt)dt0adx
3)奇偶性:i)若f(x)为奇函数,则x
0f(t)dt为偶函数。
ii)若f(x)为偶函数,则5.性质:
x0
f(t)dt为奇函数。
1)不等式:i)若f(x)g(x), 则
ba
f(x)dxg(x)dx.a
b
ii)若f(x)在[a,b]上连续,则m(ba)iii)
ba
f(x)dxM(ba).
ba
f(x)dx|f(x)|dx.a
b
2)中值定理: i)若f(x)在[a,b]上连续,则
ba
f(x)dxf(c)(ba),acb
g(x)不变号,则
ii)若f(x),g(x)在[a,b]上连续医学考研论坛,
ba
f(x)g(x)dxf(c)g(x)dx,acb.a
b
【例1】I
n0
x dx;
【解法1】原式=n=n=n=n
sin2
(cossin)2 cosxsinx
(cosxsinx)dx(sinxcosx)22n.
40
【解法2】原式=n
54
54
sin2xdx
=n
(cosxsinx)2dx
454
=n
(sinxcosx)dx2.ex4
sinxdx;【例2】 I
1ex2
xt
ee44
sinxdx2sintdt【解析】I2
xt1e1e22
(xt)
sin1ettdt
12ex1442sinxdxsinxdx
1ex221ex
2
2sinxdx
22
sin4xdx
313
海文考研钻石卡
42216
【例3】 已知f(x)连续,【解析】令xtu得
x0
tf(xt)dt1cosx,求2f(x)dx的值.
x
tf(xt)dt(xu)f(u)duxf(u)duuf(u)du,xxx
xxxdx,从而有tf(xt)dtf(u)duxf(x)xf(x)f(u)duf(u)dusinx 0000dx
令x
得
f(u)dusin
1.1n
12n
【例4】 求 lim121n21n2nn
11222n212n
(2)ln1(2)ln1(2) 【解析】令yn(12)(12)(12),则lnynln1nnnnnnn
n
2x2
ln22(1)limlnynln(1x)dxxln(1x)001x20n4
原式e
ln22(1
)
2e
2
.【例5】 求证:【解析】
sinx2dx0.2
2
sinxdx =
sint20
(令x2t)
sint2t
2
sint2t
而
2
2
sinusint
=du(令tu)
2u
则
sinxdx
0
sint11
dt0.2t
【例6】 设f(x)在[a,b]上连续,单调增。求证:【证法1】令F(x)
bab
axf(x)dx2af(x)dx
b
xa
tf(t)
xax
f(t)dt a2
只要证明F(b)0,显然F(a)0
2a1x
f(x)f(t)dt 22a
x1
=(xa)f(x)f(t)dt
a2
=(xa)f(x)(xa)f(c)(acx)
而F(x)xf(x)0 则F(b)F(a)0 原式得证.【证法2】由于f(x)在[a,b]上单调海文考研钻石卡增,则
(x
abab)(f(x)f())0 22
从而有即又则即
b
ba
(x
abab)f(x)f()dx0 22
ababbab
(x)f(x)dxf()(x)dx0 a
22a2bab(x)dx0 a
2bab(x)f(x)dx0 a
2babbxf(x)dxf(x)dx.aa2
第二篇:2018考研数学复习重点之定积分解析篇
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学复习重点之定积分解析篇
2018考研数学大纲已发布,对于定积分部分,整体要求没有什么出入,下面主要是根据2017年对定积分这一块的考查,并结合今天出来的2018年考试大纲来给2018的同学们来聊聊,接下来这三个月,我们在2018年的考研备考中所要注意的问题:
首先,我们要结合刚刚出来的2018年考试大纲来明确这一部分的知识体系。
定积分这章包括:定积分的定义,性质;微积分基本定理;反常积分以及定积分的应用这几个部分。这几个部分各有各的侧重点。而其中有关定积分的定义是要求我们掌握的重点,我们要充分理解微积分基本定理以及还要掌握定积分在几何和物理上面的应用。至于反常积分这一块,会计算简单的反常积分,了解反常积分的概念就好了。
接下来,我们要挖掘考试大纲,以帮助我们更深刻理解这一章的知识点。
一、定积分
关于定积分的定义及性质。这里要求同学们一定要理解分割,近似以及求和还有取极限这几个步骤。与此同时还要求同学们知道其几何意义及定义中我们所要注意的地方。对定积分定义这一部分的考察在每年考研中几乎都是必考内容。因此希望这一部分能引起同学们的一定的重视。关于定积分的性质这一块,同学们关键主要在于理解。定积分中的区间可加性、积分中值定理、比较定理这几个是同学要掌握的。而对于微积分基本定理这一块的知识点是非常重要的。这里面有一个新的函数叫做变上限积分函数。关于变上限积分函数的两个性质是我们一定要掌握的。关于切线与法线;以及单调性;极值;凹凸性的应用与变上限积分函数是可以相关联的。有了变上限积分函数的定义后,我们就要注意变限积分求导问题了,有关变上限积分的求导,希望同学们能够会证明,以前考研真题中也出现过此类问题。所以,应当值得我们重视。
二、反常积分
对反常积分这一块内容,要求同学们了解反常积分的基本定义,会利用用定积分来判断其收敛性,会计算反常积分就够了。而关于反常积分的计算,同学们就当作定积分来求就可以了。
最后,就是有关定积分的应用部分了。这一块应用希望童鞋们要掌握住,其主要就是利用微元法在几何上应用,对于数一和数二的同学还要求掌握物理上面的应用。而这里,同学们一定要知道数学一、二、三的区别。数学三的同学要掌握用定积分求面积及简单的体积。而对于数学一和数学二还要求掌握用定积分求曲线弧长、旋转曲面面积。而数学一和数学二也要掌握物理方面的应用,这里主要要求数一数二的同学掌握用定积分求变力做功、抽水做功及液太静压力和质心问题。而这里最要的是同学们一定要掌握微元法这种思想方法。
凯程考研辅导班,中国最权威的考研辅导机构
因此,关于定积分这一块,希望同学们能够结合上篇和下篇的全部内容,来完整的明晰有关定积分的知识。
总之,今天考研大纲刚出来,我们通过对2016年考研大纲的整体分析以及单块知识点的分析,这里我希望同学们能够全面掌握住相关知识点,为三个月后的2016考试做好充足的准备,希望同学们能够学习好定积分这一部分内容,这样可以为以后的高等数学的整体复习打好坚实的基础,最后,还有几个月,希望每个同学都能认认真真的学,希望每一位同学都能考出一个好的成绩。
页 共 2 页
第三篇:2016考研数学:定积分的证明
2016考研数学:定积分的证明
定积分及其应用这部分内容在历年真题的考察中形式多样,是考试的重点内容。启航考研龙腾网校老师希望同学们要加以重视!
定积分的证明是指证明题目中出现积分符号的一类题目,一般的解题思路和常见的证明题大同小异,但是由于积分符号的出现,往往使得同学们有这样那样的不适应,在这里呢,和同学们一起总结下关于这类题目的一般解题思路。常见的关于定积分的证明,主要包括以下几
类
问
题。
2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。
3、定积分不等式的证明。一般有三种方法。①利用被积函数的单调性、定积分的保序性和估值定理证明。
②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。
③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。
第四篇:2018考研数学必看重点:定积分证明三大解题思路_毙考题
下载毙考题APP
免费领取考试干货资料,还有资料商城等你入驻
2018考研数学必看重点:定积分证明三大解题思路
在考研数学中,定积分及其应用这部分知识点考察形式多样,是每年考察的重点,而定积分证明就是常见形式之一,大家需要加以重视,下面一起来看看这类题目的解题思路吧。
2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。
3、定积分不等式的证明。一般有三种方法。
①利用被积函数的单调性、定积分的保序性和估值定理证明。
②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。
③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。
考试使用毙考题,不用再报培训班
邀请码:8806
下载毙考题APP
免费领取考试干货资料,还有资料商城等你入驻
考试使用毙考题,不用再报培训班
邀请码:8806
第五篇:利用定积分证明数列和型不等式
利用定积分证明数列和型不等式
我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型
例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证
.分析
这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间
并作图象如图1所示.因函数在上是凹函数,由函
上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以
.例2 求证
.证明 构造函数
而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图
2即,所以.例3 证明。
证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图
3个矩形的面积之和小于曲边梯形的面积,图3
即
.所以
.二、型
例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数
可当作是某数列的前列的通项不等式
成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式
成立,从而所证不等式成立.图4
例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为
(Ⅰ)用表示出 ;
.的图象在点(Ⅱ)若 在内恒成立,求的取值范围;
(Ⅲ)证明:
.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为
左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证
.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即
.图
5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,