初中数学《三角形的中位线》教学实践报告(大全)

时间:2019-05-15 07:59:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学《三角形的中位线》教学实践报告(大全)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学《三角形的中位线》教学实践报告(大全)》。

第一篇:初中数学《三角形的中位线》教学实践报告(大全)

初中数学

《三角形的中位线》教学实践报告

(指导思想,设计方法等说明)

本节课是苏教版数学八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了旋转图形、中心对称与中心对称图形的性质,利用中心对称图形的性质,研究了平行四边形的性质,并在此基础上展开了对矩形、菱形、正方形的研究。这一节的内容也是本章的重要内容,主要是利用中心对对称变换,研究三角形中位线的性质,并通过中心对称变换向学生展示一个重要的数学思想方法——转化。将三角形中位线性质的研究转化为平行四边形性质的研究。三角形中位线的性质在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。学好本课还为下一课时“梯形中位线”打下良好的基础,做好了铺垫。

一、实践过程

本节课我主要采取“创设问题情境——组织数学活动——引导自主、合作学习——观察发现得到概念——问题解决”的教学模式,培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发展数学和应用数学解决生活中问题的过程,发展学生的空间观念,品尝成功的喜悦,激发学生应用数学的热情,同时注重学生的动手能力、协作与交流能力、数学语言表达能力的锤炼与培养。由于八年级学生的理解能力与思维特征,也为使课堂生动、有趣、高效,将学生分成若干个学习小组,学生采用“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。给学生提供更多的活动机会和空间,在动脑、动手、动口的过程中获得充分的体验和发展,从而培养学生各方面的能力。

具体教学流程如下:

一、创设情境,导入新课

二、自主探索,探求新知

三、尝试练习,巩固性质

四、例题运用,形成能力

五、小结反思,巩固提高

六.探索拓展,人人提高

七、布置作业,强化巩固

二、收获与体会

《三角形的中位线》是以平行四边形的有关知识为基础,引出三角形中位线的概念,进而探索研究三角形中位线的性质,最后利用性质定理进行有关的论证和计算,步步衔接,层层深入,形成知识的链条。学好本课不仅为以后梯形中位线打下良好的基础,做好了铺垫,可见,三角形中位线在整个知识体系中占有相当重要的作用,起到承上启下的作用。

在本节课中本着“思路让学生想,疑难让学生议,规律让学生找,结论让学生得,小结让学生讲”的原则,在教学过程中做到了以下几个方面:

1、充分展现了概念的生成过程。在教学三角形中位线的定义时,我没有直接把“连接三角形两边中点的线段叫做三角形的中位线”这个定义直接地呈现给学生,而是通过生活中的实例(测量校园池塘两点之间的距离)自然呈现;再利用三角形的中位线性质来解释生活中的实例,使学生更深的体会“数学来源于生个人珍藏

活,应用于生活”的道理,很真实,很自然。大家都说兴趣是最好的老师.在授课中注重了对学生几何学习兴趣的培养。他通过一些问题的有效设问,不断激起学生的认知冲突,激发学生新的学习动机,达到“随风潜入夜,润物细无声”的作用,使新课知识的探索自然而然的发生,使学生从“感兴趣”自然进入数学知识的探究,达到培养思维能力的效果。

2、注重学生学习的过程,注重对学生探究能力的培养.在认识了三角形中位线的概念之后,我不是直接提出三角形中位线定理后再证明,而是先让学生动手操作、实践,让学生从动态中去观察、探索、归纳知识,形成自己的经验、猜想,产生对结论的感知,实现对知识意义的主动建构,让学生学会学习,学会探索问题的方法,培养学生的能力.“受之以鱼,不如授之以渔”这才是中学教育的真正目标.教学过程中,注重学生探究能力的培养,还课堂给学生,让学生去亲身体验知识的发生过程,拓展学生的创造性思维.同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想.

3、充分运用比较的方法,突出重点。比较指的是人脑把一些事物和现象放在一起进行对比的思维过程。在教学中我充分运用比较的方法,有助于突出教学重点,突破教学难点,从而扎实地掌握数学知识,发展逻辑思维能力。在学习了三角形的中位线之后,让学生和七年级(下)学过的三角形的中线作比较,尤其恰到好处地使用了电子白板演示,更是直观,符合学生认知的特点。

4、注重学生的自主探索。学生所要学习的知识不应当都以定论的形式呈现,而是应当给学生提供进行探索性的学习的机会,作为教师需要的是加以适当的点拨。三角形的中位线定理既是本课的教学重点也是难点,我在教学时提供三角形纸片给学生,让他们通过观察、操作、思考和讨论交流,较好地体现了学生的主体性和教师的主导性。不仅使学生经历了知识的形成过程,而且使学生在获取知识的过程中,学会了与他人的合作与交流,有助于自身素质的提高。

5、重视几何语言的描述。在讲到三角形中位线定理时,我在板书上都做了几何语言描述,这将使学生在以后上几何知识的学生中收益匪浅。

6、要机智、智慧地利用好课堂生成。华东师大教育系叶澜教授曾作过这样精辟的论述:“课堂应是向未知方向挺进的旅程,随时都可能发现意外的通道和美丽的图景,而不是一切都必须遵循固定线路而没有激情的行程。” 我重视关注学生在课堂中的生成,当然也还有待进一步提高。

三、问题与建议

本节课体现了新课标的基本理念,基本实现了课前制定的教学目标。学生在探索三角形中位线性质时,经历了实践操作、语言表达、合作交流、发现结论的过程,体会到将三角形性质转化为平行四边形性质进行研究的数学思想。通过操作发现性质及用严密的数学思想证明结论的正确性,让学生感受到数学来源于生活,并用于生活。

主要问题:在处理教材上对教材的把握不到位,忽略了学生的个性差异,不能创造性地使用教材。在教学方法上,仍没有把学生放开,真正地让学生多思、多探索,真正让学生成为教学的主体。

一些建议:

1、对学生今后的小组探究活动,还要进一步加强训练、指导,在小组活动前要提出明确的要求,在活动中要加强巡视和指导,以激发学生探究的热情,发挥课堂探究的最大效益。

2、要注意提问的有效性。

3、老师少讲,少包办,多让学生展示,学生在回答时老师不要迫不及待地打断、重复或提示。

4、教师激励性评价、授课的激情还有待于进一步提高。

5、在如何调动课堂气氛上要动一番脑筋。

第二篇:《三角形中位线》教学设计

《三角形中位线》教学设计

一、教学目标:

1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算.2.掌握添加辅助线解题的技巧.3.提高学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法

探究式自主学习:以学生的自主探究为主,教师加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准

三、教学内容﹑教材重、难点分析:

三角形中位线定理的学习是继学习习近平行四边形后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中位线定理,最后是利用中位线定理解答例一所给的问题.在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题.四、教学媒体的选择和设计

通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。

以实际生活为出发点,激发学生的思维从而引出本节课的内容.通过媒体动态的效果引发学生的思路,猜想出结论,并且从添加辅助线的角度思考开始,分析条件,得出证明的方法,帮助学生用多种方法解题.再借助多媒体帮助学生分析题意,学生自己动手尝试利用三角形中位线解决实际问题.特点是:打破以前数学课上老师一言谈的现象,学生能够积极参与学习,并且在媒体的作用下,学生的思维可以得到充分的展示,媒体动态的演示教会学生探究知识的方法:猜想—归纳—研究—结论.同时运用多媒体大大增强了课堂的容量,这是一般教学所难以实现的.五、教学步骤

(一)导入:

老师今天准备了一块三角形蛋糕平均分给四个人,该如何分?好,你们的方法很多,能给老师用数学知识解释一下你们分法的理由吗?对于第三种是不是合理,大家解释起来有困难,通过下面的学习后我想请大家解释给我听.(二)1.我们把刚才第三种切法中所提到的三条线段叫三角形中位线.哪个同学能给我们用语言叙述清楚.结合图形用几何语言表述三角形中线概念,它与三角形中线有什么区别?

2.好,看了三角形中位线会有什么性质呢?请同学们看下面的实验:老师把一个三角形沿一条中位线分开,并绕一个中点旋转180°,观察图形变成了什么图形?由此你可以发现三角形中位线有什么特性.用一句话说出来.该如何证明呢?对,我们可以通过旋转的方法构造平行四边形,用平行四边形知识进行证明.这种添加辅助线的方法叫割补法.请问还有什么添加方法? 证明了我们的猜想,下面我们结合图形用几何语言把三角形中位线定理叙述出来.请大家注意它与前面复习的推论(2)的关系?

(三)好,下面,我想请同学们帮助老师解决两个问题:1,我想测量一条湖面的宽度,能不能用三角形中位线知识设计一个方案,并说明这样做的理由.2.请问前面切蛋糕方法(3)是否合理,为什么?

(四)好,下面,请大家我们就要自己动手,来练习一下,看对三角形中位线定理是不是理解了.请大家看例1,要证明平行四边形有什么方法,从这个图形中我们能够分解出两个基本图形.如何解答,请一位同学说,老师写.下面看例2,题目中的中点如何才能运用起来.对,通过连接中点构造中位线来解决,请大家自己写出过程,用实物投影仪进行点评.刚才的例2使我们看到中位线与对角线的关系,请大家观察下面图形的变化,讨论变化后的图形是什么四边形.小结:三角形中位线定理的结论有两个方面:1,证明平行,2证明倍份关系.(五)思考题:要解决这样的倍份问题常常通过添加辅助线,借助三角形中位线解题.(六)小结,布置作业:P188 5,6,7

六、教学流程图 问题引入概念

Flash动画

明确三角形中位线概念

三角形中位线定理的证明

三角形中位线定理的简单运用

讨论判断练习2

教师总结、布置作业

练习1

讲解例1

讲解例2

七、教学评价:

1.先从学生已经学过的知识入手,为进一步学习奠定基础,同时也为学生的知识体系进行一次简单的梳理

2.通过一幅形象生动的图画带来的问题引发学生的思考,可以增加学生的参与性,有许多平时不爱思考学生,此刻都愿意想,愿意说。更加的体现数学来源于生活,生活中充满数学知识,3.教师是学生学习的组织者和参与者,在本节课中,动画的演示调动了学生的思维,为打开解题思路提供了一把钥匙,而不是生硬的传授知识.4.信息量扩大了,课堂容量大了。教师可以在短时间讲清讲透知识点,并可以借助媒体切换的方便快捷性,讲解较多题目,学生也不觉得累,同时对于知识间的相互联系性,能够帮助学生理解和掌握.是传统学模式所不能达到的。

5.计算机辅助教学可以让学生有新鲜感,比较感兴趣,使得课堂教学比较有活力,学生的印象也深刻,从而更好的达到教学目标。

6.计算机辅助教学能够有效提高教学效果,提高学生的综合能力,但也容易分散学生的注意点,因此要求课件上能为教学服务而设计,不能为了运用媒体而用,那样会失去它的真正意义.

第三篇:三角形中位线反思

《三角形中位线》教学反思

李红梅

课改下新课标的实施,不但要求每个教师在课堂教学设计上、对学生评价问题上、学生学习方式上等方方面面都要有一个全新的认识和改变。更是要求教与学后教师与教师之间、教师与学生之间有所沟通、有所总结、有所思进。就这些方面下面就是我对“三角形中位线”的课后反思。

在《三角形中位线》的教学中,在《三角形中位线》的教学中,新课程在教材上紧紧围绕着三个目标设计的。这节课的教学目标有以下三点:1.经历概念的发生过程,提高分析能力,理解三角形的中位线概念,知道三角形的中线和中位线的区别。2.经历三角形中位线性质的探索过程,进一步提高和发展逻辑思维能力和推理论证的表达能力;体会转化的思想方法,进一步感受图形的运动对构造图形的作用。3.掌握三角形中位线的性质定理,能运用三角形中位线定理进行计算和论证,解决简单的现实生活的问题,增强应用能力和创新意识。本节的教学重点和难点有以下两点:

1、本节教学的重点是三角形的中位线定理。

2、三角形的中位线定理的证明、运用有较高的难度,是本节教学的难点。

在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘的边上AB两点之间的宽度?办法是只要在池塘外取一点C,取 CA的中点D,在取CB的中点E,此时只需求的DE的长度,就可知AB的长度,这是为什么呢?此时教材体现的是人人是在学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。引入恰到好处,体现了数学的实用性,数学来源于生活,同时充分激发了学生的学习兴趣。

带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。探究新知识时,采用猜想—验证—归纳—应用的教学步骤,使学生的思维一直处于兴奋状态。特别在讨论后的交流这个环节中,让学生发挥自己的主观能动性。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用事非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。

巩固新知时的练习设计,对不断变化的图形的中点四边形进行探索,能使学生从中总结方法,发现规律,提高能力。

不足之处:

课前应让学生做好预习,以便课堂上有更多的时间独立思考定理的其他证法,在开课的时候介绍中位线的时候,老师的速度偏慢,而且没有让学生对于性质的证明给予具体的操作。

课件的练习题有几个没有把答案打到上面,学生没有看到。

课后对所得、所失、不足,只有常思才能不断更新自我,才能使新课标的要求不只是一句空话。我相信教学反思应该让每个人都能从中学到一些有益的东西。

第四篇:三角形中位线论文

三角形中位线的前因后果

三角形的中位线平行于第三边,并且等于第三边的一半。已知:如图

(一),△ABC中,M,N分别是AB,AC两边中点。求证:MN平行于BC且等于BC/2.A

图二

MN

CB 图一 图三

BMANCCNAMADNBMAMBNCB图四

C前因:1.,当点A运动到线段BC上(如图

(二)),其他条件不变时,易证:MN=BC/2.2.当点A运动到线段BC的延长线上或反向延长线上(如图

(三)),其他条件不变时,易证:MN=BC/2.后果:梯形的中位线平行于两底,并且等于两底和的一半。

已知:如图

(四),梯形ABCD中,M为AB的中点,N为CD的中点,连接MN,DFA求证:MN平行两底且等于两底和的一半。

DA

MFN MN

BECCB图五

图六

1.如图

(五)当△ABC的边AB固定,边AC平移到DE处,从而得到梯形ABED,AC的中点N平移到DE的中点F点处,所以线段MF就是梯形ABED的中位线,因为MN∥BC,NF∥BC,这样,M、N、F三点共线,即梯形ABED的中位线MF∥BC∥AD,∵AD=DF=CE

∴MFMN+NF=BC/2+(AD+CE)/2=(BC+CE)/2+AD/2=(BE+AD)/2 这样就证明了梯形中位线定理.2.△ABC可以看成梯形ABCD的两个端点D与A重合的特殊情形,那么,如图(五),当点D从A点出发,沿与BC平行的射线AF运动时,得到梯形ABCD,此时线段MN就是梯形ABCD的中位线,∵∴

2.MADDANMNBC图七

B图八

C想的“做”数学的环境,可以让学生从“听”数学转变到“做”数学,以研究者的方式,参与包括发现、探索在内的获得知识的全过程,是一个开展“数学实验”的好“实验室”。

一、用《几何画板》,让学生体验数学家的感受

提起数学实验,人们都会本能地想到物理实验、化学实验和生物实验。在日常教学过程中,为了让学生获得知识,物理、化学、生物都需要做实验,而在数学教学中,却几乎没有实验。很多数学学习困难的学生认为数学枯燥乏味,就是因为数学太抽象,不象理化那样经常做实验,看得见。于是,只有数学家是在“做”数学,而学生却在被动地“听”数学。他们听来的多半是缺少发现过程的结论,而且缺乏他们自己对所讲内容的“操作”。这就大大脱离了学生自己的经验体系,致使学生不能很好的获取知识。《几何数学教师要利用计算机进行辅助教学 ,离不开作图 ,特别是在几何教学中。过去本人使用《WORD97》深感在作图时有诸多不便。如果将《几何画板》与《WORD97》结合使用 ,既能充分利用《WORD97》在数学符号输入、数学公式编辑和文字排版上的强大功能 ,又能发挥《几何画板》在制作几何图形时简单、美观、准确、快捷的优势。同时《几何画板》在教学中不仅是优秀的演示工具 ,而且是学生在学习中有力的探索工具。笔者曾成功地将《几何画板》应用于《三角形中位线》一课的教学中(该课参加全国第二届初中青年数学教师优秀课评比获一等奖)。下面就以该课为例谈谈具体应用时的几点体会。1 变被动接受为主动探索建构主义理论[1 ] 认为 :知识不是被动接受的 ,而是由认知主体建构的。数学学习是学生在已有数学认知结构的基础上的建构活动 ,而不是对数学知识的直接翻版。这就要求我们在教学中 ,不能只重结果而偏废过程 ,让学生被动地把结论机械地识记下来 ,这样获取的是死知识。应遵循让学生观察理解 ,探索研究 ,发现问题的规律 ,给学生一个建构的过程 ,一个思维活动的学生参与包括发现、随着素质教育的全面推进,用数学开放题培创新意识和能力,已经成了教改的热点.特别是培养学生能用运观点去分析问题、解决问题,也是中考命题的热点.需要教师深入挖掘教材的隐含内容 ,设计巧妙的问题情境 ,激

发学生主空间 ,让养学生的动、变化的近年来,我区大力推行主动参与教学模式。初探这一模式,很多教师颇感困难。例如,在画板》被誉为“21世界的动态几何”,它就提供了一个十分理讲授三角形中位线的性质一节课时,传统的教学方法是把“三角形的中位线平行于第三边并且等于第三边的一半”这一性质告诉学生,然后再加以证明。有了《几何画板》,可以通过《几何画板》画一个△ABC,并画出它的一条中位线DE,度量三角形各边的长度及DE的长度,显示它们大小的数值就展现在屏幕上(如图)。教师设计以下问题,让学生自己探索、实验。请你拖动三角形的任意一个顶点,通过观察回答下列问题:(1)

中位线DE与三角形各边有什么样的位置关系?(2)

中位线DE与三角形各边的长度有什么相等关系?(3)

猜想三角形的中位线有什么性质?请你用一句话来概括。(4)

你能证明这一猜想吗?

动探究问题的热情 ,培养学生的探究能力和强化生物学思维能力 ,在良好的师生互动交流中 ,点化引玉 ,引导学生突破知识难点。

随着学生拖动三角形的任意一个顶点,中位线的位置在屏幕上动态地改变着,并且显示三角形的三条边和中位线的长度的数据也在屏幕上跟着改变。这个演示过程充分体现了三角形的任意性,并引导学生关注变化过程中的不变关系、不变量。学生经过自己的实际操作,从动态中去观察、探索、归纳出三角形的中位线的性质。对自己的任何发现,都可以得到及时地验证。这时教师的角色不再是学生的保姆,学生不再是盛受知识的容器,也不再是目睹教师口干舌燥的“观众”,而是积极参与探索的“主角”,经过自己亲身的实践活动,感受、理解知识产生和发展的过程,形成自己的经验,发挥了学生的能动性和创造能力,达到让学生“做”数学的目的。三角形中位线的几种变化

动点问题是最近几年中考数学的热点题型,这类试题信息量大,对同学们获取和处理信息的能力要求较高,解题时需要用运动和变化的眼光去观察和探究问题,挖掘运动和变化的全过程,这就要求同学们具有扎实的基础知识、较强的阅读理解能力及数学的建模能力,动点问题是近年来中考中的一个热点题型,也是教学中的一个难点,这类题综合性强、开放度高,要求学生能从“运动、变化”的角度去思考问题.解答这类题目除了要牢固掌握相关的数学知识外,还要综合运用数形结合、分类讨论、方程、函数、转化等数学思想方法去探索解题的思路;它考查面广,涉及的知识点众多,留给学生很大的思维空间和思维量,需要我们在运动中分析,在变化中求解.本文以2011年全国各地的中考动点类问题为例进行分析,以供参考.正近几年,动点问题成为中考的必考内容,这类问题无论对学生的知识基础水平,还是对学生的思维能力、解题能力都是极大的考验.如何有效的解决动点问题是数学教学中值得探索的问题.构造思想方法是初中数学极为重要的数学思想,更是一种体现创新思维的思想方法.点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/

2二、合作交流

ADMNBC

操作:1.剪一个三角形,记为ΔABC

2.分别取AB、AC的中点D、E,并连接DE 3.沿DE将ΔABC剪成两部分,并将ΔADE绕点E旋转180°得四边形DBCF ADADBECBECF

思考:四边形DBCF是什么特殊的四边形

1.三角形中位线的概念

想一想:三角形的中线与三角形的中位线的区别,并画图说明

三角形中线是一条连接 与 的线段 ⑴ 顺次连接任意四边形四边中点所得的四边形是 ⑵ 顺次连接矩形的四边中点所得的四边形是 ⑶ 顺次连接菱形的四边中点所得的四边形是

⑷ 顺次连接对角线相等的四边形四边中点所得的四边形是 ⑸ 顺次连接对角线垂直的四边形四边中点所得的四边形是 ⑹ 顺次连接对角线相等且垂直的四边形四边中点所得的四边形是

四、反馈练习

1.ΔABC中,AB=6㎝,AC=8㎝,BC=10㎝,D﹑E﹑F分别是AB、AC、BC的中点

则ΔDEF的周长是____,面积是____。

2.ΔABC中,DE是中位线,AF是中线,则DE与AF的关系是____ 3.若顺次连接四边形四边中点所得的四边形是菱形,则原四边形()

(A)一定是矩形(B)一定是菱形(C)对角线一定互相垂直(D)对角线一定相等

4.如图,A、B两地被建筑物阻隔,为测量A、B两地 的距离,在地面上选一点C,连接CA、CB,分别 取CA、CB的中点D、E.(1)若DE的长度为36米,求A、B两地之间的距离; A

D(2)如果D、E两点之间还有阻隔,你有什么方法解 E F

B

G

C 怎样将一张梯形硬纸片剪成两部分,使分成的两部分能拼成一个三角形? 操作:

(1)剪一个梯形,记为梯形ABCD;(2)分别取AB、CD的中点M、N,连接MN;(3)沿AN将梯形剪成两部分,并将△ADN绕点N按顺180°到△ECN的位置,得△ABE,如右图。

讨论:在上图中,MN与BE有怎样的位置关系和数量关

二、合作交流

1.梯形中位线定义:

2.现在我们来研究梯形中位线有什么性质.时针方向旋转

系?为什么? 如右图所示:MN是梯形 ABCD的中位线,引导学生回答下列问题:

MN与梯形的两底边AD、BC有怎样的位置关系和数量关系?为什么?

①一个梯形的上底长4 cm,下底长6 cm,则其中位线长为 ; ②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ; ③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ; ④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长.例2:已知:如图在梯形ABCD中,AD∥BC,AB=AD+BC,P为CD的中点,求证:AP⊥BP

四、拓展练习

1.已知,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC =12,BD=9,则此梯形的中位线长是 „(A.10 B.

C.

D.12 2.已知,等腰梯形ABCD中,两条对角线AC、BD互相垂直,中位线EF长为8cm,求它的高CH.D C O E A H B)

第五篇:三角形的中位线

《三角形的中位线》

一、设计理念:

义务教育阶段的数学应体现基础性、普及性和发展性,所以我的设计理念是引导学生进行探究式的学习活动,通过动手操作,发现规律,把自主探索作为数学学习的重要方式,让学生个性得到发展,学生认识到数学的应用性,乐于投入数学学习中。

二、《教材分析与处理》

1、教材的地位及作用:本课是以平行四边形的有关知识定理为基础引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算。步步衔接,层层深入,形成知识的链条。学好本课不仅为下节梯形中位线打下良好的基础,做好了铺垫,而且为今后证明线段平行和线段倍分关系提供了重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用,起到承上启下的作用。

另外。本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。

2、教学目标

知识目标:理解三角形中位线的概念,掌握三角形中位线定理,会运用定理进行论证和计算。

能力目标:通过定理证明,培养学生思维的广阔性,渗透对比转化的思想。

情感目标:通过教学,培养主动探究精神与合作意识。

3、重点、难点

通过分析可见,三角形中位线定理是三角形的重要性质定理,在教学中起着承上启下的作用。是今后解决问题的重要依据,有着广泛的应用。因此,确定本课的重点为“三角形中位线定理及应用”。

由于本节证明定理的关键是恰当地引辅助线,构造平行四边形,况且学生对辅助线的引法、规律还不得要领,不易发现和理解,因此,我确定本课的教学难点为“三角形中位线定理的证明”。

4、教材处理

①练习第3小题改编后作为引例,以调动学生探究问题的积极性,同时遵循理了论联系实际的原则。②改变教材由例题证明之后发现概念和性质的编排顺序。培养学生的探究能力和创造性思维;③补充并改编了课后习题,形成新的练习题组。

三、教法与手段

依据本书教学内容的特点及八年级学生参与意识不强,尚需依赖于直观形象的特点,我选用了合作探究式教学法,通过设计问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。

充分利用多媒体提高教学效率,增大教学容量,运用幻灯片设计一系列问题,激发学生学习兴趣,启迪学生解题思路的蒙发。

四、教学程序

1、创设问题情境,引入新课

借助多媒体演示引例,创设悬念——如何测算被池塘隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲,引出课题。

从而导入新课,使新旧知识得到自然的衔接,为新课的学习作好准备。

2、引导学生,探究新知:

1)、概念教学:什么叫三角形的中位线?

演示问题2: 一个三角形有几条中位线,三角形的中位线与三角形的中线有什么区别?联系?由学生讨论,在问题1的基础上引导学生自己给三角形中位线下定义,并完成其他问题。从而培养学生归纳概括的能力。2)、定理教学:

演示问题3:

如图,在平行四边形ABCD中,对角线AC,BD相交于o,过o作BC的平行线,分别交AB,CD于E,F两点.(1)请你找出图中的三角形中位线,并说出它和三角形的第三边有怎样的位置关系和数量关系。

(2)请你总结出一个关于三角形中位线性质的命题:三角形的中位线

②证明猜想(定理)。能证明你的猜想的正确性吗?

问题4:

怎样证明你所总结的命题?

引导学生分析命题写出已知,求证。

在问题3的基础上,学生容易抓住突破难点的关键——添加辅助线,构造平行四边形。发动学生以小组为单位,放手让学生思考,评论,探究解决问题的多种办法。鼓励创新,同时我参与讲解并与学生交流获取信息,了解学生实际,从而有针对性地引导学生进行证法的探究并及时表扬、鼓励。使学生在学习过程中享受到自我创造的快乐,同时概括证法(演示),发现构造辅助线的方法、规律,培养了学生的发散思维,创造能力。

③总结应用定理:

问题5:

(1)通过对命题的证明,你得到了三角形中位线的什么性质?

(2)你能用这个性质解决前面的引题吗?

让学生总结定理,(教者强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)结合定理条件的基本图形,加强学生对定理的理解,培养了学生归纳概括的能力。

定理应用:分小组完成。每组请一位代表板演,引入竞争,调动不定积极参与,发挥例题的示范作用和指导作用,提高学习的效率,使学生的思维向纵深方面发展,进一步强调重点,达到教学目标。

3、反馈训练

学生对所学知识是否真正掌握了,为检测学生对本课目标达成情况。进一步巩固定理,加深对定理用途的认识,并熟练定理的用法,加强对定理的应用训练。

4、归纳小结

让学生自己总结或谈收获,培养归纳能力,围绕教学目标,师补充强调。通过小结,使学生进一步明确教学目标,使知识成为体系。演示本节知识总结。

5、布置作业

整理笔记,继续探究本节课未完的问题。

6、板书设计:除投影显示外,其余由学生板演,练习使用。

五、设想

设计宗旨:处理好两个关系①落实双基与培养学生能力的关系;②教师的主导作用与学生的主体作用的关系。因此,在教学中运用合作探究式教学法。除难点、关键处给予适当启示,点拨外,尽量让学生独立思考,相互合作和探究,创造性地学习,达到教学目标。

下载初中数学《三角形的中位线》教学实践报告(大全)word格式文档
下载初中数学《三角形的中位线》教学实践报告(大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《三角形中位线》教案

    《三角形中位线》教案 教学目的: 1、.理解三角形中位线的概念,掌握它的性质定理。 2.初步运用三角形的中位线定理进行求解与推理。 3、经历探索、猜想、证明过程,发展推理论证......

    八年级数学教学设计:三角形的中位线

    八年级数学教学设计:三角形的中位线(2) 教学目标1.理解三角形中位线的概念,掌握它的性质及初步应用. 2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决......

    [初中数学]三角形中位线定理教学设计 苏科版

    《三角形中位线定理》教学设计 本节课是自主探究式学习课,以教师为主导的形式,促进学生积极主动探索、发现和再创造,体验和感受数学发现的过程;学生利用操作方法、几何直观性和......

    《三角形的中位线》教学设计

    《三角形的中位线》教学设计 (一)教材分析 本课时在教学中注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生经历“探索—发......

    三角形中位线的教学设计★

    三角形中位线的教学设计 教学目标: 1.知识与技能 让学生通过动手操作,画出三角形的中线及中位线从而体验三角形中位线的概念以及与三角形中线的区别,掌握三角形中位线定理;通过......

    三角形的中位线》教学设计

    《三角形的中位线》教学设计 仪征市金升外国语实验学校 蒋月兰 教学目标: ① 知识与能力 1. 探索并掌握三角形的中位线的概念、性质 2. 会利用三角形中位线的性质解决有关问题......

    初中数学说课稿:三角形的中位线(优秀范文5篇)

    各位专家领导,大家好! 非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。 我说课的题目是:苏科版九年制义务教育八年级上册第三章中心对称图形中的第6节“三角形......

    三角形的中位线观课报告

    《三角形的中位线》观课报告 张老师这节课通过生活中的情境问题——平分蛋糕入手创设了一个现实情景,让学生根据生活经验思考,带着问题去学习,将生活问题数学化,激发了学生的探......