初中数学说课稿:三角形的中位线(优秀范文5篇)

时间:2019-05-12 18:06:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学说课稿:三角形的中位线》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学说课稿:三角形的中位线》。

第一篇:初中数学说课稿:三角形的中位线

各位专家领导,大家好!

非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。

我说课的题目是:苏科版九年制义务教育八年级上册第三章中心对称图形中的第6节“三角形梯形的中位线”的第一课时。

一、教材分析

1、教材的地位和作用

本节课是苏课版数学八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了旋转图形、中心对称与中心对称图形的性质,利用中心对称图形的性质,研究了平行四边形的性质,并在此基础上展开了对矩形、菱形、正方形的研究。这一节的内容也是本章的重要内容,主要是利用中心对对称变换,研究三角形中位线和梯形中位线的性质,并通过中心对称变换向学生展示一个重要的数学思想方法——转化。将三角形中位线性质的研究转化为平行四边形性质的研究、梯形中位线性质的研究转化为三角形中位线性质的研究。本节内容虽然安排在本章的最后一节,但是三角形、梯形的中位线的性质在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。

2、课时安排和说明

“3.6三角形、梯形的中位线”这一节安排两课时,第一课时,探索得到三角形中位线的概念和性质,并会利用三角形中位线的性质解决有关问题;第二课时,在三角形中位线的基础上,探索梯形中位线的性质,并用此性质解决有关问题。本次说课内容为第1课时。

3、教学重点和难点

教学重点:探索三角形中位线性质的过程,体会转化思想。

教学难点:利用中心对称性质研究得到三角形中位线的性质。

二、学情分析

认知分析:学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本课学生研究和探索三角形中位线性质的基础知识。

能力分析:学生通过前三章内容的学习,已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养。

情感分析:多数学生对数学学习有一定的兴趣,能够积极参与动手操作与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生主动性不够强,尚需通过营造一定学习氛围,来加以带动。

三、教学目标

知识与技能目标:探索并掌握三角形中位线的概念和性质。

过程与方法目标:经历探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题逐步培养学生的应用能力和创新意识。

情感与价值观目标:通过真实的、贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;通过对三角形中位线的研究,体验数学活动充满探索性和创造性,在操作活动中,培养学生的合作精神。

四、教法、学法

教法:本课采用“情境——问题——探究——反思——提高”,使学生进一步体验到数学是一个充满着观察、实验、归纳、联想和猜测的探索过程。

学法:本节课采用小组合作、实验操作、观察发现,师生互动、学生互动的学习方式。

五、程序设计

课堂教学是学生数学知识的获得、技能技巧的形成、智力的发展以及思想品德的养成的主要我们途径,为了达到预期的教学目标,我对整个教学过程进行了系统的规划,遵循目标性、整体性、启发性、主体性等一系列原则,进行教学设计,设计了以下六个教学环节:

(一)激发情趣、问题导入

(二)指导观察、认识特点

(三)自主探索,探求新知

(四)合作交流、推理证明

(五)尝试运用,巩固性质

(六)小结反思,巩固提高

六、说课过程

(一)激发情趣、问题导入

(投影)先让学生看一个现实问题,使学生认识到生活中处处有数学:

如图,A、B两地被建筑物阻隔,怎样测出A、B间的距离?说说你的方法。让学生观察、思考,学生可能回答用全等的知识,也可能回答用直角三角形的性质(勾股定理)来测量。

(问题导入,并配以题目,让学生自然进入学习的氛围,为下面的教学打下良好的基础,体现数学来自生活的新课标理念。问题引疑,激发学生学习兴趣。)

活动探究:

活动 操作——观察——探究

给你一个任意的三角形(不要用特殊的三角形如直角三角形、等腰三角形等),能否只剪一刀,就能将剪开的图形拚成一个平行四边形呢?请大家按分好的小组一起动手操作一下,然后将结果告诉老师。

(分组动手操作激发学生学习的兴趣,增加学生的感性认识,同时培养了学生合作的良好习惯。体现学生“自主学习”的过程,并培养学生的合作意识。)

(将学生原来的三角形和拚好后的图形一起贴在黑板上)

(二)指导观察、认识特点

观察:大家观察图形的变化

师:哪一组的代表在黑板上画出转化前后的图形

(教学:指导学生在图形必要的地方标上字母,并将变化前后的字母都标在转化后的图上。)

师:同学们剪的、画的都非常准确,可谁能告诉大家你是如何找到剪痕DE的呢?

生:我是通过做高AF,将点A与点F重合的折叠的方法找到的

生:我是先通过用对折的方法分别找出AB与AC的中点,再沿着DE折叠找到的。

师:两种折法不同,那么哪一种的做法是正确的呢?为什么?

生:(学生讨论后归纳)两种做法都是正确的,因为两种做法的折痕是重合的。

(构造中心对称为下面利用中心对称的性质研究三角形中位线的性质做铺垫。)

师:通过操作我们可以看到线段DE实质上就是三角形两边中点的连线,我们给这样特殊的线段起个名称叫做三角形的中位线。

(板书:三角形的中位线)

三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。

(三)自主探索,探求新知

师:大家观察黑板上的拚图及所画的图,会发现DE与BC有什么关系?

(小组讨论)学生自由发言 生:DE是平行于BC 生:两个DE的长等于BC

师: DE从位置上看是平行于BC的,而数量上看等于BC的一半。即DE∥BC,DE= BC。这也就是三角形中位线的性质。

(板书:三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半)

师:你能用符号言语将它表示出来吗?

生:能 因为 AD=DB,AE=CD 所以 DE∥BC,DE= BC

(通过直观的观察让学生得到三角形中位线的性质,培养学生对客观世界的直观认识,培养学生的猜测、归纳能力。)

(四)合作交流、推理证明

师:三角形有中位线的性质只是我们通过直接的观察得到的,它一定是正确的吗?让人总感觉到有点不敢相信,能不能让我们通过推理的方式把它的正确性加以验证呢?生:能。

师:好,我相信大家的能力。请大家根据黑板上的图形,写出已知的条件及所要说明的结论。就让我们勇敢的同学上来将过程展现给大家看一看,大家同时练习好不好?

学生板演,教师点评,强调注意点。

(用推理的方法对三角形的中位线的性质进行验证。培养学生严密的数学态度,也发展学生有条理地思考和表达能力体验成功的喜悦。)

(五)尝试运用,巩固性质

1.性质运用

师:下面我们通过习题尝试运用三角形的中位线性质。

出示:例1 如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,四边形EFGH是平行四边形吗?为什么?

(学生讨论后)回答:是

师:谁来告诉大家,你是如何思考这个问题的。

(鼓励学生回答:利用①一组对边平行且相等;

②两组对边分别相等的四边形是平行四边形;

③两组对边分别相等的四边形是平行四边形)

师:变式1:如果这个条件不变,改变结论:如EG与FH的关系等。

变式2:四边形ABCD是平行四边形呢?

变式3:四边形ABCD是矩形呢?

变式4:四边形ABCD是菱形呢?

(体会图形的构造过程,增强学生的感性认识,进一步理解题意,通过变式练习,培养学生的发散思维能力及图形的动感,使学生体会到事物之间都是相互联系的)

例2.尝试解决本课开头的问题。

总结:可在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E,连接DE,量出DE的长,则根据三角形中位线的性质,可知AB=2DE。(前后照应,学以致用。)

(六)小结反思,巩固提高

1、你是如何发现三角形的中位线及其性质的。

2、让学生自己思考通过本节课的学习有什么体会?

(课堂小结不仅可以使学生从总体上把握所学的内容,得到相应的体验,在活动中做数学,还可以培养学生的语言表达能力,培养学生良好的个性与思维品质,对学生的小结以鼓励为主,让学生有学习数学而获得的成功的体验与喜悦。)

板书设计(略)

本节课我主要采取“创设问题情境——组织数学活动——引导自主、合作学习——观察发现得到概念——问题解决”的教学模式,培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发展数学和应用数学解决生活中问题的过程,发展学生的空间观念,品尝成功的喜悦,激发学生应用数学的热情,同时注重学生的动手能力、协作与交流能力、数学语言表达能力的锤炼与培养。由于八年级学生的理解能力与思维特征,也为使课堂生动、有趣、高效,将学生分成若干个学习小组,学生采用“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。给学生提供更多的活动机会和空间,在动脑、动手、动口的过程中获得充分的体验和发展,从而培养学生各方面的能力。

总之,本节课教师的角色是引导者、合作者、组织者,注重让学生在活动中学好数学,通过数学活动与小组的交流,让学生有更多的展现自我的机会,并给予鼓励,另外侧重利用学生生活中的问题,让学生经历将实际问题数学化的过程,体会“生活中处处有数学,生活中时时用数学”。

第二篇:三角形的中位线说课稿

三角形的中位线定理是三角形的一个重要性质,在今后的学习中经常要用这个定理解决有关直线平行和线段的相等和倍分等问题。下面是小编为你整理了“三角形的中位线说课稿”,希望能帮助到您。三角形的中位线说课稿(1)

一、教学目标:

1.理解三角形中位线的概念,掌握它的性质.

2.能较熟练地应用三角形中位线性质进行有关的证明和计算.

3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.

4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.

二、重点、难点

1.重点:掌握和运用三角形中位线的性质.

2.难点:三角形中位线性质的证明(辅助线的添加方法).

3.难点的突破方法:

(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.

(2)强调三角形的中位线与中线的区别:

中位线:中点与中点的连线。中线:顶点与对边中点的连线.

(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:

特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系。

条件(题设):连接两边中点得到中位线。

结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论)。

作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

(4)可通过题组练习,让学生掌握其性质.

三、课堂引入

1.平行四边形的性质。平行四边形的判定。它们之间有什么联系?

2.你能说说平行四边形性质与判定的用途吗?

(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等。二是判定一个四边形是平行四边形,从而判定直线平行等。三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.)

3.创设情境

实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?

定义:连接三角形两边中点的线段叫做三角形的中位线.

【思考】:

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系?

(答:(1)一个三角形的中位线共有三条。三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线。中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.

三角形的中位线说课稿(2)

一、教材分析

本节课是苏科版八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了中心对称图形及平行四边形的性质,在此基础上来研究三角形的中位线。此外本节内容在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。因此,学好本节课的内容至关重要。

二、学情分析

八年级的学生好奇心强,对数学的求知欲旺盛,学生已掌握了中心对称图形及性质,也具备一定的操作、归纳、推理和论证能力。基于以上分析,我制定了如下的学习目标:

1、知识与技能:理解并掌握三角形中位线的概念及性质,会利用性质定理解决有关问题。

2、过程与方法:在探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力,培养学生分析问题和解决问题的能力。

3、情感态度价值观:通过真实的、贴近生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣。体会学数学的快乐,培养运用数学的思想。

三角形中位线定理是三角形的重要性质定理,是解决几何问题的重要依据。因此,我将本课的教学重点定为“三角形中位线定理及应用”

由于本节定理证明的关键是恰当地引辅助线,构造平行四边形,而学生对辅助线的引法、规律还不得要领。因此,我将本节课的教学难点确定为“三角形中位线定理的证明”

三、教法与学法分析教法:

依据本节课的内容及学生认知结构的特点,我选用了合作探究式的教学方法,在多媒体的辅助下,让学生在活动、探究中获取新知,开发学生的创造性思维,达到教学目标。

学法:

学生经过自己亲身的实践活动,形成自己对结论的感知。并掌握探究问题的方法,真正地学会学习,达到“授之以鱼,不如授之以渔”的教育目的。

四、教学过程:

(一)、创设情境,引入新课.创设生活情景

A、B两棵树被一池塘隔开,如何测量A、B之间距离呢?

巧用多媒体展示出实物图片,吸引学生的注意,激发学习兴趣,提出问题,告诉学生,通过本节课对三角形中位线的学习,我们就能解决这个问题了,从而引出新课。

(二)、合作交流,探究新知:①给出三角形中位线的概念(板书):连结三角形两边中点的线段叫三角形的中位线。请学生自己在座位上做出三角形的中位线。

并提出疑问:什么是三角形的中线,它与三角形的中位线有什么不同?通过画图,让学生熟悉图形特征,加强对三角形中位线的感知,并通过与已学的三角形中线概念作比较,加强对三角形中位线概念的理解加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。

让学生观察前面画出的三角形的中位线,并回答问题:一个三角形共有几条中位线?三角形中位线与三角形各边又有怎样的关系?

引导学生猜想,鼓励学生仔细观察,说出他们自己的猜想。使学生在学习过程中学会猜想。

紧接着,我安排了以下两个活动。

②活动(板书)

我将班级学生分为两种组,每组同座位之间合作,每组分别进行一下两个活动。

A活动一(测量)

1、任意画一个三角形并画出它的一条中位线。

2、量出中位线和第三边的长度。

3、量出所画图形中一组同位角的度数。DE4、你发现了什么?

B

CA活动二(裁剪拼接)

1、剪一个三角形,记作△ABC。DFE。

2、找到边AB和AC的中点DE连结DE。

3、沿DE把△ABC剪成两部分。

4、把分割开的两部分重新拼接。BH。

5、新拼接的四边形是什么特殊的四边形?

教师引导学生通过动手测量、拼剪、推理检验自己猜想的合理性。

经过以上的探究和讨论,学生得出三角形的中位线平行于第三边,并等于它的一半的结论。

紧接着我将继续提问:“这个结论是否具有普遍性,还得从理论上加以证明。”

为了突破难点,借助于我将借助于多媒体和几何画板直观展示,进行完整地证明展示,让学生有直观的认识几何图形,证明方法是将问题转化到平行四边形中去解决。这体现了数学中的转化归纳的重要思想。

思路:过点C作AB的平行线交DE的延长线于F,连结AF、DC,去证,四边形ADCF是平行四边形,从而得出AD//FC且AD=FC。

实验先行,证明完善后提出三角形中位线定理,让学生学会科学地研究问题和解决问题,以此培养学生严谨的逻辑思维,三角形的中位的性质定理(板书):三角形的中位线平行于第三边,并且等于它的一半。

(三)、课堂练习,巩固提高

回归到一开始的问题情境,让学生根据今天的所学,想出办法来解决之前的问题。以此让学生感受到数学来源于实际,并反过来作用于实际,解决实际问题。

针对本课重点,我会设置一组有层次的习题,强化学生对重点知识的熟练掌握。

我将利用多媒体,先出示一些较为简单的题目,让学生进行口算抢答。这样既可以调动学习气氛,又可以巩固所学知识。接着再给出以下的练习(板书)

①已知三角形三边分别为6、8、10,连结各边中点所成三角形的周长是多少?

②梯形ABCD中AD∥BC,对角线AC、BD相交于点O,A’、B’、C’、D’分别是AO、BO、CO、DO中点,证明:则四边形A’B’C’D’是梯形。

若梯形ABCD周长为10,求四边形A’B’C’D’的周长。学生在做完的同时学生引发思考:这两个三角形及梯形周长之间的关系。

(四)、课堂小结

让学生自己总结并谈谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。

(五)、布置作业(板书)

利用多媒体,放出作业三道必做题,一道选做题。

作业分层次,让不同程度的学生都能在原有认知水平的基础上得到提高。

以上就是我说课的全部内容,谢谢。

三角形的中位线说课稿(3)

“三角形中位线”这一节中非常重要的内容,为今后进一步学习其他相关的几何知识奠定了基础,下面从五个方面来汇报我是如何钻研教材、备课和设计教学过程的。

一、关于教学目标的确定

根据“三角形中位线”的地位和作用,我确定了如下三维目标:

(1)知识与技能:使学生理解三角形中位线的概念,掌握三角形中位线定理,同时要会用三角形中位线定理进行有关的论证和计算。

(2)过程和方法:培养学生动手动脑、发现问题、解决问题的能力。

(3)情感、态度及价值观:对学生进行实践------认识-------实践的辩证唯物主义认识论教育。

二、关于教材内容的选择和处理

这节课所选用的教学内容是:教材中的定义、定理,教材中的例题和习题,对定理的推理有所补充,但抽象思维还不够,由于学生学习知识还是以现象描述为主要方式,而且学习的个性差异也比较大。因此,本着因材施教的原则,我一方面对学生进行基本知识和基本技能的训练,另一方面也能对个别程度较好的学生有所侧重,这与教学目标是相一致的。我认为本节课的教学重点是三角形中位线定理及其应用,这是因为:

1、《新课程标准》明确规定要求学生掌握三角形中位线定理能运用它进行有关的论证。

2、三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述:

3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最最基本、最重要的定理之一。

教学难点是三角形定理的推证,原因有两点:

1、教材上所有证法实际上是同一法,这种方法学生未接触过。

2、在补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。

由于这两个原因,使得三角形中位线定理的推证成为难点。

三、关于教学方法和教学手段的选用

根据本节课的内容和学生的实际水平,我采用的是引导发现法和直观演示法。引导发现法属于启发式教学,它符合辩证唯物主义中内因和外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导、启发,充分调动学生学习的主动性。另外,在引出三角形中位线定理后,通过投影仪进行教具的直观演示,使学生在获得感性知识的同时,为掌握理性知识创造条件。这样做,可以使学生饶有兴趣地学习,注意力也容易集中,符合教学论中的直观性和可接受性原则。

四、关于学法的指导

“授人以鱼,不如授人以渔”。我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过这节课的教学使学生“会设疑”,“会尝试”、“学习有得必先疑”,只有产生疑问,学习才有动力。在教学过程中学生首先要对“所作的平行线与中位线重合吗”,“为什么会重合”,“重合后能得到什么结论”这些问题产生疑问。问题的解决就使得旧知识的缺陷,得以弥补。从而培养学生发现问题、提出问题、解决问题的能力。在提出问题后,要鼓励学生通过分析、探索尝试确定出问题解决的办法。比如在教学中,推证出三角形中位线定理以后,还应再尝试,用其他方法进行证明看是否可行。通过自己的亲自尝试,由错误到正确。由失败到成功,通过尝试,学生的思维能力得到了培养,当然在教学过程中学生还潜移默化地学到了诸如发现法、模仿法等。

五、关于教学程序的设计

经过三角形一边中点与另一边平行的直线平分第三边,从而引出“三角形的中位线”这个概念同时板书课题,并提出问题、三角形中位线与三角形中线的区别?以激发学生学习新知识的兴趣。紧接着让学生作出三角形的所有中位线(3条),不仅可以让学生更清楚地认识中位线,而且在不知不觉中分化了这节课的难点,并为下面找中位线与第三边的数量关系作好了准备,然后,教师引导学生自己作图:先画ABC的一条中位线DE,过AB得中点作BC的平行线。因为线段的中点是唯一的,从而可发现这条平行线与中位线重合。这就证明三角形中位线与第三边是平行的,这样做的同时突破了这节课的难点,因为这个平行关系的证明采用的是“同一法”,学生初次见到,自然会产生疑问,“怎么作了平行线还证平行呢?”通过学生自己动手作图,就可以自然地接受了。这时再回头看刚才画出的图,利用平行关系,可得到三角形中位线与第三边的数量关系,这样通过“回忆-----作图------设疑------探索------发现------论证”而让学生掌握了三角形中位线与第三边的数量关系和位置关系,而且对教材中的论证方法有了较深的印象,突破了本节课的难点。

三角形中位线定理证明出来了,那么是否就只有这一种证法呢?引导学生观察中位线与第三边的数量关系,发现它实际上是线段间的倍分问题。在这之前,有关线段间的倍分关系只有在直角三角形中见过。能否把它转化成我们熟知的线段间的相等的问题?通过一个简易的自制教具,借助投影仪来演示,提出“截厂法”和“补短法”这两种添加辅助性的常用方法,通过演示让学生真正体会到这两种方法的精髓所在。

下面再通过一个练习巩固定理的掌握,它是紧紧围绕定理而设置的。通过练习可以看到学生对定理掌握的程度,并要求学生认识三条中位线把三角形化成4个小三角形之间的全等关系,面积关系等。

学生做完练习,把教材中设置的例题投影在屏幕上,指导学生审题,让学生根据题意写出已知、求证,画出图形,再请两位同学尝试着分析证题思路,根据学生的分析进行补充讲解,达到解决问题的目的。证明过程由学生书写,然后,由我进行规范化的板书,以培养学生养成良好的推理习惯。另外,还配备了一道练习题,请一位同学到黑板上来做,做完后,我简单的讲评,并要求学生注意书写格式,通过例题和练习题的配备,使学生将本节所学知识得以具体化,达到应用的目的,这也是本节的重点之一。课堂小组我是通过3个问题的设置,让学生自己理清这节课的知识脉络。

最后布置作业,所布置的作业是紧紧围绕着三角形中位线定理及其应用的,通过作业反馈本节课知识掌握的效果,在课后可以解决学生尚有疑难的地方。在整个教学过程中,我用“先学后导,当堂检测,分布突破,及时反馈”的“四维度”课堂教学模式贯穿全过程,充分体现了“以三维目标为主轴,以学生自学为主体,以教师释疑为主导,以当堂检测为主线”的“四为主”教学思想,取得了良好的教学效果。

第三篇:《三角形的中位线》说课稿

《三角形的中位线》说课稿

旭阳中学

张国林

尊敬的各评委、同仁大家好:

我是来自旭阳中学的张国林,今天我说课的内容是《三角形的中位线 》,下面我将从教材分析、学情分析、教学策略、教学程序设计等方面进行说明:

一、教材分析

1、教材所处的地位和作用:

三角形中位线是三角形中重要的线段,其性质是三角形的一个重要结论,它是前面已学过的平行线、全等三角形、平行四边形、中心对称等知识内容的应用和深化,对进一步学习相关几何知识非常重要,尤其是在识别两条直线平行和验证线段倍、分关系时经常用到。

2、教学目标:

(1)、知识与技能目标:探索并掌握三角形中位线的概念和性质。(2)、过程与方法目标:经历探索三角形中位线性质的过程,体会转化的数学思想,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

(3)、情感、态度、价值观目标:通过真实的、贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;通过对三角形中位线的探究,体验数学活动充满探索性和创造性,在操作活动中,培养学生的合作精神。3.教学重点和难点:

教学重点:探索、发现三角形中位线的性质并能应用其性质解决实际问题。.教学难点:三角形中位线性质的验证及应用。

二、学情分析:

在认知上学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本节课学生研究和探索三角形中位线性质的基础知识。

在能力上学生通过前几章内容的学习,已具备一定的操作、归纳、推理和验证能力,但在数学意识与应用能力方面尚需要进一步培养。

在情感方面多数学生对数学学习有一定的兴趣,能够积极参与动手操作和探究,但在合作交流方面,发展不够均衡,有待加强。

三、教学策略: 教法与学法: 教法:本节课采用了实验观察、探究归纳、理论验证、巩固深化的四段教学法,在多媒体的辅助下突破常规模式,让学生在活动、探索、和谐的教学中获取新知,开发学生的创造性思维,达到教学目标。

学法:以小组合作的方式让学生掌握实验与观察、分析与比较、讨论与释疑、概括与归纳、巩固与提高等科学的学习方法;学会举一反三,灵活转换的学习方法,学会运用化归思想去解决问题。

四、教学程序:

为了激发学生对新知识的学习兴趣和求知欲望,充分调动学生内在的学习动机,整个教学过程分五个步骤: 1:创设情境,兴趣导学

借助多媒体演示引例,创设悬念——如何测算被池塘隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲,引出课题。

2、尝试探索,获取新知。

(1)由情景教学,自然顺畅地引出三角形中位线的概念。引导学生分析概念的数学表达方式 因为 D、E分别为AB、AC的中点 所以 DE为 △ ABC的中位线

教师进一步引导学生弄清三角形的中位线定义的两层含义:①∵D、E分别为AB、AC的中点∴DE为△ABC的中位线②∵ DE为△ABC的中位线 ∴ D、E分别为AB、AC的中点

(2)动手画画:画出三角形的中线和中位线,并感知它们的不同之处。设计意图:通过画图,使学生熟悉图形特征,加强对三角形中位线的感知,并通过与已学的三角形中线概念作比较,以及对定义的两层含义的分析加强对三角形中位线概念的理解。

(3)引导学生观测前面画出的三角形的中位线,并回答问题:

1、一个三角形共有几条中位线?

2、一个三角形有几条中线?

3、三角形的中位线和三角形的中线有何区别?

4、三角形的中位线有何性质?请从位置关系和数量关系两方面进行探究。

利用分组合作的方式让学生观测和猜想,培养学生观察,分析,归纳的能力。经过以上的探究和讨论学生会猜测出“三角形的中位线平行于第三边,并等于它的一半”这一结论。

这时教师提出问题,这个结论是否具有普遍性,还得从理论上加以验证。怎样验证呢?教师引领学生用数学语言来表示条件、结论的因果关系:因为DE是△ABC的中位线,所以DE //1/2BC,然后利用旋转、全等三角形、平行四边形等知识对结论进行验证。

设计意图:为了拓宽学生思路,发展学生的发散思维。通过课件演示,帮助、启发学生尝试用添加辅助线的方法加以验证。把新知识三角形中位线性质转化为已学过的平行线、全等三角形、平行四边形等知识来解决,教给学生科学的分析方法,对学生进行化归思想的教育,对所得结论,给出另外五种思路的验证。

小结:以上各种验证方法,都是将问题转化到平行四边形中去解决。不同的转化思路引出了不同的验证方法,这体现了数学中的转化归纳的重要思想。(4)得出性质:

三角形的中位线平行于第三边且等于第三边的一半.设计意图:通过先实验,再验证,提出三角形中位线性质,这符合性质产生的过程,让学生学会科学地探究问题和解决问题,培养学生严谨的学习作风。

如果

DE是△ABC的中位线 那么

DE∥BC,⑵

DE=1/2BC 设计意图:对学生进行数学语言的训练。并强调性质的用途: ①验证两线平行问题

②验证一条线段是另一条线段的2倍或1/2(5)规范引路:

设计意图:利用课本例题,进行规范引路,规范学生的书写格式,使学生养成良好的书写习惯。

3、智海扬帆,巩固深化

(1)针对本课重点,设置一组有层次的习题,强化学生对重点知识的熟练掌握。可以调动学生学习积极性,巩固所学知识。

(2)知识延伸与拓展

学生观察并思考:顺次连结四边形各边中点所得到的四边形是什么样的图形?为什么?在学生积极思考后,猜测结论。然后教师引导学生进行思路分析。

设计意图:只书写一种验证方法,其它方法在学生讨论的基础上教师做思路分析,扩展学生的思维。小结:以上各种思路,关键在于添加适当的辅助线,构造出三角形中位线性质的条件,结合平行四边形的各种识别方法,形成不同的验证方法。这里把四边形问题转化为三角形的问题来解决,运用了化归思想。

(3)变式训练是拓展学生思路,提高学生应变能力,发展学生创造性思维的有效手段。对学生进行三种变式训练,并引导学生对每一种变式训练进行多种思路分析。

(4)通过中考题的练习,使学生感到中考题并不难,只要平时知识学得扎实,注重积累和运用,中考就一定会取得好成绩,增强学生学习的自信心

4、梳理回放,加深认识

我是通过问题的设置,让学生自己理清这节课的知识脉络。提高学生归纳总结能力,让学生在归纳中获取新知,巩固强化本节课所学内容,培养科学的学习习惯。

5、布置作业,延伸拓展

设计意图:通过作业反馈本节课知识掌握的效果,在课后可以解决学生尚有疑难的地方。作业分为必做题和选做题,这样的设计充分考虑到了学生的差异性,使不同智力水平、知识结构的学生都能得到发展和锻炼。

板书设计: 以上就是我阐述的“三角形中位线”这一节的有关设想,不足之处,请各位同仁批评指正。

《三角形的中位线》说课稿

单位:旭阳中学

姓名:

张国林

第四篇:《三角形中位线》教案

《三角形中位线》教案 教学目的:

1、.理解三角形中位线的概念,掌握它的性质定理。2.初步运用三角形的中位线定理进行求解与推理。

3、经历探索、猜想、证明过程,发展推理论证能力。培养分析问题和解决问题的能力以及思维的灵活性。

4、通过自主探究、猜想、验证,获得亲自参与研究的情感体验,增强学习热情。

重点:三角形中位线性质定理;

难点:定理证明中添加辅助线的思想方法。教学方式:启发、引导、探究 教学过程:

一、情景引入

生活实例。如图:A,B两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:先在A,B外选了一点C,然后步测出AC,BC的中点M,N,并测出MN的长,由此他就知道了A,B间的距离。谁能说出其中的道理吗?我们就能解开这个疑团。大家有没有信心?

画一画,观察与思考:

1.画△ABC边AC上的中线BE,取边AB上的中点D,连结DE,线段DE是中线吗?

2.尝试定义

以上线段DE叫做△ABC的中位线,请同学们尝试定义什么叫做三角形的中位线?并比较三角形的中位线和中线的区别。

三角形的中位线:连结三角形两边中点的线段。问题:(1)三角形有几条中位线?

(2)三角形的中位线与中线有什么区别? 启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点。

3.实践与猜想

度量DE和BC的长度。猜想:DE和BC的关系 通过实践体会和感知出:DE∥BC,DE= BC。问题:你凭什么猜出:DE∥BC?(看出来的)

二、自主探究:

1.你能猜出三角形的中位线与第三边有怎样的关系吗?试证明你的猜想引导学生写出已知、求证。

(已知:△ABC中,D、E分别是AB、AC的中点。求证:DE∥BC;DE= BC)

启发1:证明直线平行的方法有那些?

启发学生联想由角的相等或互补得出平行、由平行四边形得出平行等。

启发2:证明线段倍分的方法有那些?(截长补短)学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程。强调还有其他证法。

证明:延长中位线DE到F,使EF=DE,连结CF。易证△ADE≌△CFE(或证四边形ADCF为平行四边)得AD∥ FC,又∵AD=DB,∴DB∥FC,∴四边形DBCF是平行四边形,DF∥BC。∵DE= DF,∴DE ∥ BC

2.启发学生归纳定理,并用文字语言表述: 中位线平行于第三边且等于第三边的一半。

【点评】上述教学过程通过学生亲自动手画、量,猜想发现了三角形中位线定理,教师引导,启发学生思维,讨论找到了证明中位线定理的方法。并由学生自己完成了证明过程,充

分发挥了学生主动学习,合作学习和探究性学习的功能,培养了学生发现问题、探究问题的能力,以及用数学语言表述数学问题的能力等良好的数学品质。

三、合作交流: 2.做一做

求证:顺次连结任意四边形中点所得的四边形是平行四边形。

已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。

求证:四边形EFGH是平行四边形。

你能证明它是平行四边形吗?当学生不会添辅助线时,教师再作启发,这么多的中点我们会想到什么呢?四边形的问题又可以转化成什么图形的问题呢?使学生能够连结对角线。

学生议论后口述证明,教师板书证题过程(估计学生可能添两条对角线或一条对角线来证明)。

证明:连结BD。

∵E、F分别为AB、DA的中点,∴EF∥BD同理 GH∥BD

∴EF∥GH∴四边形EFGH是平行四边形。变式:顺次连结上题中,所得到的四边形EFGH四边的中点得到一个四边形,继续作下去,所得到的四边形依次是什么特殊四边形,请填空,由此得到的结论是。

要求学生动手画图,猜想结论,再在小组内相互讨论、交流。

【点评】通过例2变式题的形容讨论不仅培养了学生应用数学知识,解决数学问题的能力,而且还培养了学生的归纳推理,猜测论证能力,(循环重复上述四种特殊四边形),亲身体验数学活动充满着探索性、创造性和趣味性。

四、巩固拓展: 1.练一练:

已知三角形三边长分别为6,8,10,顺次连结各边中点所得的三角形周长是多少?由本题的图形你能否联想到一般性的结论?(如果△ABC的三边的长分别为a、b、c,那么△DGE的周长是多少?)

已知:△ABC中,D、F是AB边的三等分点,E、G是AC边的三等分点,是否能够求证出:DE∥BC,且DE=1/3BC

【点评】该问题的设置具有一定的挑战性,有助于学生利用已有知识经验指导解决新问题。对发展学生的想象能力,推理猜测能力有所脾益。

五、检测小结 1.基础知识:⑴三角线的中位线、以及它与三角形中线的区别;⑵三角线中位线的性质及其应用;

2.基本技能:

证明 “中点四边形”的辅助线的方法,连结对角线。

六、作业布置: P93习题2,3; 试一试1(学有余力的同学课后思考)教师反思:

该节课的学习,贯彻了“数学课程标准”中的思想。对学生要掌握的知识与技能,学习思考、解决问题,情感与态度四大目标有较好的体现,有一定的推广意义。

第五篇:三角形中位线反思

《三角形中位线》教学反思

李红梅

课改下新课标的实施,不但要求每个教师在课堂教学设计上、对学生评价问题上、学生学习方式上等方方面面都要有一个全新的认识和改变。更是要求教与学后教师与教师之间、教师与学生之间有所沟通、有所总结、有所思进。就这些方面下面就是我对“三角形中位线”的课后反思。

在《三角形中位线》的教学中,在《三角形中位线》的教学中,新课程在教材上紧紧围绕着三个目标设计的。这节课的教学目标有以下三点:1.经历概念的发生过程,提高分析能力,理解三角形的中位线概念,知道三角形的中线和中位线的区别。2.经历三角形中位线性质的探索过程,进一步提高和发展逻辑思维能力和推理论证的表达能力;体会转化的思想方法,进一步感受图形的运动对构造图形的作用。3.掌握三角形中位线的性质定理,能运用三角形中位线定理进行计算和论证,解决简单的现实生活的问题,增强应用能力和创新意识。本节的教学重点和难点有以下两点:

1、本节教学的重点是三角形的中位线定理。

2、三角形的中位线定理的证明、运用有较高的难度,是本节教学的难点。

在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘的边上AB两点之间的宽度?办法是只要在池塘外取一点C,取 CA的中点D,在取CB的中点E,此时只需求的DE的长度,就可知AB的长度,这是为什么呢?此时教材体现的是人人是在学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。引入恰到好处,体现了数学的实用性,数学来源于生活,同时充分激发了学生的学习兴趣。

带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。探究新知识时,采用猜想—验证—归纳—应用的教学步骤,使学生的思维一直处于兴奋状态。特别在讨论后的交流这个环节中,让学生发挥自己的主观能动性。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用事非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。

巩固新知时的练习设计,对不断变化的图形的中点四边形进行探索,能使学生从中总结方法,发现规律,提高能力。

不足之处:

课前应让学生做好预习,以便课堂上有更多的时间独立思考定理的其他证法,在开课的时候介绍中位线的时候,老师的速度偏慢,而且没有让学生对于性质的证明给予具体的操作。

课件的练习题有几个没有把答案打到上面,学生没有看到。

课后对所得、所失、不足,只有常思才能不断更新自我,才能使新课标的要求不只是一句空话。我相信教学反思应该让每个人都能从中学到一些有益的东西。

下载初中数学说课稿:三角形的中位线(优秀范文5篇)word格式文档
下载初中数学说课稿:三角形的中位线(优秀范文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形中位线论文

    三角形中位线的前因后果 三角形的中位线平行于第三边,并且等于第三边的一半。 已知:如图(一),△ABC中,M,N分别是AB,AC两边中点。 求证:MN平行于BC且等于BC/2. A 图二 MN CB 图一 图......

    三角形的中位线

    《三角形的中位线》 一、设计理念: 义务教育阶段的数学应体现基础性、普及性和发展性,所以我的设计理念是引导学生进行探究式的学习活动,通过动手操作,发现规律,把自主探索作为......

    初中数学《三角形的中位线》教学实践报告(大全)

    初中数学 《三角形的中位线》教学实践报告 (指导思想,设计方法等说明) 本节课是苏教版数学八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了旋转图形、中心对称与中......

    三角形的中位线说课稿韩凤英(大全)

    《三角形的中位线》说课教案 单 位:叶县昆阳镇中学姓 名:韩凤英日 期:2015年4月 《三角形的中位线》说课稿 一、教材分析 1、教材的地位与作用 《三角形的中位线》是北师大版......

    《三角形中位线》教学设计

    《三角形中位线》教学设计 一、 教学目标: 1. 使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算. 2. 掌握添加辅助线解题的技巧. 3. 提高学生分析......

    八年级数学教学设计:三角形的中位线

    八年级数学教学设计:三角形的中位线(2) 教学目标1.理解三角形中位线的概念,掌握它的性质及初步应用. 2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决......

    [初中数学]三角形中位线定理教学设计 苏科版

    《三角形中位线定理》教学设计 本节课是自主探究式学习课,以教师为主导的形式,促进学生积极主动探索、发现和再创造,体验和感受数学发现的过程;学生利用操作方法、几何直观性和......

    《6.4 三角形的中位线》学案

    6.4三角形的中位线定理导学案一、学习目标1.理解三角形中位线的概念,掌握它的性质;2.能较熟练地应用三角形中位线性质进行有关的证明和计算.二、合作探究怎样将一张三角形纸片剪......