第一篇:三角形的中位线说课稿韩凤英(大全)
《三角形的中位线》说课教案
单 位:叶县昆阳镇中学姓 名:韩凤英日 期:
2015年4月
《三角形的中位线》说课稿
一、教材分析
1、教材的地位与作用
《三角形的中位线》是北师大版八年级下册第六章第三节,三角形中位线是继三角形的中线、高线、角平分线后的第四种重要线段。三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据,也是以后研究梯形中位线的基础。三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。
2、教学目标
基于学生的实际情况、教材特点和课标要求,我特制定以下教学目标:(1).知识技能
了解三角形中位线的概念。理解三角形中位线定理,并能运用它进行有关的论证和计算。
(2).数学思考
在教学活动中让学生体会转化的数学思想,培养学生合情推理和演绎推理的能力。
(3).问题解决
让学生通过解决简单的实际问题逐步培养学生的应用能力和创新意识,经历分析问题、解决问题的过程、掌握分析问题和解决问题的方法。
(4).情感态度
通过创设问题情景,激发学生的学习热情和兴趣;在教学活动中,体验数学活动充满探索性,培养学生的合作精神。
3.教学重难点
根据教学目标,结合学生特点我制订了教学重点和难点: 【重点】:三角形中位线定理的证明; 【难点】:三角形中位线定理的应用。
二、学情分析
本节课是在学生学习了全等三角形、平行线、等腰三角形、直角三角形、平行四边形之后,学生已经有了一定的几何基础和逻辑思维能力,但是在应用能力方面还需要进一步培养,在合作交流意识方面,有待加强。
三、教法学法分析
根据学生特点,为了完成本节教学目标,突出重点,突破难点,我采取“师导生探,综合训练”的教学方法,给学生提供更多的活动机会,体现了教师是教学过程中的引导者、组织者、合作者。
为了让学生掌握本节的教学目标,我让学生经历“动手操作——自主探究——合作交流——归纳总结——巩固拓展”的过程,多观察、多动脑、大胆猜、勤钻研的学习方法。体现了学生在教学活动中的主体地位。
四、教学设计
本节课我设计了五个教学环节:第一环节:创设情景,导入课题;第二环节:师生互动,合作探究;第三环节:学以致用,巩固新知;第四环节:归纳小结、共同提升;第五环节:分层作业,拓展延伸。
第一环节:创设情景,导入课题
新课标指出:教师教学应该以学生的认知发展水平和已有的经验为基础,给学生提供活动机会,因此我设计了两个问题:
课件展示:问题1:如图A,B两地被池塘隔开,现要测量AB两地的距离,给你的工具只有皮尺。操作:先在AB外选一点C,然后测出AC,BC的中点D,E,再测出DE的长,问题就解决了。你知道为什么吗?
设计意图:创设生活情景, 激发学习兴趣,为引出概念作铺垫。
问题2:你能将一张三角形纸片剪成两部分,一个是梯形,一个是三角形,并将它们拼成一个平行四边形。
操作:(1)分别取△ABC的边AB,AC的中点D,E,连接DE.(2)沿DE将△ABC剪成两部分,即可把它们拼成一个平行四边形。
(3)用三角尺判断,DE与BC的位置关系和数量关系。说出你的结论。
设计意图:通过有趣的动手操作创设问题情景,激发学生学习兴趣。由此引出课题。为概念的出示、定理的证明作铺垫。
第二环节:师生互动,合作探究
刚才同学们连接的DE就是△ABC的中位线。
1.定义:连接三角形两边中点的线段叫三角形的中位线。
强调它与三角形的中线的不同:三角形的中线是三角形的顶点与对边中点连成的线段。
设计意图:完成教学目标 “了解三角形中位线的概念”
刚才同学们通过测量得出:DE∥BC,DE=1/2BC 这就是三角形中位线的性质。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。设计意图:通过学生前期的猜测,测量,初步感知三角形中位线的性质定理。
启发:证明直线的平行有哪些方法?证明线段的倍分有哪些方法? 先引导学生写出已知、求证,小组讨论。(给学生充分的合作交流时间,来探讨三角形中位线定理的证明。我巡视时发现有思路清晰的学生演板,我适时加以引导、点拨和评价。)之后师生共同完成证明的过程,板书推理过程。(强调还有其他方法。)
已知:如图6-20(1),DE是△ABC的中位线.求证:DE∥BC,DE=1/2BC 证明:延长DE到F,使 DE=EF,连接CF.在△ADE和△CFE中 ∵AE=CE,∠1=∠2,DE=FE ∴△ADE≌△CFE ∴∠A=∠ECF,AD=CF ∴CF∥AB ∵BD=AD ∴BD=CF ∴四边形DBCF是平行四边形 ∴DF∥BC,DF=BC ∴DE∥BC,DE=1/2BC
设计意图:通过严密的几何证明将对三角形中位线定理的认识由感性到理性,使学生经历定理的探究过程,积累数学活动的经验,培养学生良好的学习习惯。达到课标要求“探索并证明三角形中位线定理”。第三环节:学以致用,巩固新知
议一议:顺次连结四边形四条边的中点,所得的四边形有
什么特点?请证明你的结论。引导学生写出已知、求证和证明过程。
启发:如何添加辅助线才能应用三角形中位线定理?
(给学生充分的独立思考及合作交流时间,把学生代表作品在展台上展示,我适时加以引导、点拨和评价)
设计意图:通过探究使学生灵活运用三角形中位线定理解决相关问题,进一步训练学生严谨的逻辑推理能力,体会通过添加辅助线将四边形的有关问题转化为三角形的问题,培养转化的数学思想,突破难点。
2.现在同学们知道了三角形中位线性质定理,能用它解决下面三个问题吗?(1)、情境引入的问题1:如果测得DE = 20m,那么A、B两点的距离是多少?为什么 ?
(2).已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为
,面积为。
(3).△ABC的三边分别为a、b、c,AB,BC,AC各边中点分别为D、E、F,则△DEF的周长是。
(4).如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点。四边形EGFH是平行四边形吗?
设计意图:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用,进一步培养学生解决问题的能力。.第四环节:归纳小结,共同提升
为了体现学生学习的主体地位,引导学生对知识进行梳理,强化学生对知
识的理解和记忆,提高学生归纳总结的能力。我提出了以下三个问题,引起学生思考:
(1)这节课学习了哪些具体内容:
(2)应注意哪些概念之间的区别?(3)你还有什么困惑? 第五环节:分层作业,拓展延伸
为了“人人都能获得良好的教育,不同的人在数学上得到不同的发展”,我采用了分层作业:
A组:习题6.6 2, 3题 B组:习题6.6问题解决第4题
C组:(补充作业)已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.
五、板书设计
为了既体现知识,又体现思想方法,突出重点,把本节的知识结构直观地呈现给学生,我这样设计板书:
三角形的中位线
定义:
证明过程:
议一议: 定理: 练习:
六、教学评价分析
我为了全面了解学生学习的过程和结果,不仅关注学生的知识技能的理解和掌握,而且关注学生情感态度的发展;发挥评价的激励作用,增强学生自信心.本节我采用:学生自评,生生互评,老师点评,课堂观察,课后访谈,作业分析等评价方法。
七、资源拓展分析
(一)本节课的导入也可以用其它方法
1、把三角形剪一刀,然后把它重新拼成一个平行四边形!你能用什么办法解决这个问题?
2、你能把一个三角形剪成四个全等三角形吗?
3、画△ABC分别取AB的中点D,AC的中点E 连接DE,用你手中的工具测量。DE与BC的数量关系,EF = 1/2 BC ;与BC的位置关系,EF∥BC。
(二)对于定理的证明也可以用另外的方法证明:
先对折得到AB的中点D,AC的中点E。过点D作DF⊥BC,把△BDF绕点D顺时针旋转180°,到△ADH;同样过点E作EG⊥BC,把△CGE绕点E顺时针旋转180°,到△AEM,形成矩形HFGM。从而得出结论。告诉学生到九年级学了相似三角形之后用相似三角形证明更为简单。
(三)在讲解例题之后,让有余力的同学考虑,若四边形是凹四边形结论是否成立?
总之,本节课我扮演的是引导者、合作者、组织者,学生是课堂的主人,主动探索展现自我,经历将实际问题数学化的过程,体会“生活中处处有数学,生活中时时用数学”。
第二篇:三角形中位线反思
《三角形中位线》教学反思
李红梅
课改下新课标的实施,不但要求每个教师在课堂教学设计上、对学生评价问题上、学生学习方式上等方方面面都要有一个全新的认识和改变。更是要求教与学后教师与教师之间、教师与学生之间有所沟通、有所总结、有所思进。就这些方面下面就是我对“三角形中位线”的课后反思。
在《三角形中位线》的教学中,在《三角形中位线》的教学中,新课程在教材上紧紧围绕着三个目标设计的。这节课的教学目标有以下三点:1.经历概念的发生过程,提高分析能力,理解三角形的中位线概念,知道三角形的中线和中位线的区别。2.经历三角形中位线性质的探索过程,进一步提高和发展逻辑思维能力和推理论证的表达能力;体会转化的思想方法,进一步感受图形的运动对构造图形的作用。3.掌握三角形中位线的性质定理,能运用三角形中位线定理进行计算和论证,解决简单的现实生活的问题,增强应用能力和创新意识。本节的教学重点和难点有以下两点:
1、本节教学的重点是三角形的中位线定理。
2、三角形的中位线定理的证明、运用有较高的难度,是本节教学的难点。
在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘的边上AB两点之间的宽度?办法是只要在池塘外取一点C,取 CA的中点D,在取CB的中点E,此时只需求的DE的长度,就可知AB的长度,这是为什么呢?此时教材体现的是人人是在学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。引入恰到好处,体现了数学的实用性,数学来源于生活,同时充分激发了学生的学习兴趣。
带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。探究新知识时,采用猜想—验证—归纳—应用的教学步骤,使学生的思维一直处于兴奋状态。特别在讨论后的交流这个环节中,让学生发挥自己的主观能动性。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用事非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。
巩固新知时的练习设计,对不断变化的图形的中点四边形进行探索,能使学生从中总结方法,发现规律,提高能力。
不足之处:
课前应让学生做好预习,以便课堂上有更多的时间独立思考定理的其他证法,在开课的时候介绍中位线的时候,老师的速度偏慢,而且没有让学生对于性质的证明给予具体的操作。
课件的练习题有几个没有把答案打到上面,学生没有看到。
课后对所得、所失、不足,只有常思才能不断更新自我,才能使新课标的要求不只是一句空话。我相信教学反思应该让每个人都能从中学到一些有益的东西。
第三篇:三角形中位线论文
三角形中位线的前因后果
三角形的中位线平行于第三边,并且等于第三边的一半。已知:如图
(一),△ABC中,M,N分别是AB,AC两边中点。求证:MN平行于BC且等于BC/2.A
图二
MN
CB 图一 图三
BMANCCNAMADNBMAMBNCB图四
C前因:1.,当点A运动到线段BC上(如图
(二)),其他条件不变时,易证:MN=BC/2.2.当点A运动到线段BC的延长线上或反向延长线上(如图
(三)),其他条件不变时,易证:MN=BC/2.后果:梯形的中位线平行于两底,并且等于两底和的一半。
已知:如图
(四),梯形ABCD中,M为AB的中点,N为CD的中点,连接MN,DFA求证:MN平行两底且等于两底和的一半。
DA
MFN MN
BECCB图五
图六
1.如图
(五)当△ABC的边AB固定,边AC平移到DE处,从而得到梯形ABED,AC的中点N平移到DE的中点F点处,所以线段MF就是梯形ABED的中位线,因为MN∥BC,NF∥BC,这样,M、N、F三点共线,即梯形ABED的中位线MF∥BC∥AD,∵AD=DF=CE
∴MFMN+NF=BC/2+(AD+CE)/2=(BC+CE)/2+AD/2=(BE+AD)/2 这样就证明了梯形中位线定理.2.△ABC可以看成梯形ABCD的两个端点D与A重合的特殊情形,那么,如图(五),当点D从A点出发,沿与BC平行的射线AF运动时,得到梯形ABCD,此时线段MN就是梯形ABCD的中位线,∵∴
2.MADDANMNBC图七
B图八
C想的“做”数学的环境,可以让学生从“听”数学转变到“做”数学,以研究者的方式,参与包括发现、探索在内的获得知识的全过程,是一个开展“数学实验”的好“实验室”。
一、用《几何画板》,让学生体验数学家的感受
提起数学实验,人们都会本能地想到物理实验、化学实验和生物实验。在日常教学过程中,为了让学生获得知识,物理、化学、生物都需要做实验,而在数学教学中,却几乎没有实验。很多数学学习困难的学生认为数学枯燥乏味,就是因为数学太抽象,不象理化那样经常做实验,看得见。于是,只有数学家是在“做”数学,而学生却在被动地“听”数学。他们听来的多半是缺少发现过程的结论,而且缺乏他们自己对所讲内容的“操作”。这就大大脱离了学生自己的经验体系,致使学生不能很好的获取知识。《几何数学教师要利用计算机进行辅助教学 ,离不开作图 ,特别是在几何教学中。过去本人使用《WORD97》深感在作图时有诸多不便。如果将《几何画板》与《WORD97》结合使用 ,既能充分利用《WORD97》在数学符号输入、数学公式编辑和文字排版上的强大功能 ,又能发挥《几何画板》在制作几何图形时简单、美观、准确、快捷的优势。同时《几何画板》在教学中不仅是优秀的演示工具 ,而且是学生在学习中有力的探索工具。笔者曾成功地将《几何画板》应用于《三角形中位线》一课的教学中(该课参加全国第二届初中青年数学教师优秀课评比获一等奖)。下面就以该课为例谈谈具体应用时的几点体会。1 变被动接受为主动探索建构主义理论[1 ] 认为 :知识不是被动接受的 ,而是由认知主体建构的。数学学习是学生在已有数学认知结构的基础上的建构活动 ,而不是对数学知识的直接翻版。这就要求我们在教学中 ,不能只重结果而偏废过程 ,让学生被动地把结论机械地识记下来 ,这样获取的是死知识。应遵循让学生观察理解 ,探索研究 ,发现问题的规律 ,给学生一个建构的过程 ,一个思维活动的学生参与包括发现、随着素质教育的全面推进,用数学开放题培创新意识和能力,已经成了教改的热点.特别是培养学生能用运观点去分析问题、解决问题,也是中考命题的热点.需要教师深入挖掘教材的隐含内容 ,设计巧妙的问题情境 ,激
发学生主空间 ,让养学生的动、变化的近年来,我区大力推行主动参与教学模式。初探这一模式,很多教师颇感困难。例如,在画板》被誉为“21世界的动态几何”,它就提供了一个十分理讲授三角形中位线的性质一节课时,传统的教学方法是把“三角形的中位线平行于第三边并且等于第三边的一半”这一性质告诉学生,然后再加以证明。有了《几何画板》,可以通过《几何画板》画一个△ABC,并画出它的一条中位线DE,度量三角形各边的长度及DE的长度,显示它们大小的数值就展现在屏幕上(如图)。教师设计以下问题,让学生自己探索、实验。请你拖动三角形的任意一个顶点,通过观察回答下列问题:(1)
中位线DE与三角形各边有什么样的位置关系?(2)
中位线DE与三角形各边的长度有什么相等关系?(3)
猜想三角形的中位线有什么性质?请你用一句话来概括。(4)
你能证明这一猜想吗?
动探究问题的热情 ,培养学生的探究能力和强化生物学思维能力 ,在良好的师生互动交流中 ,点化引玉 ,引导学生突破知识难点。
随着学生拖动三角形的任意一个顶点,中位线的位置在屏幕上动态地改变着,并且显示三角形的三条边和中位线的长度的数据也在屏幕上跟着改变。这个演示过程充分体现了三角形的任意性,并引导学生关注变化过程中的不变关系、不变量。学生经过自己的实际操作,从动态中去观察、探索、归纳出三角形的中位线的性质。对自己的任何发现,都可以得到及时地验证。这时教师的角色不再是学生的保姆,学生不再是盛受知识的容器,也不再是目睹教师口干舌燥的“观众”,而是积极参与探索的“主角”,经过自己亲身的实践活动,感受、理解知识产生和发展的过程,形成自己的经验,发挥了学生的能动性和创造能力,达到让学生“做”数学的目的。三角形中位线的几种变化
动点问题是最近几年中考数学的热点题型,这类试题信息量大,对同学们获取和处理信息的能力要求较高,解题时需要用运动和变化的眼光去观察和探究问题,挖掘运动和变化的全过程,这就要求同学们具有扎实的基础知识、较强的阅读理解能力及数学的建模能力,动点问题是近年来中考中的一个热点题型,也是教学中的一个难点,这类题综合性强、开放度高,要求学生能从“运动、变化”的角度去思考问题.解答这类题目除了要牢固掌握相关的数学知识外,还要综合运用数形结合、分类讨论、方程、函数、转化等数学思想方法去探索解题的思路;它考查面广,涉及的知识点众多,留给学生很大的思维空间和思维量,需要我们在运动中分析,在变化中求解.本文以2011年全国各地的中考动点类问题为例进行分析,以供参考.正近几年,动点问题成为中考的必考内容,这类问题无论对学生的知识基础水平,还是对学生的思维能力、解题能力都是极大的考验.如何有效的解决动点问题是数学教学中值得探索的问题.构造思想方法是初中数学极为重要的数学思想,更是一种体现创新思维的思想方法.点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/
2二、合作交流
ADMNBC
操作:1.剪一个三角形,记为ΔABC
2.分别取AB、AC的中点D、E,并连接DE 3.沿DE将ΔABC剪成两部分,并将ΔADE绕点E旋转180°得四边形DBCF ADADBECBECF
思考:四边形DBCF是什么特殊的四边形
1.三角形中位线的概念
想一想:三角形的中线与三角形的中位线的区别,并画图说明
三角形中线是一条连接 与 的线段 ⑴ 顺次连接任意四边形四边中点所得的四边形是 ⑵ 顺次连接矩形的四边中点所得的四边形是 ⑶ 顺次连接菱形的四边中点所得的四边形是
⑷ 顺次连接对角线相等的四边形四边中点所得的四边形是 ⑸ 顺次连接对角线垂直的四边形四边中点所得的四边形是 ⑹ 顺次连接对角线相等且垂直的四边形四边中点所得的四边形是
四、反馈练习
1.ΔABC中,AB=6㎝,AC=8㎝,BC=10㎝,D﹑E﹑F分别是AB、AC、BC的中点
则ΔDEF的周长是____,面积是____。
2.ΔABC中,DE是中位线,AF是中线,则DE与AF的关系是____ 3.若顺次连接四边形四边中点所得的四边形是菱形,则原四边形()
(A)一定是矩形(B)一定是菱形(C)对角线一定互相垂直(D)对角线一定相等
4.如图,A、B两地被建筑物阻隔,为测量A、B两地 的距离,在地面上选一点C,连接CA、CB,分别 取CA、CB的中点D、E.(1)若DE的长度为36米,求A、B两地之间的距离; A
D(2)如果D、E两点之间还有阻隔,你有什么方法解 E F
B
G
C 怎样将一张梯形硬纸片剪成两部分,使分成的两部分能拼成一个三角形? 操作:
(1)剪一个梯形,记为梯形ABCD;(2)分别取AB、CD的中点M、N,连接MN;(3)沿AN将梯形剪成两部分,并将△ADN绕点N按顺180°到△ECN的位置,得△ABE,如右图。
讨论:在上图中,MN与BE有怎样的位置关系和数量关
二、合作交流
1.梯形中位线定义:
2.现在我们来研究梯形中位线有什么性质.时针方向旋转
系?为什么? 如右图所示:MN是梯形 ABCD的中位线,引导学生回答下列问题:
MN与梯形的两底边AD、BC有怎样的位置关系和数量关系?为什么?
①一个梯形的上底长4 cm,下底长6 cm,则其中位线长为 ; ②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ; ③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ; ④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长.例2:已知:如图在梯形ABCD中,AD∥BC,AB=AD+BC,P为CD的中点,求证:AP⊥BP
四、拓展练习
1.已知,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC =12,BD=9,则此梯形的中位线长是 „(A.10 B.
C.
D.12 2.已知,等腰梯形ABCD中,两条对角线AC、BD互相垂直,中位线EF长为8cm,求它的高CH.D C O E A H B)
第四篇:三角形的中位线
《三角形的中位线》
一、设计理念:
义务教育阶段的数学应体现基础性、普及性和发展性,所以我的设计理念是引导学生进行探究式的学习活动,通过动手操作,发现规律,把自主探索作为数学学习的重要方式,让学生个性得到发展,学生认识到数学的应用性,乐于投入数学学习中。
二、《教材分析与处理》
1、教材的地位及作用:本课是以平行四边形的有关知识定理为基础引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算。步步衔接,层层深入,形成知识的链条。学好本课不仅为下节梯形中位线打下良好的基础,做好了铺垫,而且为今后证明线段平行和线段倍分关系提供了重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用,起到承上启下的作用。
另外。本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。
2、教学目标
知识目标:理解三角形中位线的概念,掌握三角形中位线定理,会运用定理进行论证和计算。
能力目标:通过定理证明,培养学生思维的广阔性,渗透对比转化的思想。
情感目标:通过教学,培养主动探究精神与合作意识。
3、重点、难点
通过分析可见,三角形中位线定理是三角形的重要性质定理,在教学中起着承上启下的作用。是今后解决问题的重要依据,有着广泛的应用。因此,确定本课的重点为“三角形中位线定理及应用”。
由于本节证明定理的关键是恰当地引辅助线,构造平行四边形,况且学生对辅助线的引法、规律还不得要领,不易发现和理解,因此,我确定本课的教学难点为“三角形中位线定理的证明”。
4、教材处理
①练习第3小题改编后作为引例,以调动学生探究问题的积极性,同时遵循理了论联系实际的原则。②改变教材由例题证明之后发现概念和性质的编排顺序。培养学生的探究能力和创造性思维;③补充并改编了课后习题,形成新的练习题组。
三、教法与手段
依据本书教学内容的特点及八年级学生参与意识不强,尚需依赖于直观形象的特点,我选用了合作探究式教学法,通过设计问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。
充分利用多媒体提高教学效率,增大教学容量,运用幻灯片设计一系列问题,激发学生学习兴趣,启迪学生解题思路的蒙发。
四、教学程序
1、创设问题情境,引入新课
借助多媒体演示引例,创设悬念——如何测算被池塘隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲,引出课题。
从而导入新课,使新旧知识得到自然的衔接,为新课的学习作好准备。
2、引导学生,探究新知:
1)、概念教学:什么叫三角形的中位线?
演示问题2: 一个三角形有几条中位线,三角形的中位线与三角形的中线有什么区别?联系?由学生讨论,在问题1的基础上引导学生自己给三角形中位线下定义,并完成其他问题。从而培养学生归纳概括的能力。2)、定理教学:
演示问题3:
如图,在平行四边形ABCD中,对角线AC,BD相交于o,过o作BC的平行线,分别交AB,CD于E,F两点.(1)请你找出图中的三角形中位线,并说出它和三角形的第三边有怎样的位置关系和数量关系。
(2)请你总结出一个关于三角形中位线性质的命题:三角形的中位线
②证明猜想(定理)。能证明你的猜想的正确性吗?
问题4:
怎样证明你所总结的命题?
引导学生分析命题写出已知,求证。
在问题3的基础上,学生容易抓住突破难点的关键——添加辅助线,构造平行四边形。发动学生以小组为单位,放手让学生思考,评论,探究解决问题的多种办法。鼓励创新,同时我参与讲解并与学生交流获取信息,了解学生实际,从而有针对性地引导学生进行证法的探究并及时表扬、鼓励。使学生在学习过程中享受到自我创造的快乐,同时概括证法(演示),发现构造辅助线的方法、规律,培养了学生的发散思维,创造能力。
③总结应用定理:
问题5:
(1)通过对命题的证明,你得到了三角形中位线的什么性质?
(2)你能用这个性质解决前面的引题吗?
让学生总结定理,(教者强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)结合定理条件的基本图形,加强学生对定理的理解,培养了学生归纳概括的能力。
定理应用:分小组完成。每组请一位代表板演,引入竞争,调动不定积极参与,发挥例题的示范作用和指导作用,提高学习的效率,使学生的思维向纵深方面发展,进一步强调重点,达到教学目标。
3、反馈训练
学生对所学知识是否真正掌握了,为检测学生对本课目标达成情况。进一步巩固定理,加深对定理用途的认识,并熟练定理的用法,加强对定理的应用训练。
4、归纳小结
让学生自己总结或谈收获,培养归纳能力,围绕教学目标,师补充强调。通过小结,使学生进一步明确教学目标,使知识成为体系。演示本节知识总结。
5、布置作业
整理笔记,继续探究本节课未完的问题。
6、板书设计:除投影显示外,其余由学生板演,练习使用。
五、设想
设计宗旨:处理好两个关系①落实双基与培养学生能力的关系;②教师的主导作用与学生的主体作用的关系。因此,在教学中运用合作探究式教学法。除难点、关键处给予适当启示,点拨外,尽量让学生独立思考,相互合作和探究,创造性地学习,达到教学目标。
第五篇:《三角形中位线》教案
《三角形中位线》教案 教学目的:
1、.理解三角形中位线的概念,掌握它的性质定理。2.初步运用三角形的中位线定理进行求解与推理。
3、经历探索、猜想、证明过程,发展推理论证能力。培养分析问题和解决问题的能力以及思维的灵活性。
4、通过自主探究、猜想、验证,获得亲自参与研究的情感体验,增强学习热情。
重点:三角形中位线性质定理;
难点:定理证明中添加辅助线的思想方法。教学方式:启发、引导、探究 教学过程:
一、情景引入
生活实例。如图:A,B两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:先在A,B外选了一点C,然后步测出AC,BC的中点M,N,并测出MN的长,由此他就知道了A,B间的距离。谁能说出其中的道理吗?我们就能解开这个疑团。大家有没有信心?
画一画,观察与思考:
1.画△ABC边AC上的中线BE,取边AB上的中点D,连结DE,线段DE是中线吗?
2.尝试定义
以上线段DE叫做△ABC的中位线,请同学们尝试定义什么叫做三角形的中位线?并比较三角形的中位线和中线的区别。
三角形的中位线:连结三角形两边中点的线段。问题:(1)三角形有几条中位线?
(2)三角形的中位线与中线有什么区别? 启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点。
3.实践与猜想
度量DE和BC的长度。猜想:DE和BC的关系 通过实践体会和感知出:DE∥BC,DE= BC。问题:你凭什么猜出:DE∥BC?(看出来的)
二、自主探究:
1.你能猜出三角形的中位线与第三边有怎样的关系吗?试证明你的猜想引导学生写出已知、求证。
(已知:△ABC中,D、E分别是AB、AC的中点。求证:DE∥BC;DE= BC)
启发1:证明直线平行的方法有那些?
启发学生联想由角的相等或互补得出平行、由平行四边形得出平行等。
启发2:证明线段倍分的方法有那些?(截长补短)学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程。强调还有其他证法。
证明:延长中位线DE到F,使EF=DE,连结CF。易证△ADE≌△CFE(或证四边形ADCF为平行四边)得AD∥ FC,又∵AD=DB,∴DB∥FC,∴四边形DBCF是平行四边形,DF∥BC。∵DE= DF,∴DE ∥ BC
2.启发学生归纳定理,并用文字语言表述: 中位线平行于第三边且等于第三边的一半。
【点评】上述教学过程通过学生亲自动手画、量,猜想发现了三角形中位线定理,教师引导,启发学生思维,讨论找到了证明中位线定理的方法。并由学生自己完成了证明过程,充
分发挥了学生主动学习,合作学习和探究性学习的功能,培养了学生发现问题、探究问题的能力,以及用数学语言表述数学问题的能力等良好的数学品质。
三、合作交流: 2.做一做
求证:顺次连结任意四边形中点所得的四边形是平行四边形。
已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。
求证:四边形EFGH是平行四边形。
你能证明它是平行四边形吗?当学生不会添辅助线时,教师再作启发,这么多的中点我们会想到什么呢?四边形的问题又可以转化成什么图形的问题呢?使学生能够连结对角线。
学生议论后口述证明,教师板书证题过程(估计学生可能添两条对角线或一条对角线来证明)。
证明:连结BD。
∵E、F分别为AB、DA的中点,∴EF∥BD同理 GH∥BD
∴EF∥GH∴四边形EFGH是平行四边形。变式:顺次连结上题中,所得到的四边形EFGH四边的中点得到一个四边形,继续作下去,所得到的四边形依次是什么特殊四边形,请填空,由此得到的结论是。
要求学生动手画图,猜想结论,再在小组内相互讨论、交流。
【点评】通过例2变式题的形容讨论不仅培养了学生应用数学知识,解决数学问题的能力,而且还培养了学生的归纳推理,猜测论证能力,(循环重复上述四种特殊四边形),亲身体验数学活动充满着探索性、创造性和趣味性。
四、巩固拓展: 1.练一练:
已知三角形三边长分别为6,8,10,顺次连结各边中点所得的三角形周长是多少?由本题的图形你能否联想到一般性的结论?(如果△ABC的三边的长分别为a、b、c,那么△DGE的周长是多少?)
已知:△ABC中,D、F是AB边的三等分点,E、G是AC边的三等分点,是否能够求证出:DE∥BC,且DE=1/3BC
【点评】该问题的设置具有一定的挑战性,有助于学生利用已有知识经验指导解决新问题。对发展学生的想象能力,推理猜测能力有所脾益。
五、检测小结 1.基础知识:⑴三角线的中位线、以及它与三角形中线的区别;⑵三角线中位线的性质及其应用;
2.基本技能:
证明 “中点四边形”的辅助线的方法,连结对角线。
六、作业布置: P93习题2,3; 试一试1(学有余力的同学课后思考)教师反思:
该节课的学习,贯彻了“数学课程标准”中的思想。对学生要掌握的知识与技能,学习思考、解决问题,情感与态度四大目标有较好的体现,有一定的推广意义。