极限平均值的证明

时间:2019-05-15 09:36:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《极限平均值的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《极限平均值的证明》。

第一篇:极限平均值的证明

1、设limanA,证明:limna1a2anA。nn

证明:因为limanA,所以对任意的0,存在N0,当nN时,有 n

|anA|,于是

|a1a2anaa2aNaN1anA||1A| nn

a1a2aNaN1annA| n

a1a2aNNAaan(nN)A||N1| nn

a1a2aNNA1|[|aN1A||anA|] nn|||

|a1a2aNNAnN| nn

因为lim|a1a2aNNA|0(注意分子为常数),所以存在N1N,当nn

aa2aNNAnN1时,有|1|,于是当nN1时,有 n

aa2aNNAnNa1a2anA||1|2,nnn|

有极限的定义有lima1a2anA。nn

n

2、设limanA且an0,A0,证明:lim12nA。n

证明:因为a1a2ana1a2an,n

a1a2ann111aa2an1111,a1a2anna1a2ana1a2an,n所以111a1a2an

111aa2an1111lim,又因为lim,利用第1题结论,有lim1

nnananAAnn

所以limn

111a1a2annA,同理lima1a2anlimanA,由夹逼定理nnn得

lima1a2anA。n

3、设an0,且liman1A,证明:limanA。nnan证明:limanlimnnaaa1a2nlimnA。1a1an1nan1

第二篇:平均值不等式归纳法证明

平均值不等式的证明

湖南省张家界市永定区永定小学覃文周整理

1、设ai(i=1,2,…,n)为正数,求证:(a1+a2+…+an)

等号当且仅当a1=a2=…=an时成立。证明:由1na1a2an…(1)a1a2210得:a1a2a1a2。即当n=2时(1)式成立。2

假设当n=k时(1)式成立,即(a1+a2+…+ak)

1令(a1+a2+…+ak+ak1)=a,于是有: k11ka1a2ak。则当n=k+1时 a=1111[a1+a2+…+ak+ak1+(k-1)a]=[a1+a2+…+ak)+ak1+(k-1)a)] 2k2kk

1(2

2ka1a2ak+12kk1ak1ak1k1)2k1a1a2akak1a aaaaaa

2即 ak1a1a2akak1 k1(a1+a+…+a1k+ak1)ka1a2akak1

即当n=k+1时(1)式成立。

对任意自然数n,(1)式成立。由证明过程不难得知等号成立的充分必要条件是a1=a2=…=an。

第三篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)同理,存在Ni,当x>Ni时,0<=fi(x)取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)

第四篇:数列极限的证明

例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;

n1xn1xn2(Ⅱ)计算lim。nxn解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得

0x2sinx1x1,设0xn,则

0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。

n记alimxn,由xn1sinxn得

xasina,所以a0,即limxn0。

n(Ⅱ)解法1 因为

sinxlimx0x1x2limex01sinxlnx2xlimex01cosx12xsinxx

xsinx6x2xcosxsinxlimex02x3limex0e16又由(Ⅰ)limxn0,所以

n12xn1xn1sinxnxn2limlimnnxxnn1

sinxlimx0x解法2 因为

1x2x2e16sinxxsinxxsinxx1xxsinxxx3,又因为

limsinxx1sinxx,lim1x0x36x0x12xnxsinxxe,sinx6所以 lim,ex0x1故

11xlimn1nxn2xnsinxnlimnxnsinxlimx0x2xn1x2

e16.

第五篇:ln2极限的证明

111()ln2.证明:limnn1n22n

Pf:①利用积分放缩,再用迫敛性: 首先,观察图像 ynx

S1是以1和其中,21n11S2dx0nx为边长的矩形的面积,11,S31nxdx,显然有S2S1S3,因此有

1ln(n2)ln(n1)ln(n1)lnn,n11ln(n3)ln(n2)ln(n2)ln(n1)同理,n21ln(n4)ln(n3)ln(n3)ln(n2)…

n31ln(2n1)ln2nln2nln(2n1),2n所以,n11ln(2)ln(2n1)ln(n1)ln2nlnnln2,n1i1ni111()ln2.由夹逼准则得limnn1n22n证毕

②利用幂级数展开以及收敛数列的子列收敛于同一极限: 首先,在(1,1]上,有以下的幂级数展开:

(1)ln(x1)nn1n112(1)xxx2nnn1xn.令x1,有

1(1)k11(1)k1ln21lim[1].k2k2kk1k11(1)1(1)令ak12k,那么数列{ak}{12k}收敛于ln2.现在,取数列{ak}的偶数项组成数列{bn}n1,即

11b1a21,2211111b2a41,23434…

1(1)bna2n1 22n111122n12n 111111(1)2()

22n12n242n11111(1)(1)

22n12n2n1111 n1n22n12n2n1由于数列{bn}n1是数列{ak}的一个子列,因此

limbnlimakln2.nk证毕

下载极限平均值的证明word格式文档
下载极限平均值的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列极限的证明

    数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|......

    证明二重极限不存在

    证明二重极限不存在如何判断二重极限(即二元函数极限)不存在,是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论,只是略谈一下在判断二重极限不存在时,一个值......

    中心极限定理证明

    中心极限定理证明一、例子高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放......

    数列极限的证明(★)

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限;nxn1xn(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得0x2sinx1x1,设0xn,则0xn1sinxnxn,所以xn......

    数列极限的证明

    数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会|Xn+1-A|......

    如何证明极限不存在

    如何证明极限不存在反证法若存在实数L,使limsin(1/x)=L,取ε=1/2,在x=0点的任意小的邻域X内,总存在整数n,①记x1(n)=1/(2nπ+π/2)∈X,有sin=1,②记x2(n)=1/(2nπ-π/2)∈X,有sin=-1......

    定义证明二重极限

    定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定......

    极限不存在的证明

    不如何证明极限不存在 一、归结原则 原理:设f在U0(x0;')内有定义,limf(x)存在的充要条件是:对任何含于 xx0 U(x0;)且以x0为极限的数列xn极限limf(xn)都存在且相等。' n 例如:证......