用分析法证明 已知(五篇范例)

时间:2019-05-15 09:36:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用分析法证明 已知》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用分析法证明 已知》。

第一篇:用分析法证明 已知

用分析法证明已知

要证明(b+c-a)/a+(a+c-b)/b+(a+b-c)/c>3

即是证明(b+c)/a-1+(a+c)/b-1+(a+b)/c-1>3

b/a+a/b+a/c+c/a+b/c+c/b>6

因为a,b,c>0,且不全等,所以b/a+a/b≥2

a/c+c/a≥2

b/c+c/b≥2

上式相加的时候,等号不能取到,因为不全等。故b/a+a/b+a/c+c/a+b/c+c/b>6

命题获证

a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α

=4tanαsinα

左边=16tan²αsin²α

=16tan²α(1-cos²α)

=16tan²α-16tan²αcos²α

=16tan²α-16sin²α/cos²α*cos²α

=16tan²α-16sin²α

右边=16(tan²α-sin²α)

所以左边=右边

命题得证

要证|(a+b)/(1+ab)|<1

就是要证|a+b|<|1+ab|

就是要证(a+b)^2<(1+ab)^2

就是要证a^2+2ab^2+b^2<1+a^2b^2+2ab

就是要证a^2b^2-a^2-b^2+1>0

就是要证(a^2-1)(b^2-1)>0

而已知|a|<1|b|<1

所以(a^2-1)(b^2-1)>0成立

|(a+b)/(1+ab)|<1成立

左边通分整理

即证|(b-a)(b+a)/(a²+1)(b²+1)|<|a-b|

把|a-b|约分

|(b+a)/(a²+1)(b²+1)|<1

即证|a+b|<(a²+1)(b²+1)

显然a和b同号时|a+b|较大

所以不妨设a>0,b>0

a+ba²-a+1/4=(a-1/2)²

b²-b+1/4=(b-1/2)²

所以a²-a+b²-b+1>0

a²b²>=0

所以a>0,b>0时

a+b若都小于0,绝对值一样

把以上倒推回去即可

证明:由a>0,b>0,lnx是增函数,要证:a^ab^b>=a^bb^a,即证:alna+blnb>=alnb+blna

即证:a(lna-lnb)+b(lnb-lna)>=0

即证:(a-b)(lna-lnb)>=0.由于,lnx是增函数,因此,a-b与lna-lnb符号相同。

则(a-b)(lna-lnb)>=0成立。

于是:原不等式成立。

第二篇:用分析法证明

用分析法证明

证明:分析法

要证明1/(√2+√3)>√5-2成立

即证√3-√2>√5-

2也就是√3+2>√5+√2

(√3+2)²>(√5+√2)²

7+4√3>7+2√10

即证4√3>2√10

2√3>√10

√12>√10

由于12>10,则易知上式成立,所以1/(√2+√3)>√5-2

若|x|<1,|y|<1,试用分析法证明|(x-y)/(1-xy)|<

1证明:要证|(x-y)/(1-xy)|<1

需证|x-y|<|1-xy|

需证|x-y|^2<|1-xy|^2

需证(x-y)^2<(1-xy)^2

需证x^2-2xy+y^2<1-2xy+(xy)^2

需证x^2+y^2<1+(xy)^2

需证1+(xy)^2-(x^2+y^2)>0

需证(1-x^2)-y^2(1-x^)>0

需证(1-x^2)(1-y^2)>0

|x|<1,|y|<1得到|x|^2<1,|y|^2<1

得到x^2<1,y^2<1

1-x^2>01-y^2>0

所以(1-x^2)(1-y^2)>0

所以|(x-y)/(1-xy)|<1成立

2要使√ac-√bd>√(a-b)(c-d)

必使ac-2√acbd+bd>(a-b)(c-d)

化简得-2√acbd>-ad-bc

即ad+bc>2√acbd

又因为a>b>0,c>b>0,由均值不等式得

3a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α

=4tanαsinα

左边=16tan²αsin²α

=16tan²α(1-cos²α)

=16tan²α-16tan²αcos²α

=16tan²α-16sin²α/cos²α*cos²α

=16tan²α-16sin²α

右边=16(tan²α-sin²α)

所以左边=右边

命题得证

4、】

(根6+根7)平方=13+2*根42

2倍的跟2=根8

(根8+根5)平方=13+2根40

2*根42-2*根40大于0

故成立。

补充上次的题。(根3+根2)(根5-根3)不等于1就行了,不必繁琐求大于1.前提是0(1/a)+1/(1-a)>=4

1/>=4

00=0

0=0

0=0成立

其上均可逆

证毕

第三篇:不等式·用分析法证明不等式

不等式·用分析法证明不等式·教案

教学目标

通过教学,学生掌握和应用分析法证明不等式. 教学重点和难点

理解分析法的证题格式并能熟练应用. 教学过程设计

师:我们已经学习了综合法证明不等式.综合法是从已知条件入手去探明解题途径,概括地说,就是“从已知,看已知,逐步推向未知”. 综合法的思路如下:(从上往下看)(用投影片)

师:其中,A表示已知条件,由A可以得到它的许多性质,如B,B1,B2,而由B又可以得到C,由B1还可以得到C1,C2,由B2又可以得到C3,„,而到达结D的只有C,于是我们便找到了A→B→C→D这条通路.当然,有时也可以有其他的途径达到D,比如A→B1→C1→D等.

但是有许多不等式的证明题,已知条件很隐蔽,使用综合法证明有一定困难.

这一命题若用综合法证明就不知应从何处下手,今天我们介绍用分析法证明不等式,来解决这个问题.

(复习了旧知识,并指出单一用综合法证明的不足之处,说明了学习分析法的必要性)分析法是从结论入手,逆求使它成立的充分条件,直到和已知条件沟通为止,从而找出解题途径.概括地说,就是“从未知,看需知,逐步靠拢已知”. 分析法的思路如下:(从下往上看)(用投影片)

师:欲使结论D成立,可能有C,C1,C2三条途径,而欲使C成立,又有B这条途径,欲使C1成立,又有B1这条途径,欲使C2成立,又有B2,B3两条途径,在B,B1,B2,B3中,只有B可以从A得到,于是便找到了A→B→C→D这条解题途径.(对比综合法叙述分析法及其思路,便于学生深刻理解分析法的实质及其与综合法的关系)

师:用分析法论证“若A到B”这个命题的模式是:(用投影片)欲证命题B为真,只需证命题B1为真,只需证命题B2为真,„„

只需证命题A为真,今已知A真,故B必真.

师:在运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途径. 下面举例说明如何用分析法证明不等式.首先解决刚才提出的问题.(板书)

师:这个题目我们曾经用比较法进行过证明,请同学们考虑用分析法如何证明?(学生讨论,请一学生回答)

生:因为b>0,所以b+1>0,去分母,化为a(b+1)<b(a+1),就是a<b,这个式子就是已知条件,所以求证的不等式成立.

(学生理解了分析法的原理,应予以肯定,但这个回答不能作为证明过程,学生往往忽略分析法证明的格式,要及时纠正)

师:这位同学“执果索因”,逐步逆找结论成立的充分条件,直至找到明显成立的不等式为止.很明显,逆找的过程正是把“欲证”由繁化简的过程,因而分析法对于形式复杂的证明题是一种行之有效的方法.

但是作为证明过程,这位同学的回答不符合要求.应该如何证明呢?(请一位同学板书)

=(a+b)(a2-ab+b2)-ab(a+b)

=(a+b)(a2-2ab+b2)

=(a+b)(a-b)2.

由a,b∈R+,知a+b>0,又a≠b,则(a-b)2>0,进而(a+b)(a-b)2>0,即(a3+b3)-(a2b+ab2)>0,所以a3+b3>a2b-ab2.

生乙:我是用分析法证明的.

证法2:

欲证a3+b3>a2b+ab2,即证(a+b)(a2-ab+b2)>ab(a+b),因为a+b>0,课堂教学设计说明

教学过程是不断发现问题、解决问题的思维过程.因此,教师应及时提出问题或引导学生发现问题,然后开拓学生思路,启迪学生智慧,求得问题的解决.一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直至完成本节课的教学任务.总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态.

本节课练中有讲,讲中有练,讲练结合.在讲与练的相互作用下,使学生的思维逐步深化.教师提出的问题和例题,先由学生自己解答,然后教师分析与概括.在教师讲解中,又不断提出问题让学生解答和练习,力求在练习中加深理解,尽量改变课堂上教师包办代替的做法.

在安排本节课教学内容时,我注意按认识规律,由浅入深,由易及难,逐渐展开教学内容,让学生形成有序的知识结构.

第四篇:分析法 证明辨析

分析法证明辨析

师:我们已经学习了综合法证明不等式.综合法是从已知条件入手去探明解题途径,概括地说,就是“从已知,看已知,逐步推向未知”.综合法的思路如下:(从上往下看)

(用投影片)

师:其中,A表示已知条件,由A可以得到它的许多性质,如B,B1,B2,而由B又可以得到C,由B1还可以得到C1,C2,由B2又可以得到C3,…,而到达结D的只有C,于是我们便找到了A→B→C→D这条通路.当然,有时也可以有其他的途径达到D,比如A→B1→C1→D等.但是有许多不等式的证明题,已知条件很隐蔽,使用综合法证明有一定困难.这一命题若用综合法证明就不知应从何处下手,今天我们介绍用分析法证明不等式,来解决这个问题.(复习了旧知识,并指出单一用综合法证明的不足之处,说明了学习分析法的必要性)

分析法是从结论入手,逆求使它成立的充分条件,直到和已知条件沟通为止,从而找出解题途径.概括地说,就是“从未知,看需知,逐步靠拢已知”.分析法的思路如下:(从下往上看)

(用投影片)

师:欲使结论D成立,可能有C,C1,C2三条途径,而欲使C成立,又有B这条途径,欲使C1成立,又有B1这条途径,欲使C2成立,又有B2,B3两条途径,在B,B1,B2,B3中,只有B可以从A得到,于是便找到了A→B→C→D这条解题途径.(对比综合法叙述分析法及其思路,便于学生深刻理解分析法的实质及其与综合法的关系)

师:用分析法-论证“若A到B”这个命题的模式是:

(用投影片)

欲证命题B为真,只需证命题B1为真,只需证命题B2为真,只需证命题A为真,今已知A真,故B必真.师:在运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途径.下面举例说明如何用分析法证明不等式.首先解决刚才提出的问题.(板书)

(此题以教师讲解,板书为主,主要讲清证题格式)

师:请看投影,这个题还有一种证法.(投影片)

师:这种证法是综合法.可以看出,综合法有时正好是分析过程的逆推.证法2虽然用综合法表述,但若不先用分析法思索,显然用综合法时无从入手,有时综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.师:若此题改为

下面的证法是否有错?

(投影片)

只需证63<64,⑦

因为63<64成立,⑧

(学生自由讨论后,请一位同学回答)

生:我认为第②步到⑦步有错,不等式①两边都是负的,不能平方.师:这位同学找到了证明过程中的错误,但错误原因叙述得不够准确.这种证法错在违背了不等式的性质.若a>b>0,则a2>b2;若a

第五篇:不等式证明三(分析法)

Xupeisen110高中数学

教材:不等式证明三(分析法)

目的:要求学生学会用分析法证明不等式。

过程:

一、介绍“分析法”:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。

二、例

一、求证:372

5证:

5)

22xy

32∵x2y22xyxy成立 3只需证:x2y2

∴(xy)(xy)22312133

证二:(综合法)∵(x2y2)3x6y63x2y2(x2y2)x6y66x3y3

1x6y62x3y3(x3y3)2

∵x > 0,y > 0,∴(xy)(xy)22312133

三、已知:a + b + c = 0,求证:ab + bc + ca ≤ 0

证一:(综合法)∵a + b + c = 0∴(a + b + c)2 = 0

a2b2c2展开得:abbcca

2例

四、l,2

l周长为l的正方形边长为,截面积为 442

2ll问题只需证:>  24

l2l2

即证:2>16422

两边同乘

411,得:24l2

因此只需证:4 > (显然成立)

ll∴ > 也可用比较法(取商)证,也不困难。24

三、作业: 22P18练习1—3及习题6.3余下部分

补充作业:

1.已知0 <  < ,证明:2sin2cot 2

1cos∵0 <  < ∴sin > 0

略证:只需证:4sincossin

2. 已知a >0(成立)3. 设a, b, c4ab4S 即证:2cosC23sinC

即:3sinCcosC2

即证:sin(C)1(成立)6

下载用分析法证明 已知(五篇范例)word格式文档
下载用分析法证明 已知(五篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分析法证明不等式专题

    分析法证明不等式已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|0【2】显然,由|a+b|>0可知原不等式等价于不等式:|a|+|b|≤(√2)|a+b|该不等式等价于不等式:(|a|+|b|)²≤².整理即是:a......

    分析法证明不等式08

    分析法证明不等式教学目标:1.掌握分析法证明不等式;2.理解分析法实质——执果索因;3.提高证明不等式证法灵活性.教学重点:分析法教学难点:分析法实质的理解教学过程:一.分析法:证明......

    不等式的证明(分析法)

    不等式的证明(分析法)1、设a0,b0,Pab2,Qab,则P与Q的大小关系是 A、PQB、PQC、PQD、PQ2、已知xlg(a21a),ylga21a),则x与y的大小关系是 A、x>yB、x......

    分析法证明不等式(5篇)

    主备人:审核: 包科领导:年级组长:使用时间:4-5【教学目标】1.掌握分析法证明不等式的方法和步骤。2.能够利用分析法证明不等式。【重点、难点】重点:分析法证明不等式。难点:分析法......

    用SWOT分析法进行自我分析

    我的从业选择——用SWOT分 析法进行自我分析 SWOT分析又称态势分析法,就是把内外环境所 形成的优势(Strength)、劣势(Weakness)、 机会(Opportunity)、威胁(Threat)结合起来 进行分析......

    直接证明与间接证明-分析法学案(!)

    2.2.2直接证明与间接证明—分析法 班级:姓名: 【学习目标】: (1)结合教学实例,了解直接证明的两种基本方法之一:分析法 (2)通过教学实例,了解综合法的思考过程、特点 (3)通过教学实例了......

    不等式的证明——比较法、综合法、分析法

    不等式的证明—比较法,综合法,分析法 典型问题:(一)比较法证明不等式amamam1,求证:1.已知a,b,m,nR,且bnbn bn2.a,b,m,nR3. ab,求证:abmnbmn1a2abab1b2mnnm 21a20,求证:()21b2()a3......

    2.4:不等式证明综合法与分析法

    2.4不等式的证明(2)综合法与分析法。【知识要点】综合法:从已知出发,通过一系列正确的推理,得出结论的证明方法。(由因导果) 分析法:从要证明的结论出发,寻找使命题成立的充分条件。(......