第一篇:窑系统漏风的原因及危害(范文模版)
新型干法窑系统漏风的原因分析及危害
漏风原因: 1.预热器系统内漏风
各企业不同程度地存在窑尾预热器,从Ⅰ级到Ⅴ级下料管各道翻板阀出现闪动不灵,或不动,或动作不到位,使阀板始终处于开状态,下一级的热风随料路直接进入上一级预热器内,出现风路短路,此种现象平时不易被发现,可用手试验感觉压力的大小。1.1阀板处于常开状态
重锤轻,始终处于常开状态,有的是重锤位置不合适,力矩太小,造成阀板压力小。1.2翻板阀压力杆被吊起
岗位操作人员人为地用铁丝将压杆吊起,使翻板处于常开状态。为什么为出现这种状况呢?说明此窑况常出现锥体堵料现象,预热器每次出现结皮堵塞,处理起来耗时较多,严重时会停窑处理,本窑况液相易过早出现,下料管下料不畅,在翻板阀处易出现堵料,若将其吊起,虽然出现漏风,但此处堵塞的机率大大减小,习惯了,大家对此现象默认了,管理者对此形成了一种意识,只要不发生大的工艺故障,即便是存在一点内漏风,热耗高一点,不会出现大的工艺故障,对系统没有大妨碍,总比出事好,久而久之形成习惯。
另一种原因是预热器系统常出下掉落浇注料块,耐火砖,磨损的内挂片,脱落的大块结皮,被卡在翻板阀处,出现块状物料的卡堵,为防止大块物料堵塞下料管,采取用铁丝吊起翻板阀杆,使翻板阀处于常开状态。这种将翻板阀杆吊起使阀板处于常开状态的做法是不符合新型干法水泥熟料煅烧工艺要求的。必须树立正确的理念,杜绝内漏风的出现,其它方面有问题,要想办法去解决。比如是配料方面的原因,要从配料上找原因进行分析解决,若是浇料量砌筑方面上的问题,如材料问题,浇注施工工艺问题,养护问题,耐火砖质量,砌筑问题等,从各个方面去找,但不能采用吊起翻板阀来缓解这种问题,甚至掩盖问题,其后果使系统恶性循环。1.3轴承坏,或轴套缺油
翻板阀的轴承磨损,被卡死,转动不灵活,或轴承缺油,由于常期不对转轴进行检查,加油不及时,轴承磨损加快。1.4轴承进灰
轴承密封性不好,在窑尾预热器上,环境较差,有飘浮的粉尘进入,进入的粉尘与油结合成为油泥,干燥后固定,轴不转动,使转轴卡死。1.5阀板磨损或掉落
阀板经过长期的磨损,特别是在较高温度下被料冲刷,头部有磨损,关闭时不严,出现漏风现象,或有的阀板断裂,部分掉落,造成阀风不严。1.6轴与阀板分离
翻板阀经过长时间的使用,阀板阀的轴与阀板的套子发生松动,或紧固螺栓松动,使板的轴动而板不动,翻板阀不能与轴联体进行同时转动,不起锁风作用。1.7内漏风的危害
翻板阀开关不灵活,阀板关闭不到位,引起内漏风,会使下一级预热器的高温气体发生短路,不是沿正常的气体路径进入出气管道,对生料进行热交换,而直接从下一级预热器随料管进入上一级预热器,其路径短,少了与生料进行热交换的过程,这样低温生料得不到合理的预热,使物料预热效果差,废气温度升高,预热器的废气热利用率低,入窑生料的分解率降低,窑的热负荷增加,烧成带温度升高,熟料质量变差,窑及预热器系统的热耗增加,使熟料煤耗升高,最终导致出一级预热器气体温度升高。对高温风机及废气处理系统的设备不利。总之,内漏风会使熟料质量差,产量低,热耗高,设备承受热负荷增加,不利于高温设备的使用寿命。加强管理,形成制度,定期检查加油、维护保养,形成记录是解决内漏风的有效措施。2.外漏风
外漏风是指窑及预热器系统以外,环境温度下的自然空气,通过不正常的渠道进入到窑及预热器系统内,使窑及预热器系统热工制度发生变化,内部气体温度下降,热耗增加,窑及预热器系统气量不足,为满足系统用风,导致窑尾排风机负荷加大,使系统内总废气量增加,使系统煤耗、电耗增加。主要是系统的窑门、观察孔、捅料孔、检查孔、窑头及窑尾密封不严、管道法兰连接不实、壳体磨窜等引起的外界风进入到系统内,主要表现在以下几个方面。2.1窑头罩漏风
窑门与窑头罩之间漏风,窑门内衬被烧损掉落,外壳直接与高温气体接触,受热力影响,窑门金属壳体变形,使窑门与窑门罩间的间隙发生变化,中间缝隙加大,长期运转,高温气体更易接触窑门罩壳体,使高温腐蚀加剧,变形加大,没有其它密封填充,会有大量的冷空气进入窑内,降低了窑前温度,使窑二次风温,三次风温都降低,影响到煤粉的燃烧,使高温带烧成温度提不起来,增加头煤喂煤量。2.2窑头密封漏风
窑头密封方式有石墨块密封、米宫式密封、柔性密封、鱼鳞片密封等形式,但材料被磨损,压紧装置不进行调整,使冷风套与窑头罩间产生缝隙,有的是钢丝绳松动,有的是鱼鳞片被磨损,或变形不起密封作用,有的是重锤轻,起不到下锤的作用,都会使其产生间隙,有冷空气进入其内,造成入窑二次风、三次风温度下降。2.3窑口变形
窑护口铁是安装在窑胴体上,靠近窑内部及端部,都有浇注的耐火浇注料,其目的是使窑护口铁与高温气体及出窑熟料隔开,不进行直接热传递,防止窑口胴体变形。但在实际运行过程中,由于抢烧,盲目追求设备运转率,甚至为完成某月或某季度生产任务,当窑口浇注料脱落,甚至大面积护口铁裸露在高温环境下,窑口胴体出现被烧红,仍坚持带病运转,胴体高温腐蚀,变形,头部胴体变薄,强度下降,在高温下变形严重,几经周折,窑口胴体出现喇叭形,检修后,不能每次都更换窑口前部胴体,只好重新打浇注料,窑口胴体外形失圆,成了不规则的喇叭状,而窑口四周的窑头罩是规整的圆形,因此两者间产生缝隙,出现漏风现象。2.4检查孔、洞关闭不严
窑头罩窑门观察孔、检查孔关闭不严,在生产运行过程中往往为了方便,人为地开了原设计没有的小孔,加盖采用简易的方式,用钢管及钢筋焊制简单的转动轴,四周不进行密封,有的检查孔关闭不严,加上没有内衬,在高温下变形,产生间隙,漏风严重,更有甚者,为了操作方便,捅料完不进行关闭,造成人为漏风现象。2.5窑尾密封漏风
窑尾的密封方式与窑头密封相似,大部分是石墨块、米宫式、鳞片式、柔性密封方式,由于窑尾密封靠近烟室,受窑尾负压的变化,下料管冲下的料在负压变化时,向外溢料的可能性较大,用螺栓顶紧石墨块式密封,丝扛受高温影响,积存料粉,丝扛不易调节,当石墨块磨损有较大间隙需要调整丝扛时,不能调整,如果对丝扛平时加上润滑脂,因粉尘飘落,同样是不能紧固调整,对于柔性密封,若磨损后,外层钢丝绳松动或金属片被磨损,要随时调整紧固,不论哪种密封方式,一但出现漏风现象,都要及时调整,但有的厂家不够重视漏风问题,视而不见,听之任之,感觉到漏一点风不是大问题,不会影响运转,对产量、质量没有大影响。这种观点是错误的,窑尾漏风,会使窑系统用风失去平衡,使窑尾烟室温度下降,增加用煤量,系统煤耗增加,同时窑尾风机负荷增大,不利于节能降耗。破坏了窑系统热工制度的稳定。同时窑尾漏风,冷空气突然进入窑尾,会使窑尾生料面子急刷降温,易出现结皮堵塞现象。2.6窑尾烟室捅料孔,检查孔密封不严
窑尾烟室捅料孔经常被打开,进行捅料检查窑尾烟室结皮堵塞情况,但由于常开,在关闭时不够严密,有时检查门盖浇注料脱落,外壳出现过热颜色变暗,有的变形,关闭时不严密,出现漏风,由于此处负压在-300pa左右,一但密封不严,产生漏风量较大,使窑尾烟室料温急剧下降,易产生结皮,越易结皮,捅堵的频次越需要增加,打开的次数越多,出现恶性循环。冷风随上升烟道进入分解炉锥体,此处易产生结皮,这是锥体及缩口出现结皮的原因之一。2.7各级预热器的检查孔,捅料孔关闭不严
新型干法窑预热器系统检查孔平时是关闭密封的,但在捅堵检查后,关闭不严,四周变形,浇筑料脱落,检查门在关闭后,产生缝隙,出现漏风。有时捅堵后,不进行密封,越靠上的预热器,负压越大,漏风越严重,此处温度较高,物料经预热后受漏入冷风的影响,温度下降会硬化出现结皮堵塞。2.8预热器点火烟囟漏风
预热器点火烟囱漏风,点火烟囱在刚点火升温时进行打开,向外排出预热器系统的废烟气,防止点火初期系统一氧化碳超标,引起窑尾收尘发生爆炸,系统中的水蒸汽能够直接排出,一但投料进入生产后,要对其进行关闭,防止系统漏入冷空气,此处阀门有的是用电动推杆,有时关闭不到位,或电动执行机构发生故障,不能关闭严密,也有的需人工关闭,关闭不严,产生漏风,还有的直接在进风口上方盖一大铁板,上部用钢丝吊起,手拉葫芦进行开关,没有软性密封材料,盖板四周漏风。2.9增湿塔底部检查孔,锁风绞刀漏风
增湿塔底部有长方形检查孔,是用来清理增湿塔底部积料甚至增湿塔湿底成泥,方形孔洞用法兰螺丝连接盖板,四周用石棉绳进行密封,但在实际操作过程中,由于增湿塔经常出现积料,或积泥,需要清理,但在检查后盖上盖板,密封不严,有的螺丝拧的不紧,有的螺丝不全,只拧部分螺丝,有的不上螺丝,直接用铁丝简单地拧一下,造成螺孔漏风,法兰四周漏风严重,为了下次清理检查方便,将盖简单地一上,绞刀端部下料溜子处为防止外界风从溜子处漏入,在此安装了双道翻板阀进行锁风或分格轮锁风,但有的单位直接不用,有的是电机带动分格轮转动的传动轴脱接,电机转,而分格轮不转,起不到锁风作用,有的直接将分格轮进行拆除,还有的增温塔底部料外放口在没有外放时,不进行密封堵漏,造样有风漏入。这是漏风的关键,因增湿塔靠近窑尾排风机最近,负压较大,漏风最为严重,直接影响到窑系统拉风量,造成窑内及炉内用风不足,而窑尾排风机负荷加大,影响到熟料煅烧质量,使熟料烧成煤耗、电耗升高。
2.10 各级预热器出气管道焊缝不严
各级预热器出气管道焊缝不严,甚至开焊,出现漏风现象。特别是一级预热器出气管道开焊,因有外保温,内部焊口氧化脱开,造成漏风不易发现,只有在窑高温风机未开时系统呈正压时表现明显,平时呈负压只有沙沙的漏风声,出预热器管道与旋风筒四周周围,有间隙,旋风筒周围浇注料开裂,有漏风现象。
2.11入窑生料在一级管道处生料下料处锁风装置失效
在预热器顶部,入窑生料在一级管道下料处有分格轮进行锁风,分格轮长期磨损,间隙变大,更换不及时,不起锁风作用,有漏风现象。2.12 过于频繁使用空气炮
空气炮的使用与窑操的操作水平有很大关系,有的操作精细严格的高手,将空气炮定为间歇使用,根据生产实际窑况随时用,但在保证不出事的情况下,尽量减少空气炮的使用次数,减少冷空气的进入窑系统量,起到节能的作用。但对于一般的操作选手,对系统的判断达不到一 定程度,不要求达到如此的精细程度,以定时清理不出现工艺故障为主。
3.漏风的原因分析
窑及预热器系统出现漏风现象较为普遍,只不过是轻重有别,为什么会有的单位眼看着漏风而不去处理呢?首先是意识问题,没有从理性上搞明白漏风的原因及危害,意想不到其存在的带来的影响,就不会引起重视,形不成一种理念,久而久之便视而不见,司空见惯。从窑煅烧熟料质量及熟料能耗上分析,任何一个漏风点都不能忽视,否则会积少成多,因小失大,随着漏风点的增多,漏风量增加,对窑及预热器系统的影响会随着量的变化与积累上升到很重要的程度,由一般的漏风问题变成大的工艺故障隐患。如某企业点火烟囱风门关闭不严,已时间较久,没有人处理,仅此一个小小的漏风点,关闭后现场观察使窑尾风机负压减小500pa,总风量减少10%,可见其节能效果。将漏风认为是小事,对漏风量没有量的测量,不知道漏风点的存在带来损失的量化程度,自然不会引起人们的重视。目前管理好的企业,都在做密封堵漏的细节工作,从细微入手,加强精细化的操作。系统漏风的原因其次是从管理上不到位,存在漏洞,管理结点不闭合,没有精细化操作方案,执行不到位,检查问题没发现,发现问题没有整改方案,既便是有方案没有人去跟踪落实,措施落实不到位,作为管理不形成闭合,时间长了习以为然;从技术上分析,没有认识到漏风带来的危害,没认识到影响程度,管理者、执行者没有形成上下统一的治理漏风的意识。
4.外漏风带来的危害
4.1热损失增加,熟料烧成热耗升高
窑及预热器系统任何一个漏风点,都会使系统的热损失增加,熟料电耗升高。外界冷空气的进入,由于内、外系统气体温差大,要达到系统内的温度,需吸入大量热量,热量的来源最终还是熟料煅烧煤的燃烧而带入的,由于冷风的参入,使用煤量增加,窑尾废气的总排量增加,废气带走的总热焓增加,熟料煤耗显然升高。4.2熟料烧成电耗增加
熟料煅烧所用热量是靠燃料燃烧放出的,而煤燃烧需要一定的空气量,系统热耗的增加,会使用煤量增加,无疑要增加用风量,窑及预热器系统漏风,会使窑内及分解炉内用风不足,因熟料煅烧过程中煤燃烧必须的用风量是一定的,但是由于系统漏入冷风,没有参与煤燃烧化学反应,因此要使窑及分解炉内煤化学燃烧充分,需氧量不能减少,因此要增加煤的供氧量,增加排风,窑尾风机排风负荷增加使系统电耗升高。
4.3系统的温度降低,影响熟料煅烧质量
窑及预热器系统漏风,使窑及预热器内温度下降,破坏了原有系统热平衡,使熟料预热、生料分解、熟料煅烧温度降低,影响熟料烧成质量,特别是烧成带温度,由于窑前漏风,入窑二次风温降低,煤在窑前的燃烧速度降低,高温带火力不够集中,使熟料在高温带煅烧的温度降低,熟料烧结程度下降,熟料硅酸盐矿物的含量不尽合理,熟料的游离氧化钙烧不下来,分解炉温度不高,生料分解率低,增加了熟料烧成的热负荷,影响到熟料质量。4.4入窑风温低,风量减少
窑系统漏风,特别是窑前漏风,对入窑风量与风温产生较大的影响。由于漏风,使二次风、三次风温降低,因冷却熟料的高温风在进入窑之前参入冷空气,温度降低,同时,在窑尾排风机风量不增加的情况下,吸入的热风量相应减少。二次风温降低,煤粉进入窑内升温慢,燃烧速度慢,火力在烧成带不够集中,造成窑烧成温度不高,熟料的烧结程度受到影响,烧成带火焰拉长,窑尾温度升高,整个系统热力平衡受到影响。三次风温降低,使入炉煤粉燃烧速度慢,分解炉温度降低,入窑生料在炉内的分解率低,为保证其入窑分解率,势必要多加煤,来提高炉内温度。4.5窑尾预热器系统结皮堵塞
窑尾预热器及其管道漏风,使内部温度急剧下降,高温物料受急冷的影响,物料被硬化化,产生结皮,附在预热器内壁及管道内壁,减小通风面积,特别是管道漏风处易积料,如转弯处,积料达到一定程度,会影响系统通风,使系统通风不畅,造成恶性循环,加剧结皮堵塞现象的发生。.措施
加强管理,形成检查、整改、验收、督促、检查、落实制度。对任何一漏风点不放过,不让系统带着漏风隐患运转,加强密封堵漏,可用岩棉板、石棉绳堵塞,用薄铁皮外包,或发保温涂料等,这是节能降耗的一项措施。如某企业,日产5000t/d的新型干生产线,投产近10年,为加强节能降耗,降低生产成本,采取了各种措施进行降低熟料热耗,如钢渣配料、粉煤灰代粘土配料、加强操作等多项措施,有了较大进步,但与其他好的企业比起来,煤耗还有差距,通过外出到其它企业参观发现,相比较之下系统密封还有差距,还存在漏风环节,于是下决心进行窑系统密封,采取措施,对窑头、窑尾进行一系列的密封,仅此一项降低煤耗近1.3kg/t标煤,达到窑头、窑尾不冒尘。通过本次中控操作大比武,所到企业都有共同感触,事后也进行了全系统的密封堵漏,防止系统漏风的出现,提高了热能的利用率,降低了熟料的烧成热耗,收到较好的节能效果。
第二篇:矿井漏风的危害及整治措施
矿井漏风的危害及整治措施
一、矿井漏风的定义
矿井通风系统中,风流沿某些细小的通道漏出和漏入的现象称为漏风,漏入和漏出的风量称为漏风量。
二、矿井漏风产生的原因
1.由于漏风区两端有压力差,井下控制风流的设施不严密(如设计、施工不良或长期失修等),采空区岩石冒落后未被压实,煤柱破坏或地面有裂缝,都会造成漏风。
2.因地表有裂缝或井口通风设施不严密,如风门、风硐闸门、反风装置、井口密闭、井口密闭房等,3.因为矿井风流短路造成漏风,空气大部分或全部沿近路流动的现象就叫短路,当通风设施管理不当或被破坏时(如风门不关或关不严),就会产生风流短路,造成大量漏风。
三、矿井漏风的危害
1.漏风会造成工作面的有效风量减小,导致瓦斯积聚,煤尘不能被带走,气温升高,造成不良条件,不仅使生产效率降低而且影响井下工作人员的身体健康。
2.漏风量大的漏风风路构成了矿井通风网路的组成部分,必然会使通风系统复杂化,因而会使通风系统的稳定性,可靠性受到一定程度的影响,并增加风量调节的困难。
3.采空区、留有浮煤的封闭巷道以及被压碎的煤柱等漏风,可能促使煤炭自燃发火。
4.地表塌陷区的漏风,会将采空区的有毒有害气体带入井下,威胁安全生产。
5.大量漏风会引起电能的无畏消耗,增大主扇风机设备,如果短路漏风严重时,会引起主扇风机工作风量剧增,当使用离心式风机通风时,会使电机产生过负荷现象。
漏风的危害是严重的,必须予以足够重视,但也应指出,如瓦斯大的矿井,采空区和其他主要通风设施的漏风以及掘进通风中风筒的适量漏风,有一部分不但不是浪费,而且起到稀释瓦斯的作用,这部分漏风应该认为是有益的。
四、矿井漏风的表示法
矿井漏风常用漏风率及有效风量率来表示。漏风率和有效风量率是表明矿井通风情况的重要指标,用此指标表示矿井漏风程度,有利于衡量通风管理工作的质量,其表示方法有以下几种:
1.矿井漏风率(P矿):矿井漏风率就是全矿漏风量(Q漏)与主扇风机工作风量(Q主)的百分比。
即:P矿
=
Q漏/
Q主×100%
2.内部漏风率(P内)是指井下漏风量与矿井总风量的百分比。即:P内
=
(Q进-Q有效)/
Q进×
100%
式中:Q进—矿井总进风量m3/min。
Q有效—各工作面和各硐室的有效风量的总和(m3/min)
3.外部漏风率(P外)是指外部漏风量与主扇风机工作风量的百分比。即:
P外=
(Q主-Q进)/
Q主×100%
第三篇:汽车漏油漏风故障原因分析
汽车行驶时经常会遇到漏油的现象,靓/车/会告诉你应该如何检查发动机是否漏机油
汽车机油漏油主要是三方面漏油:发动机润滑系统漏油、油底垫漏油、气门室漏油。
1.发动机机体漏油主要是两方面:前曲轴油封漏油和后曲轴油封漏油,前曲轴油封漏油的位置是在发动机箱的前面漏油,后曲轴油封漏油的位置是在发动机后面漏油。漏机油有呈片状和点状,片状说明机器已经老化,需要更换机器零件,点状说明机器开始老化,需要去维修和护理。
2.油底垫漏油:目测观察发动机后部是否漏油。造成漏油的原因主要有:机器零件老化;维修后密封不严。
3.气门室漏油:目测观察汽车内部的机器漏油的地方是否渗油,从气门室盖去观测,它的位置是在发动机的最上方,观察是否浑浊渗透,如有污渍,说明你的爱车已经渗油了。造成漏油的原因:机器零件老化;机器密封不严。
另外新买的汽车,近期在跑高速的时候,感觉到漏风,应如何解决?
车速过高时漏风这个现象主要与车门密封条有关,其次检查线束经过的地方是否密封不良;漏风与车门密封条会有一定关系,您可以到汽配城内加装密封条,加装密封条的费用很低,每个车门大概在50元左右。汽车使用了一年多了,但是近来发现CVT加油有些迟缓,请问这是什么原因造成的?
此种故障和进气系统、燃油系统清洗关系不大。而从车辆使用率来分析,车辆利用率应该不高,也就是车辆每天行驶的车速和公里数不多,而根据发动机控制单元程序设定来讲,此种情况建议适当拉拉高速,将会有良好的效果改善,对于积碳清洁都是有一定帮助的。
第四篇:试论矿井漏风的危害及改进措施
试论矿井漏风的危害及整治措施
后所煤矿通风安全部:邓
瑶
摘要:矿井漏风是导致采空区遗煤自燃、降低矿井有效风量、扰乱矿井正常通风系统的重要原因,根据矿井漏风地点的不同,矿井漏风可分为矿井外部漏风和内部漏风,本文对不同地点的漏风原因及漏风对矿井安全产生的危害进行分析。对矿井漏风采取措施进行治理,减小矿井漏风, 提高矿井有效风量,降低通风成本,为煤矿的安全生产提供保障。
关键词:漏风
原因
危害
整治措施
一、矿井漏风的定义
矿井通风系统中,风流沿某些细小的通道漏出和漏入的现象称为漏风,漏入和漏出的风量称为漏风量。
二、矿井漏风产生的原因
1、由于漏风区两端有压力差,井下控制风流的设施不严密(如设计、施工不良或长期失修等),采空区岩石冒落后未被压实,煤柱破坏或地面有裂缝,都会造成漏风。
2、因地表有裂缝或井口通风设施不严密,如风门、风硐闸门、反风装置、井口密闭、井口密闭房等,3、因为矿井风流短路造成漏风,空气大部分或全部沿近路流动的现象就叫短路,当通风设施管理不当或被破坏时(如风门不关或关不严),就会产生风流短路,造成大量漏风。
三、矿井漏风的危害
1、漏风会造成工作面的有效风量减小,导致瓦斯积聚,煤尘不能被带走,气温升高,造成不良条件,不仅使生产效率降低而且影响井下工作人员的身体健康。
2、漏风量大的漏风风路构成了矿井通风网路的组成部分,必然会使通风系统复杂化,因而会使通风系统的稳定性,可靠性受到一定程度的影响,并增加风量调节的困难。
3、采空区、留有浮煤的封闭巷道以及被压碎的煤柱等漏风,可能促使煤炭自燃发火。
4、地表塌陷区的漏风,会将采空区的有毒有害气体带入井下,威胁安全生产。
5、大量漏风会引起电能的无畏消耗,增大主扇风机设备,如果短路漏风严重时,会引起主扇风机工作风量剧增,当使用离心式风机通风时,会使电机产生过负荷现象。
漏风的危害是严重的,必须予以足够重视,但也应指出,如瓦斯大的矿井,采空区和其他主要通风设施的漏风以及掘进通风中风筒的适量漏风,有一部分不但不是浪费,而且起到稀释瓦斯的作用,这部分漏风应该认为是有益的。
四、矿井漏风的表示法
矿井漏风常用漏风率及有效风量率来表示。漏风率和有效风量率是表明矿井通风情况的重要指标,用此指标表示矿井漏风程度,有利于衡量通风管理工作的质量,其表示方法有以下几种:
1、矿井漏风率(P矿):矿井漏风率就是全矿漏风量(Q漏)与主扇风机工作风量(Q主)的百分比。即:P矿 = Q漏/ Q主x 100%
2、内部漏风率(P
内)是指井下漏风量与矿井总风量的百分比。即:P内 =(Q进-Q有效)/ Q进 x 100%
式中:Q进—矿井总进风量m3∕min。
Q有效—各工作面和各硐室的有效风量的总和(m3∕min)
3、外部漏风率(P外)是指外部漏风量与主扇风机工作风量的百分比。即:P外 =(Q主-Q进)/ Q主x 100%
4、有效风量率(M)是指实际达到用风地点的有效风量与矿井总进风量的百分比。即:M = Q有∕ Q进 x 100%
五、减小矿井漏风量的措施
为了减小矿井漏风量,应根据实际情况采取以下措施:
1、合理选择通风系统:因为通风系统的进、回风巷位置和网络结构决定了通风构筑物的位置、数量及其所受的压力差和漏风条件。
2、因为矿井开拓系统、开采顺序和开采方法对漏风有很大影响,故应合理考虑。服务年限长的主要风巷应开拓在岩石内,应尽量采用后退式及下行开采顺序,用垮落法管理顶板的采煤方法,适当增加煤柱尺寸或用石垛等方法隔绝采空区。
3、应及时填补地面塌陷坑及裂隙,并封闭地面的小窑,减少通过塌陷区和地表之间的漏风。
4、对于立井可多设几道风门并加强其工程质量,应加强立井井盖的密闭性。减少井口漏风,其次,也应该防止反风门装置和闸门的漏风。
5、应使煤仓中的存煤保持一定厚度。减少煤仓漏风。
6、为减少井下通风设施的漏风,通风设施的安设位置、类型及质量应慎重考虑。通风设施不应该设在有裂隙的地点,在风压的巷道应采用质量高的设施。
1、减小风门漏风:风门是矿井内数量较多的通风设施,在井下漏风中,风门漏风所占的比重最大,故应加强对风门的管理,对于主要巷道中的风门,如采用斜井中央并列式通风的矿井,井筒间联络中的风门以及井底车场两井底间的风门,更须加强工程质量,经常检查与维修,以免造成风流短路,风门面积尽可能小,风门板缝结合应严密,风门打开应能自动关闭,压差大处应设置正反两道风门。
2、减小风桥漏风:风桥漏风往往很严重,一般用石块砌筑的风桥漏风量可达60-100m3∕min,风桥不严就会破坏矿井正常通风,因此在设计通风系统时,应尽量少用风桥,必要的风桥要修筑严密,断面尽量大些,并加强检查和维修。有条件最好采用绕道式风桥。
3、减小挡风墙漏风:挡风墙在正常情况下一般漏风不大,因此往往使人麻痹大意,对它忽视检查,造成不应该有的损失,如空气流入封闭的采空区,且有自燃发火危险性质的煤层,将可能引起煤的自燃,如空气流入封闭的火区,则会使火势发展越大或火源“死灰”复燃,所以,挡风墙应尽量安设在顶板压力小且较稳定的地点,且必须要保证施工质量,随时检查和维修。
结束语:矿井漏风可使井下工作地点的有效风量减少,使矿井主要通风机增加无用的电能消耗,同时还可能引起井下煤尘自燃发火,对安全生产有着巨大威胁,所以,减小井下漏风量,提高矿井有效风量,是搞好通风安全工作的基础,更是保证矿井安全生产的关键。
第五篇:窑系统课件
<一>、入窑生料喂量如何稳定 ⑴入窑斗提的收尘微负压要保证
⑵入窑分格轮漏风处理以及分格轮锁风效果和间隙不能过大 ⑶倒库用的二通阀要用手动闸板来控制
⑷保证入窑斗提运行稳定不跑偏,斗提底部无积灰要保证跑偏装置真实可靠
⑸入入窑斗提斜槽要定期检查透气帆布磨损情况风机进风口要安装防护网
⑹冲板流量计落机点直管道尽量延长成坡面角度下料减缓冲击波下料
⑺冲板流量计密封加固好后,小袋收尘对冲板流量计的收尘只要做到不冒灰微负压即可,常期保证称刀兴,传感器无积灰、无杂物、小管收尘一定要定期检查,维护好非常重要。
⑻气动流量二合一阀建议更换史密斯(进口)流量阀。
⑼仓重和仓压的正常范围控制、仓重、仓压流速成正比例关系,减少正弦波或负弦波影响流量阀的开度波动,2500生产线仓重设计55-60T按40 T控制实际量库空1.2米左右,3200T以上生产线按仓重设计量70~80%*控制实际量库空1.5米左右,小仓底部仓压控制在40~45Kpa ⑽出小仓(称重仓)短斜糟冲刷,磨损快,一定要在透气层上方加薄钢板做成盲板孔覆盖,减少短斜槽故障率
⑾小仓(称重仓)要定期清理(只要有停窑的机会)充气箱斜糟透气层情况低于出料口的生料水份大是垫层料一定要清干净,有损坏、磨损、透气布一定要更换
⑿下料小区要定期检查、电磁阀(改用进口)堵塞不下料,确保换区畅通具备兴义西南均化下料料条件就一定要在程序上去摸索。⒀小仓(称重仓)仓重一定要做到自动进料保证仓重稳控在正负1T范围
⒁流量阀开度大于70%就说明小仓出料口,短斜糟流量阀处有杂物堵塞现象,上述现象没有就是仓重、仓压过低
⒂库底罗茨风机不允许打开放风阀,对气流产生扰动影响气压不稳,连通并联切换阀门不能串风相互干扰。
<二>、窑系统重要温度和压力的范围控别
⑴窑头罩负压(双向负压)要求在窑头罩上中侧面取三个点的环向取压才能综合体现真正的微负压-20~-50Pa以内,实际观察窑头密封不冒灰即可为实际看标准。
⑵作为窑焊负压尽量是高温风机抽风形成的负压这样使火焰很顺畅烧进窑内,窑头排风过大形成的窑头罩负压严重时会让火焰反卷,窑前很亮,但窑电流会慢慢下滑,火焰没有烧进去。
⑶当窑内还原气氛严重时,窑头煤燃烧严重缺氧时,要放空窑头罩负压-50~-100Pa让篦冷机利于空气量补充窑头煤供氧燃烧。⑷二次风温控制在1100℃~1200℃较为合理,三次风温在二次风温的合理温差在150℃以内超过150℃要检查三次风管保温、漏风、三次风管内积料飞砂过多,三次风门过小都会影响温差过大。
⑸窑尾烟室温度正常范围2500、3200窑型,烧烟煤在1100℃以内(1050℃~1100℃)无烟煤在1150℃以内,正确的温度显示低于正常范围值,说明窑的温度和热还不够,超过正常范围就综合判断头焊过多,后燃,分解炉温度控制过高,饱合比发生变化易燃性变好,结皮包裹热电偶,窑内通风过大,结圈造成窑内风速过快,窑尾烟室温升突变,说明窑头窑尾跑煤立即检查头、尾送煤压力及分解炉温度,C5温度变化来综合判断。
⑹分解炉及C5温度控制正常范围,分解炉中温度850~900℃分解炉出口850~900℃ C5下料温度850~880℃常规故障只分解炉与C5温度倒挂,首先要观察炉内、烟室C5下料管道内无明显火星炉内必须是暗焰燃烧,不能出现明火和局部高温,系统抽风过大煤质太差,细度太粗,分解炉喷煤点布局不合理有可能选煤管单边堵塞,送煤压力不稳定,送煤能力不够滞留,造成煤粉爆燃C5翻板阀和分解炉缩口,烟室漏风严重,三次风门开度过小造成炉内缺氧都会导到分解炉与C5温度分布不合理,C4下料、洒料不均匀,洒料台损坏造成煤料的入窑生料混合不均匀,上述现象都会造成倒挂现象关键是要学会综合分析,逐一排查来解决问题,工艺故障很少有单一问题出现,都是连锁反映。
⑺C3下料温度的正常范围控制在680℃以内C3下料温度超过680~700℃以上说明C3锥部漏风严重、或者低量时间过长最容易造成C3锥部堵塞。⑻C1出口温度的正常范围300℃~330℃ O2 含量在2%左右超出正常温度压力压力范围,说明系统总风量偏大,能耗上升。
⑼窑尾烟室负正常2500T、3200T生产线压力范围在-150~250pa范围内,超过-250pa说明窑内阻力过大有结皮、结圈现象,三次风负压在-500pa到-800pa左右,超过-800pa表示阻力过大,三次风门开度过小。
⑽C1出口压力超过-6000Pa以上,都视为系统阻力偏大,都要按照西南成都降本手册来制定下一步降阻的方案。