电厂并网开关故障所引发事故分析[范文大全]

时间:2019-05-14 22:14:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电厂并网开关故障所引发事故分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电厂并网开关故障所引发事故分析》。

第一篇:电厂并网开关故障所引发事故分析

电厂并网开关故障所引发事故分析

目前,我国220kV及以上电压等级的开关基本都是分相操作的。由于开关操作机构及其电气控制回路等故障等原因,发电机在开机并网、停机解列的操作中,并网开关易发生一相或两相断开的事故,造成发变组发生非全相运行事故。事故处理不当将导致发电机过热甚至烧毁事故,同时也给电力系统的安全运行带来了极大的威胁。1 事故经过

A电厂300MW机组发电机同期并网过程中,发现5002并网开关未显示合闸,但#2机负荷仍可上升。在负荷达到16.85MW时,开关非全相保护动作,此时,C相电流仍显示为18.7A,A、B相电流均为0。现场人员检查发现#2发电机5002 C相开关辅助接点销子卡圈脱落,传动联杆与主轴分离,致使5002开关 C相仍在合位,A、B相在断开位置。现场减#2机励磁,随后,断口闪络保护动作,跳发电机灭磁开关并启动失灵保护,跳母联5012开关及5052开关,并远跳对侧开关。

50515052II5012I50015002#1#2300MW#1#2300MW图1 A电厂系统接线图 事故原因分析

2.1 开关非全相运行和断口闪络保护的保护原理

A电厂的开关非全相运行保护装置采用的是开关本体的非全相保护装置,其是依靠开关本身的位置信号判断出是否不一致,不经零序、负序电流元件闭锁,直接向开关发跳闸命令。这种配置直接用开关辅助接点返回信号作为判据,取消电流判别回路,即当开关操作合闸后,分相操作回路分别合闸,若开关分相辅助接点有分有合,则判断此时开关为非全相运行状态。

断口闪络保护只考虑一相或两相,不考虑三相闪络,并取主变高压侧开关TA电流。其判据为:(1)开关三相位置接点均为断开状态;(2)负序电流大于整定值。断口闪络保护动作后,首先以第1时限动作于发电机灭磁,降低断口电压,促使中止闪络;若闪络持续,应以第2时限启动失灵保护,跳开所有与其有联系的电源支路。2.2 保护动作分析 经现场检查发现#2发电机5002 C相开关辅助接点销子卡圈脱落,传动联杆与主轴分离。因此,5002开关合闸后,其C相开关由于传动联杆与主轴分离,辅助接点还在分闸位置,引发开关非全相保护动作。保护动作后,A、B相开关正确跳开,由于C相开关的辅助接点仍处于分闸位置,跳闸回路未接通,C相开关没能跳开,处于合闸位置,但返回信号依旧显示C相开关处于分闸位置。因此,系统 仍处于两相断开的非全相运行状态,最终达到断口闪络保护负序电流整定值,且保护装置感受到三相开关都在断位,#2发电机断口闪络保护动作,经设定延时0.1秒后动作,跳发电机灭磁开关,发电机机端电压降至零,负序电流加大,故障未消除,500kV母线差动保护BP-2P失灵保护启动,经250ms跳母联5012开关,经500ms跳出线

5052开关,并跳远侧开关。

3、事故正确处理步骤

(1)在A电厂#2机组并网合5002开关过程中,如果现场值班人员发现5002 C相开关未显示合闸,可不待调度指令,立即拉开5002开关,并上级调度员汇报。

(2)若5002开关无法拉开,应立即向上级调度员汇报。上级调度当值调度员应要求A电厂立即将#2炉压火,#2机组出力降至最低,就地将5002开关拉开。

(3)如果5002开关依然无法拉开,则应向上级调度员申请将出线5052开关倒至I母运行,然后拉开母联5012开关,将故障点隔离。3.2 事故整改措施 本次事故暴露出A电厂在安全生产管理方面存在现场工作不规范和培训工作不到位,对存在的危及系统安全的隐患认识不足、处理不及时,专业人员业务素质和技术水平亟待提高。在今后工作中,须严肃调度纪律,严格调度管理,加强运行人员调度规程及运行技术的相关培训。

第二篇:江西丰城电厂冷却塔事故分析

江西丰城电厂冷却塔事故分析

2016-11-25 2016年11月24日7时许,江西丰城一电厂的在建冷却塔发生一起特大事故,到目前为止已经造成74人死亡,2人受伤,目前现场搜救已经基本结束,事故原因还在调查之中。究竟是什么导致了如此严重的事故,在调查报告出来之前谁也不知道,不过我们仍然可以根据现有的资料进行一些分析。

由于本文只是根据现有的网络资料进行的汇总、分析,故可能有不准确的地方,一切以将来的事故报告为准。

事发地位于江西丰城,在建的是装机容量为2×1000兆瓦火力发电机组配套的一座冷却塔。根据新闻的信息,该冷却塔设计高度165米,已经建成70余米。设计高度165米是什么概念?根据《工业循环水冷却设计规范(GB/T 50102-2014)》的资料,165米高的冷却塔已是我国冷却塔的最大型号!

165米高的冷却塔底部直径124米,底面面积达1.2万平方米,周长近400米;冷却塔底部的斜支柱进风口高11.6米。这样的大工程中发生了如此事故,实在是遗憾。

事故原因究竟是什么?根据我个人的分析,可能有以下3个原因: 1.水泥强度不够导致操作平台垮塌; 2.操作平台自身锚固设施失灵; 3.塔吊倒塌引起连锁反应。1.水泥强度不够导致操作平台垮塌:

我认为这一原因的可能性最大,因此将主要篇幅集中在此。「水泥强度不够」有两种可能性:一是使用了未达标的水泥;二是水泥的养护时间不够,导致未达到设计强度就拆除了模板。

混凝土中浇筑之后,需要「养护」一定的时间,待其凝固达到一定强度才能拆除模板。假如在现场浇筑混凝土时,使用的这批次混凝土品质不达标,而现场技术人员又未对混凝土强度进行检测,只是根据经验使用了以前的养护时间,则拆除模板后的混凝土强度不够,自然会导致垮塌。《工业循环水冷却设计规范》对混凝土强度的要求:

在混凝土品质无问题时,过短的养护时间也会导致事故。由于混凝土的养护时间受温度影响比较大,低温时混凝土需要更多的时间才能达到设计强度。根据许多报道,事发的工程当时正在赶工期,还喊出了口号「协力奋战100天」,因此由赶工期而引发此次事故也是极有可能的。《双曲线冷却塔施工与质量验收规范(GB 50573-2010)》对此也有相关规定:

《新京报》的一则新闻里提到知情人士的说法:「意外发生在施工的最后一个步骤,当时来自河北的工人们正拆除冷凝塔外围的木制脚手架,但是尚未干透的混凝土开始脱落,最后坍塌。」这一说法有很高的可信度。下面来看一个示意图:

现在采用的冷却塔施工方式一般是利用浇筑好的钢筋混凝土塔壁作为支撑,在其上搭建操作平台和模板。当浇筑的混凝土达到强度后,先拆除下方的模板A,将其安装到模板B上方,进行下一轮浇筑。但是在拆除模板A时,模板B处的混凝土尚未达到设计强度,并不足以支撑整个操作平台,于是发生了坍塌。由于整个冷却塔上部一圈都在同时施工,连在一起的操作平台就都垮了,工人从70余米的高度坠落。

事实上,此类的冷却塔事故早已有先例,而且和这次的事故有很大的相似性!

1978年,美国西弗吉尼亚州柳树岛(Willow Island)的一在建电厂发生了操作平台坍塌事故,总共造成51人死亡,成为美国建筑史上最严重的事故之一。其事故原因正是因为浇筑的混凝土还未干便拆除模板,造成了巨大的伤亡。人们没有在事故中取得教训,相似的事故竟然在几十年后在中国上演,令人心痛。

由于并没有冷却塔顶部的细节照片,事故的真正原因还不得而知。这里我想对广大的新闻媒体吐个槽,现在网络上有如此多的从冷却塔事故现场正上方拍的照片,一个大大的圆,各家的媒体拍摄的照片惊人地一致。但是人们几乎不能从这种照片中得到任何信息!

既然已经用无人机去航拍了,为什么不再靠近一点?为什么不拍一些操作平台塌落部位的细节?假如能拍到螺栓、钢筋拉扯的痕迹,混凝土的开裂形态,对于事故的分析可以详尽得多。

2.操作平台自身锚固设施失灵:

由于操作平台的锚固设备失灵老化或者未按要求拧紧全部螺栓导致平台坍塌,从而引发连锁反应也是有可能的,《双曲线冷却塔施工与质量验收规范(GB 50573-2010)》对此也有规定:

加粗的6.3.7是强制性条文,必须严格遵守,但是由于目前资料不足,无法对此原因进行判断。3.塔吊倒塌引起连锁反应:

由于塔吊倒塌碰掉操作平台是央视和澎湃新闻的说法,澎湃新闻还特意做了一个3D的模拟动画演示事故场景。但我认为目前的资料尚不足以得出此结论。

位于冷却塔内部的塔吊是泵送混凝土的通道,也是工人们上下的通道。在此类事故中,由于工人只有一条逃生通道,发生事故后往往无处可逃。目前没有确切的关于地面和冷却塔上工人的死伤比例,不过根据新华社的报道:「除了地面层的工友,在上面的人全部坠落,被钢筋等材料压在下面」,「从地面层成功逃生的工人王耀龙说,地面层的工人除了两人轻伤外都安全逃生」,这条新闻暗示在塔上的工人全部遇难,地面只有2人受伤。

由于冷却塔建筑形制的特殊性,工人的安全保障设备还很不健全,希望厂家能够重视工人的安全,开发新的安全机制,使事故发生时工人能够逃生。另外,个人认为工人在施工时盲目相信经验,不相信科学也可能是事故发生的原因,假如工人在拆除模板之前按照规定,使用仪器检测混凝土的强度,此次事故很可能可以避免。

建筑工人工作都很辛苦,据说遇难的大多是来自河北的木工,千里迢迢来江西打工却遭受如此灾难,这些工人可能都是家里的顶梁柱,很难想象妻子失去丈夫、孩子失去父亲的情形。事故的发生真的很令人痛心,每次事故都是血的教训,只希望工人的生命安全能够越来越有保障吧……

第三篇:电厂事故顺序记录分析论文

摘 要 沙角C电厂3台发电机组的S.O.E存在输入信号路径中间环节多,通道分配不合理,部分已定义的通道端子未接线,部分已定义的通道信号定值空缺,部分关键信号未引进S.O.E等问题。造成S.O.E未能对机组事故停机的事故分析提供明确有效的线索和证据。针对存在的问题,进行了相应的整改措施,如取消多余的中间环节,补齐MFT全部始发条件,增加炉水循环泵跳闸信号,增加炉膛层火焰消失信号,增加重要辅机跳闸的始发条件等。实践证明,改造后的S.O.E能准确地捕捉到事故停机的始发原因。

沙角发电总厂C厂(以下简称沙角C电厂)工程全套引进技术设备,建设规模包括3台额定功率为660 MW,最大保证出力为696 MW的亚临界冲动凝汽式汽轮发电机组。其机组为目前我国最大的燃煤机组,具有参数高、系统复杂等特点,而且运行工作人员少,因此,事故顺序记录对于指导检修人员及时排除事故显得特别重要,并直接影响机组的商业运行。

1 S.O.E.的结构及运行状况

沙角C电厂3台机组均采用英国ROCHESTER公司生产的ISM-1型事故顺序记录仪,主要包括电源供电单元(FCU)、信号输入端子板(ITp)、事故虏获单元(ECU)、通信单元(CIU)、打印机和设备间相互连接用的同轴电缆及光纤等。每台机组的S.O.E.提供信号输入通道256个,已定义输入通道255个,主要包括电气保护信号、重要辅机运行状态/跳闸状态信号、电调部分的汽轮机跳闸的始发条件、锅炉MFT始发条件和机、炉部分设备的运行参数等。在机组商业运行过程中,S.O.E.多次出现未能对机组的事故停机的事故分析提供明确有效的线索和证据的情况,延长了机组的消缺时间,影响了机组的安全、经济运行。

2 主要存在的问题

2.1 信号输入路径中间环节多

沙角C电厂S.O.E.输入信号基本上从最近距离的地方引进,造成信号输入路经中间转换环节增多,如锅炉跳闸信号的S.O.E.输入路径为:FSSS→中间继电器柜→DCS输入端子→S.O.E.输入端子。更合理的信号输入路径应为FSSS→S.O.E.输入端子。由于信号输入中间环节多,当通道定义为常闭接点输入时,系统误动作次数将会增加;当通道定义为常开接点输入时,将增大系统拒动的可能性。这些都会影响S.O.E.提供准确的事故线索。另一方面,信号输入中间环节多也增大了检修人员对其它系统的维护难度。

2.2 通道分配不合理

2.2.1 引进了辅机在运行信号

每台机组的S.O.E.不仅引进了各台凝结水泵、凝汽器抽气泵、锅炉给水泵、循环水泵、工业水泵已跳闸信号,而且引进了上述各辅机在运行的状态信号,而绝大部分辅机的运行信号是无助于机组的事故分析的。

2.2.2 输入信号重复

对于6台低压加热器、3台高压加热器等,S.O.E.不仅冗余地引进了容器液位高异常信号(差压开关送出),而且相对地引进了液位高异常继电器已动作信号。相当于S.O.E.定义4个通道监视同一容器的同一异常液位。

2.3 部分已定义的通道端子未接线

2号机组S.O.E.输入通道索引号为19~24,这6个通道分别定义为给水中间水箱水位非常低、公共服务气压力低、燃油箱液位非常低等,但端子板上均未接线。

2.4 部分已定义的通道信号定值空缺

在255个已定义输入通道中,现有的定值一览表未能提供明确定值的共有36个,其中包括定子冷却水出口温度非常高、引风机轴承温度高等。

2.5 部分关键信号未引进S.O.E.如S.O.E.只引进了一个炉膛压力高差压开关接点,而未引进炉膛压力非常高(三取二信号,MFT始发条件)信号;只引进了汽包水位高I值和低I值的报警信号,而未引进作为MFT条件的汽包水位非常高(三取二综合信号)和汽包水位非常低(三取二综合信号)信号。

3 造成缺陷的原因分析

造成缺陷主要有4方面的原因:

a)工程建设采用总承包方式,承包方面为了节省设备开支,尽可能减少电缆铺放长度,从而导致部分信号从附近机柜并接,造成信号输入路径中间环节多。

b)由于工程建设分工是CE负责锅炉岛部分建设,GA负责机、电及公用系统部分建设,GA在机组S.O.E.通道分配上明显未作全盘考虑,绝大部分通道定义给汽机及辅助系统、发电机及发变组,而锅炉部分重要信号却未能引进S.O.E.。

c)监理不力是以上2项既成事实的主要原因,而移交资料不齐全说明验收工作有漏洞。

d)部分主要辅机现在实际运行出力未能达到原设计要求,从而容易触发事故停机,这是S.O.E.原设计点组态时未能充分考虑到的,使S.O.E.在这方面引进的信号不够充足。

4 整改策略

a)全面核实每个输入信号的合理输入路径,取消多余的中间环节。

b)补齐MFT全部始发条件:

1)增加炉膛压力非常高信号,取自FSSS“三取二”综合信号;

2)增加炉膛压力非常低信号,取自FSSS“三取二”综合信号;

3)增加汽包水位非常高信号,取自FSSS“三取二”综合信号;

4)增加汽包水位非常低信号,取自FSSS“三取二”综合信号;

5)增加一次风压对炉膛压力差压低磨煤机全路信号,差压信号取自FSSS。

c)增加每台炉水循环泵跳闸信号,信号取自电气动力箱。

d)增加炉膛层火焰消失信号,信号取自FSSS。增加层火焰消失信号,能为灭火事故分析提供正确的分析方向。

e)增加部分重要辅机跳闸的始发条件:

1)增加每台磨煤机密封风压对冷风管风压差低信号,取自FSSS,是跳磨煤机的条件;

2)增加每台磨煤机的给煤机已停运信号,取自FSSS,是延时跳磨煤机的条件;

3)增加每台给水泵跳闸的始发条件:包括润滑油压低,压加级平衡管温高,液力耦合器轴承温度高,给水泵进出口差压低等,信号分别取自给水泵保护回路和DCS。

5 结束语

改造后的S.O.E.的通道分配合理、引进信号齐全。实践证明,2号机组在1998年10月份小修期间实施S.O.E.改造后,对机组的每次事故停机,S.O.E.都准确地捕捉到始发原因,对机组安全、经济运行起到积极作用。1999年3月份1号机组小修期间又对1号机组的S.O.E.实施改造,同样取得很好的效果。

第四篇:风电机组事故分析及防范措施(三)——部件质量所引发的事故

系列风电机组事故分析及防范措施

(三)——部件质量所引发的事故

风电机组火灾事故在国内外时有发生。对众多机组烧毁事故认真分析,找出事故的确切起因,并采取有效预防措施,有利于避免类似事故的再次发生。本文简要分析几例因部件质量而引发的机组事故,并探讨风电机组重大事故分析的基本方法。事故案例

一、发电机前轴承损坏引发的事故

(一)事故经过

某风电场在后台发现,事故机组报“发电机超速”停机,其后触发了“发电机轴承1 温度偏高”“发电机轴承1 温度过高”等多个故障。事故后,联轴器及联轴器罩壳完全烧毁,该事故机组的发电机轴承采用自动注油润滑方式。此类事故的共同特征是:在发电机前轴承端盖上会出现V 字形的黑色印记。图1 为某风电场事故机组的发电机前轴承端盖状况,图2 为同一厂家发电机发生在另一风电场的联轴器烧毁事故,此厂家发电机因前轴承抱死而引发联轴器烧毁事故的次数相对较多,因此还出现过机组烧毁事故。此类事故与发电机前轴承的润滑结构与润滑方式有关。

在通常情况下,当出现发电机前轴承抱死时,不会发生联轴器及机组烧毁事故,有时仅在前轴承端盖上出现一个V字形的黑色印记。个别品牌的发电机则出现联轴器及机组烧毁事故的概率却很高。

(二)事故原因及分析

事故的起因是发电机前轴承损坏,当轴承保持架损坏后,发电机轴承内外圈之间以及轴承内圈与发电机轴之间的摩擦,短时间内剧烈发热,大量的油脂会受热蒸发,当蒸发的油脂从发电机轴承前端喷出后,温度超过燃点就会燃烧。

润滑脂的填充量,以填充轴承和轴承壳体空间的三分之一和二分之一为宜,用于高速旋转的轴承应仅填充至三分之一或更少。采取有效措施严格控制轴承内部的油脂量,并防止油脂在发电机轴承内大量沉积是避免此类火灾事故的根本方法。对于已投运此类发电机,建议取消自动注油润滑方式,通过人工方式准确地控制注油量和油脂位置,按时清理轴承内部废油;对于未出厂的发电机,建议对发电机前轴承的注油位置和排油方式进行改进,以避免过多的废油在轴承内部沉积。

二、轮毂重要元器件故障引发的机组烧毁事故

(一)事故经过

某风电场事故机组在故障停机时,触发电池顺桨,并一直处于停机状态,机组顺桨到92°,其后有人发现机组出现浓烟,大约在1 小时后,轮毂上面和机舱下面均有明火出现。机组在燃烧过程中,一直处于对风位置,风向未变,最后机舱、轮毂罩壳全部烧毁,叶片根部烧毁。吊下事故机组后发现,有一个轮毂轴柜处于打开状态,内部仅剩铜芯和轮毂驱动器,其他两个轴控柜处于盖住状态,并保持完好。

(二)事故原因分析

事故机组采用的是直流变桨系统,备用电源为电池,从理论上讲,该变桨系统安全性极高。由于国内机组的低价竞争,机组价格不断降低。轮毂的采购价大幅度降低。在紧急顺桨时直接导通电池与轮毂变桨电机的接触器,其采购成本也急剧降低。采用此批次轮毂的机组,在调试中发现,此接触器烧毁出现的频次较高,轮毂轴柜完全烧毁也时有发生。

该直流变桨系统,在正常紧急顺桨时,通过接触器吸合直接将备用电源与变桨电机接通,在变桨电机刚启动时,该接触器通过的电流很大,并只有当叶片撞到限位开关时,此接触器才会断开。此接触器的控制供电和执行送电,均取自轮毂备用电源。如该接触器容量过小或质量不佳,在执行紧急顺桨过程中,可能造成接触器吸合后因接触电阻过大,而产生严重打火,并引起备用电源电压降低,使接触器断开;断开后,接触器的控制电压(后备电源电压)立即升高,接触器又再次吸合打火,这样循环往复,可造成该接触器及相应部件烧毁。

当变桨电机电池供电接触器出现质量问题时,可能带来以下三个方面的问题: 第一,在紧急顺桨时,如变桨电机的后备电源供电接触器持续打火,轻则可使该接触器、轮毂轴柜烧毁。因接触器在密闭的轴柜中打火,打火燃烧时柜内气体迅速膨胀,可能顶开轴柜,如轮毂轴柜打开,在无人灭火的情况下,必然会导致机组烧毁事故的发生。

第二,在顺桨时,当轮毂电机或轮毂电机刹车的供电接触器出现卡塞、烧毁时,还可能导致不能顺桨,引发机组飞车事故。

第三,因接触器质量问题导致接触器漏电,则会使电池持续放电。当轮毂较长时间储存或机组较长时间处于断电状态时,则会造成电池的寿命缩短和损坏,或引发飞车事故的发生。

从原理上讲,直流变桨系统的安全性很高,但在轮毂生产过程中,如果其关键部件的选型或质量存在问题,则可能导致机组飞车、烧毁及倒塌事故。

三、主控控制逻辑错误引发的机组烧毁事故

(一)事故简介

某风电场2MW 机组,发电功率为300kW 左右出现故障停机,三支叶片均在0°位置不能顺桨,机组转速超过硬件设定值,报刹车BP200 停机,主轴刹车器制动,断安全链,不久机组转速降至0rpm,即机组完全停下。其后,运行人员对事故机组进行了多次“复位启机”,随后刹车BP200 和安全链被远程复位,此时由于三支叶片均在0°位置,机组转速迅速上升,再次超过硬件设定值,主轴刹车器制动,机组起火,大约在事发后一个小时机组轰然倒塌,倒塌后机舱、轮毂、叶片依然剧烈燃烧。事故机组主轴刹车器的刹车盘状况,如图3 所示。

二)事故分析

事故机组因安全隐患致使三支叶片均在0°位置不能顺桨。当机组硬件超速后,主轴刹车器制动,机组已经安全停下,如到现场采取合理措施,原本可以避免事故的发生。

按照正常的主控控制逻辑,当机组因故障停机,安全链断开,不能远程复位,须到现场对机组进行硬件复位。然而,主控程序由于不够完善,可以“远程复位安全链”。

在我国风电发展初期,少有国产主控。现如今,能自主研发和生产主控的国内厂家有几十家之多,其质量却是良莠不齐。有的国产主控硬件是从国外进口,且主要关注控制器的处理能力, 而硬件更新速度很快, 硬件更新他们的主控程序也随之而彻底改变, 这样,主控程序始终处于初级开发阶段, 存在诸多不足。例如:控制逻辑错误、报故障不准确、维修不便、权限管理不完善、不能满足机组的远程故障诊断和安全检查需要等一系列问题,有的甚至还可能存在安全隐患,需在实践中尽快完善。

在开发之初,不少国产主控仅满足于现场机组的基本运行,因缺乏现场经验丰富技术人员的参与和指导,主控编程人员又缺乏运维知识和先进主控的使用经验,仅凭某些世界知名厂家的主控说明书进行仿制。每当现场人员对其主控的控制逻辑和缺陷提出异议时,却又缺乏相应的判断和识别能力,这种局面如不转变,随着时间的推移,其主控程序很难有实质性的改进。

在我国风电的快速发展时期,相当短的时间内,绝大部分的风电机组部件均实现了国产化,但因急功近利和低价竞争,存在问题的机组部件不在少数。因此,在机组部件国产化时,新开发的机组部件需先在样机上或小规模使用,在风电场实践中完善、成熟后再进行批量生产,以免造成大的失误和损失。

事故分析的基本方法

当风电事故发生后,只有分析正确,才可能采取行之有效的预防和改进措施。如事故分析人员缺乏现场维修经验,仅从理论上进行分析,不能结合同类型机组的维修、维护实践,在事故分析时,往往可能把在实践上不可能发生的事件,或可能发生的偶然事件当成是大概率或必然事件,因其考虑不够全面导致分析结论错误,不能采取行之有效的预防措施。

如“事故案例”中“

二、轮毂重要元器件故障引发的机组烧毁事故”所述,机组燃烧实际的起火点是紧急顺桨的直流供电接触器,机组烧毁先是由轮毂起火。然而,在现场勘查中发现,发电机接线盒上的定、转子螺钉有松动现象,于是就下结论,起火原因是发电机定、转子螺钉松动造成。由此得出的整改措施必然是既费工费时,又无法解决问题,甚至在适当的条件下,类似事故必然还会再次发生。

一、确定事故分析基本思路

当机组事故发生后,首先需要确定的是事故发生的基本方向。即:在分析机组烧毁事故时,首先要确定起火的大致位置,在机舱、轮毂、变频器、U 形电缆处,还是箱变到变频器的接线,然后根据起火点位置和基本事实在现场找证据。确定起火点位置时,可根据事后勘察,并结合事发时的机组燃烧现象。如“事故案例”中的“

二、轮毂重要元器件故障引发的机组烧毁事故”中“

(一)事故经过”所述,事发时,事故机组一直处于对风状态,机组燃烧时,很快在轮毂上方出现了明火,并且,事故勘察发现,轮毂轴柜处于打开状态。如事故方向和起火原因确定在发电机的定子、转子接线松动,则不能解释“很快在轮毂上方出现了明火”等一系列现象,可能对“轮毂轴柜处于打开状态”等重要证据视而不见。另外,该结论不能与该类型机组调试、维修过程中出现的“特殊故障(轮毂电机直流供电接触器、轮毂轴柜烧毁)”紧密联系。

因此,进行事故分析时,首先要根据事发现象、现场状况、机组运行原理,机组故障的处理经验及主控信息等尽可能多地假设事故产生的可能方向,然后根据所收集的信息,迅速排除不可能的事发方向,以缩小范围找出最大可能方向,最后根据相关证据和事实锁定事发方向。同时,仔细进行现场勘察,为锁定事故方向寻找证据。并根据所收集的信息,结合相关知识,解释事发时及事发后的诸多现象,以验证分析结论是否正确。

如在现场不能锁定事故发生的基本方向,现场收集证据就可能陷入盲目的境地,可能失去收集关键证据的机会,也难以得到具有说服力的结论。

二、形成事故证据链,实施整改措施

事故机组的安全隐患会在烧毁、倒塌机组中出现,在机组维护、维修时,这些故障隐患也必然会在相同型号、配置的故障机组中出现。因此,当事故发生后,如果没有分析出事故的原因,或对事故还存在诸多疑点,当机组维修和维护时,只要留心观察同类型机组发生的故障,就可能找到事发的原因。例如:在《系列风电机组事故分析及防范措施

(二)》一文中,因存在紧急顺桨控制回路被强行提供24V 直流的安全隐患,从而造成了机组飞车事故。在事故发生之后,找出机组倒塌、烧毁的真实原因之前,机组维修过程中发现的此类安全隐患不在少数。

事故分析应紧扣事发时的现象和风电场机组的运行维修实践,并能根据风电机组运行的基本原理或相关知识解释相关现象,使现象与结论之间能顺理成章地构成因果关系,相关现象和主控记录能相互印证形成完备的证据链,分析得到的结论不应与事发时的现象及勘察结果有任何矛盾。

与同类型机组维修实践不符的分析和结论,则不应是事故发生的原因。例如:某机组烧毁事故发生之后,事故调查的结论是因电池造成三支叶片同时不能顺桨。从现场机组维修实践来看是根本不可能的。因为,在当时投运的同类型机组中,其轮毂大都是来自同一厂家同一型号和批次,而众多的轮毂故障中,当时还没有遇到过因为电池容量或电池电压问题造成一支桨叶在零度位置不能顺桨,而因电池问题造成两支桨叶均在零度位置的情况更未曾发生,从机组的维修实践有理由相信:因电池问题造成三支桨叶同时在0°位置不能顺桨,在实践上是不可能的情况。

因此,在分析事发时的诸多现象和问题时,充分利用机组运行原理;要能还原出事发时的关键情景;现象之间要能相互印证,不能孤立地看问题。例如:当机组烧毁事件发生后,不经周密分析就下结论是机组质量问题造成,并在机舱上布置自动消防系统完事的做法;机组因超速飞车倒塌就认为超速参数设置有问题,于是实施降低机组超速参数设置的整改措施和设计方案,这显然是把复杂问题过于简单化,不利于有效地解决问题。

三、通常情况下,手动复位不能成为事故原因

当事故发生之后,我们不仅要分析事故发生的原因,而且,还需确定有效的预防措施。需要澄清的是,在一般情况下,“复位启机”不能成为事故的原因。在通常情况下,“复位启机”后如发生了机组烧毁、倒塌事故,则应是机组的设计、制造、安装、改造、维护、维修等环节存在缺陷和安全隐患。这也是由风电机组的运行特点所决定的,手动复位应是风电机组正常运行基本操作,在通常情况下,不应是事故产生的原因。

例如:本文“事故案例”中 “

三、主控控制逻辑错误引发的机组烧毁事故”所述,在事故发生过程中,多次远程复位后造成安全链被复位,机组烧毁、倒塌事故的发生,究其原因是主控程序存在缺陷。

结语

风电机组烧毁、倒塌事故发生后,应通过事发现象、机组的现场状况、运行原理,运维实践及主控信息等各方面信息相互印证,分析得出导致事故发生的真实原因。并通过完善设计、提高产品质量、提高运维水平、增强现场人员的技术水平和责任意识等,采取积极主动的预防措施避免风电机组重大事故的发生。

第五篇:一起雷击引发的电网事故分析(论文)

一起雷击引发的电网事故分析

巫聪云,王德付

(广西电力调度通信中心,广西 南宁 530023)

摘要:通过一起雷击引发的电网事故,分析了雷击频繁地区输电线路防雷措施缺失和断路器失灵保护拒动对系统造成的重大影响,并结合距离保护的阻抗特性圆和故障录波图进一步解释线路远后备保护拒动和主变零序反时限过流保护越级动作的原因,最后提出相应的防范措施。

关键词:线路防雷;失灵出口;保护配合;拒动;

0 引言

2010 年8 月3 日,由于某局所辖的两条220kV同杆并架双回线连续遭雷击,某局管辖的多条线路及主变先后跳闸。造成220 kV黄桥站全站失压,并导致500kV海港站#1主变跳闸。对此次全站失压的原因进行认真分析,吸取经验教训并制定相应有效的措施对提高电网的安全运行是大有裨益的。事故经过

1.1 运行方式简介

事故发生前,500kV海港站220kV海高Ⅰ线2065开关停电检修,其余元件正常运行。220kV黄桥站双母并列运行:1号主变2001开关、海黄Ⅰ线2053开关、竹黄Ⅰ线2056开关接在Ⅰ母;海黄Ⅱ线2054开关、竹黄Ⅱ线2055开关接在Ⅱ母,母联2012开关合环运行。

220kV竹坪站双母并列运行:1号主变2001开关、竹黄Ⅰ线2057开关、海竹线2053开关接在Ⅰ母;竹黄Ⅱ线2056开关、竹新线2052开关接在Ⅱ母,母联2012开关合环运行。

500kV海港站及其相邻变电站地区环网接线情况如图1所示。:

黄桥站Ⅰ母2053Ⅱ母2001#1主变海港站500kVⅡ母防海乙线205420552056竹黄Ⅱ线竹黄Ⅰ线Ⅱ母Ⅰ母2051海琴线海黄Ⅰ线海黄Ⅱ线海竹线海新Ⅰ线海新Ⅱ线*********0585031500kVⅠ母200120592064海高Ⅰ线2065海高Ⅱ线#1主变2012#1主变2052竹新线竹坪站图1 某地区电网接线图

Ⅰ母Ⅱ母

1.2 事故过程

整个事故过程分为四个阶段,具体情况如下:

第一阶段: 2010年8月3日4时29分45秒,220kV竹黄I、II线同时受雷击发生A、C相间故障,线路两侧主

一、主二保护动作出口,开关三跳不重合。

第二阶段: 4时35分23秒(距第一次故障6分钟后,220kV竹黄I、II线未恢复运行前),因竹黄I、II线再次遭受雷击,220kV黄桥站竹黄Ⅰ线2056开关的A相灭弧室断口发生击穿,220kV竹坪站竹黄Ⅱ线2056开关的C相灭弧室断口发生击穿,线路纵联主保护动作,但由于开关已在断开状态,无法切除故障,线路保护启动失灵跳相应段母线上的所有开关。220kV黄桥站220kV Ⅰ段母线失压,竹黄I线故障点被隔离。由于失灵出口跳母联2012开关的回路故障,母联2012开关未能成功跳开,竹黄II线故障依然存在。

第三阶段: 220kV竹坪站Ⅱ母失灵动作后,由于母联2012开关未跳开,500kV海港站1号主变仍然通过竹海线给竹坪站故障点提供故障电流,海港1号主变两套保护的中压侧零序反时限保护因满足条件动作,出口跳海港1号主变三侧开关。220kV竹坪站1号主变通过母联给故障点提供故障电流,220KV侧零序过流II段一时限动作,跳竹坪主变三侧开关。

由于220kV竹坪站母联2012开关不能及时跳开,系统一直给竹黄Ⅱ线的故障点提供短路电流,4时35分28秒,220kV竹坪站竹黄Ⅱ线2056开关C相灭弧室经长时间的故障电流发热后爆炸,竹黄Ⅱ线Ⅱ母侧刀闸20562刀闸C相支柱瓷瓶断裂,造成220kV竹坪站220kVⅡ段母线C相故障,220kV竹坪站220kVⅡ母两套母差保护动作由第二套母差保护出口跳开2012母联开关,至此故障最终被隔离。

第四阶段:4时35分56秒,220kV黄桥站竹黄Ⅱ线2055开关又因雷击空载线路,开关的B、C相灭弧室断口发生击穿,同样线路保护动作无法切除故障,启动Ⅱ母失灵,失灵保护动作后跳开海黄Ⅱ线2054开关,同时远跳海黄Ⅱ线海港侧2053开关。

至此,220kV黄桥站全站220kV母线失压,220kV竹坪站220kVⅡ母线失压,500kV海港站主变三侧开关跳闸,将500kV电网与220kV电网断开。事故分析

3.1事故原因

经过分析造成此次事故的原因主要有两个: 一是由于雷击线路没有有效防雷措施。

6月至8月间,在南方一般多为雷暴天气,雷击线路现象较为普遍,220kV竹黄Ⅰ、Ⅱ线所在地区雷暴日更为频繁,220kV竹黄Ⅰ、Ⅱ线在遭受雷击跳闸的情况下,由于线路未安装避雷器,空线路再次遭受雷击后,雷电波反射产生的过电压致使开关发生纵向击穿,是导致本次事故发生的直接原因。

二是竹坪站220kV第一套母线保护装置由于驱动芯片MC1413输出异常致使母差失灵保护动作时该继电器未能正确动作,220kV母联2012开关出口中间TJML继电器无法出口,导致失灵保护动作后,出口接点无法接通,造成失灵保护跳竹坪站220kV母联2012开关无法出口,引发了事故范围的扩大。

3.2 保护行为分析

此次事故中,220kV海竹线是海港站与竹坪站之间唯一的联络线,海港站220kV海竹线配置的线路保护为南瑞继保公司的RCS-931AM和RCS-902C保护装置,其中作为竹坪站后备保护有接地距离Ⅱ段、接地Ⅲ段和零序过流Ⅲ段保护。这些后备保护在事故中均没有动作,海港站#1主变零序反时限过流保护动作将事故范围扩大。3.2.1 220kV海竹线保护动作行为分析

针对220kV海竹线保护配置及特点将其动作行为分析如下:

海港站220kV海竹线线路RCS-931AM和RCS-902C保护装置相关整定定值为: 正序灵敏角:78度。零序补偿系数:0.62 接地距离Ⅱ段定值:8.0欧(二次值);时间:0.9秒。接地距离Ⅲ段定值:9.26欧(二次值);时间:3.3秒。零序过流Ⅲ段定值:0.24安(二次值);时间:5.3秒。

1)接地距离Ⅱ段保护

根据整定值和录波数据绘制出接地距离Ⅱ段动作特性圆,以及事故时保护装置测量阻抗的运动轨迹。如图2所示。

图2 测量阻抗在接地距离Ⅱ段动作特性圆的运动轨迹

竹坪站220kV竹黄Ⅱ线2056开关C相刚开始击穿,由于开关灭弧气室未完全击穿,电弧电流不稳定,导致短路电流的大小及相位的变化。因此,海港站220kV海竹线距离保护的测量阻抗在距离Ⅱ段动作特性圆边界附近来回移动,保护元件无法连续计时,竹坪站220kV竹黄Ⅱ线2056开关C相完全击穿后,短路电流和相位相对稳定,此时,海港站220kV海竹线距离保护的测量阻抗在一段较长的时间内进入距离Ⅱ段动作区,但累积时间只有882.9ms,未达到整定值0.9s,保护不动作。之后,由于海港#1主变三侧开关跳闸,流经220kV海竹线的短路电流变小,因此,测量阻抗基本在距离Ⅱ段动作特性圆外,保护不动作。因此,海港站220kV海竹线接地距离Ⅱ段保护在整个过程中没有动作出口。2)接地距离Ⅲ段保护

根据整定值和录波数据绘制出接地距离Ⅲ段动作特性圆,以及事故时保护装置测量阻抗的运动轨迹,如图3所示。

图3 测量阻抗在接地距离Ⅲ段动作特性圆的运动轨迹

从竹坪站220kV竹黄Ⅱ线2056开关C相开始击穿至海港站#1主变三侧跳闸之后的一段时间内,测量阻抗进入接地距离Ⅲ段保护的动作区,海港站#1主变三侧跳闸之后,220kV海竹线提供的短路电流逐渐变小,测量阻抗已移出接地距离Ⅲ段段保护的动作区。在整个事故过程中,测量阻抗进入接地距离Ⅲ段保护动作区的时间只有2.8秒,没有达到整定时限3.3秒,因此,海港站220kV海竹线接地距离Ⅲ段保护在整个过程中没有动作出口。3)零序过流Ⅲ段保护

图4 220kV海竹线电流录波图

海港站220kV海竹线2057开关CT从故障开始到竹坪站220kV竹黄Ⅱ线2056开关C相爆炸,零序电流持续时间为4515.7毫秒(如图4所示),而零序过流Ⅲ段动作时间整定为5.3秒,因此零序过流Ⅲ段没有动作。

3.2.2 海港站#1主变保护零序过流反时限动作行为分析

由于竹坪站220kV 母联2012开关拒动,220kV竹黄Ⅱ线2056开关C相纵向击穿及线路C相接地故障无法隔离,海港站#1主变仍然通过220kV竹海线给竹坪站故障点提供故障电流,海港站#1主变配置的第一、二套主变保护RCS-978E装置220kV侧零序反时限过流保护在故障后约3.7秒后动作,跳主变三侧开关。

分析:根据零序过流反时限计算公式:

0.02t(I0)={0.14/[(3I0 / IP)-1]}×TP 式中:TP——时间常数,动作后断变压器各侧开关。IP——基准电流,统一取一次值:300安。

海港站#1主变保护RCS-978CF装置相关定值整定如下:

零序反时限过流定值(电流基准值):0.12 安(二次值)一次值:300安 零序反时限时间(时间常数):1.2 秒

零序反时限跳闸控制字:000F(跳三侧开关)

根据海港站#1主变故障220kV侧电流录波图(如图5所示),#1主变220kV侧3IO平均值约为=1.10安(二次值)

图5 海港站#1主变220kV侧电流录波图

代入上式中,则有:

0.02t(I0)={0.14/[(1.10 / 0.12)-1]}×1.2 =3.71秒 因此,海港站#1主变第一、二套主变保护RCS-978CF装置的220kV侧零序反时限过流保护在竹黄Ⅱ线2056开关C相爆炸前动作出口跳开主变三侧开关,将500kV电网与220kV电网进行有效隔离。4 防范整改措施

针对此次事故,经分析以后制定以下防范措施:

1、开展输电线路综合防雷治理工作,有针对性的采取局部加强绝缘、架设耦合地线、减小杆塔保护角等防雷措施。同时,要高度重视线路避雷器安装工作,实践证明,线路避雷器能有效避免由于二次雷击造成开关断口纵向击穿。因此,应将雷暴日频繁地区的输电线路安装线路避雷器列入反事故措施中,并加强反措执行的刚性,加大反措的资金投入,特别是对未安装避雷器的220kV及110kV输电线路应及时进行线路避雷器的加装工作。

2、为了简化失灵保护的二次回路,很多地区对于双母线接线形式的断路器失灵保护只配置了一套,一般都通过第一套母线保护中的失灵保护出口,单一的失灵出口回路故障会引起出口继电器无法励磁,造成失灵保护拒动甚至引发电网大面积停电事故等严重后果。为防止断路器失灵保护由于单一配置的继电器损坏导致保护拒动的事故,失灵保护应按照双重化配置原则进行配置,以提高失灵保护的可靠性。

3、本次事故中暴露出不同原理的500kV变压器220kV侧零序反时限过流保护与220kV线路接地距离保护、零序定时限过流保护存在失配的可能,经过计算后,如满足保护配置要求,可有选择地退出500kV变压器的220kV侧零序反时限过流保护,以避免由于后备保护失陪造成越级动作。

4、与保护设备生产厂家研究实现对保护装置中重要的出口继电器及其回路进行监视,异常时能及时告警的功能,当出口继电器及相关回路发生异常时,装置能及时向后台监控系统发告警信号,运行人员及相关调度部门方可作出正确、及时的判断及处理。

参考文献

[1] 崔家佩,孟庆炎,陈永芳,熊炳耀.电力系统继电保护与安全自动装置整定计算[M].北京.水利电力出版社,1993.[2] DL/T559-94,220kV~500kV 电网继电保护装置运行整定规程[S].[3] 唐卓尧,广东省电力系统继电保护反事故措施及释义[M].北京.中国电力出版社,2008

作者简介

巫聪云(1979-),男,本科,工程师,从事电力系统继电保护运行管理工作。联系方式:***(手机)电子邮箱:wu_cy.dd@gx.csg.cn

下载电厂并网开关故障所引发事故分析[范文大全]word格式文档
下载电厂并网开关故障所引发事故分析[范文大全].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电厂水处理典型事故的分析5篇

    电厂水处理典型事故的分析、处理与防范 摘 要 本文对电厂水处理系统常见的各类典型事故进行了分析研究,对各事故提出了分析判断、事故处理的方法,并提出了相应的事故防范措施......

    燃煤电厂锅炉炉膛爆燃事故警示分析

    一、炉膛内爆 、外爆 炉膛内爆 当炉膛内负压过高,超过了炉墙结构所承受的限度时,炉墙会向内坍塌,这种现象称为炉膛内爆。随着大容量机组的发展和除尘、脱硫设备的装设及高压头......

    常减压101-P-102泵故障的事故分析报告

    编号:008 20120721关于常减压一级循环注水泵101-P-102A泵密封泄漏故障的分析报告 部门:洋浦力源石化工程有限公司 编制:李平审核:王彦江 日期:2012年7月23日 装置名称:常减压 设......

    发电厂安全事故案例分析和经验总结【含68个电厂事故分析和经验总结】(5篇可选)

    发电厂安全事故案例 分析和经验总结 目录 大唐集团电厂三起事故的通报....................................................................................4 托克托电......

    GIS断路器就地合闸引发越级跳闸的事故分析

    GIS断路器就地合闸引发越级跳闸的事故分析 【摘要】全封闭组合电器(GIS设备)因其占用空间小、开断容量大、运行可靠性高的优点,在电力系统得到了广泛的应用,尤其是新建的110kV及......

    机务原因引发的供电事故案例分析与预防[定稿]

    机务原因引发的供电事故案例分析与预防 机车受电弓是通过支持绝缘子设置于机车顶部,滑板装有碳条,直接与接触线在动态中滑动取流。因此,机务原因引发的供电事故一般有:受电弓支......

    电动轮卡车自动熄火引发的撞车事故分析

    电动轮卡车自动熄火引发的撞车事故分析电动轮卡车是大型露天煤矿的主要运输工具,它殍担着土、岩剥离和煤炭拉动的任务。我公司二个露天煤矽现有电动轮卡车SF3102卡车24台,630E......

    二值金陵电厂事故分析学习总结[五篇范例]

    二值关于“金陵电厂“5.1”电气误操作事故”的分析、总结 一、金陵电厂“5.1”电气误操作事故过程 将此次事故分为以下三个阶段进行分析 一、工作安排阶段 4月29日 电厂运......