2017年 八年级数学上册 全等三角形 单元测试题(含答案)(样例5)

时间:2019-05-15 01:04:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2017年 八年级数学上册 全等三角形 单元测试题(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2017年 八年级数学上册 全等三角形 单元测试题(含答案)》。

第一篇:2017年 八年级数学上册 全等三角形 单元测试题(含答案)

2017年 全等三角形 单元测试题

一、选择题:

1.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:

①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2; ②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()

A.①正确,②错误 B.①错误,②正确 C.①,②都错误 D.①,②都正确

2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()

A.20° B.30° C.35° D.40°

3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为(A.PN<3 B.PN>3 C.PN≥3 D.PN≤3

4.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()

A.330° B.315° C.310° D.320°

5.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()

A.60° B.70° C.75° D.85°

第 1 页

共 1 页)6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()

A.1个 B.2个 C.3个 D.4个

7.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()

A.PM>PN B.PM<PN C.PM=PN D.不能确定

8.△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3 B.4 C.5 D.3或4或5

9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()

A.1 B.2 C.3 D.4 10.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()

A.0.4cm B.0.5cm C.0.6cm D.0.7cm

2222

11.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.

第 2 页

共 2 页 A.小于 B.大于 C.等于 D.不能确定

12.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为()

A.80° B.100° C.60° D.45°

二、填空题:

13.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED= 度.

14.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形 对.

15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.

第 3 页

共 3 页

16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .

17.在平面直角坐标系中,点(A2,0),(0,4)B,作△BOC,使△BOC与△ABO全等,则点C坐标为.18.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).

三、解答题:

19.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)

20.如图,已知△EFG≌△NMH,∠F与∠M是对应角.

(1)写出相等的线段与角.

(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.

第 4 页

共 4 页

21.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;

(2)若∠B=30°,CD=1,求BD的长.

22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

第 5 页

共 5 页

23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

24.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.

请你参考这个作全等三角形的方法,解答下列问题:

(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;

(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;

(3)如图3,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

第 6 页

共 6 页

1.D 2.B 3.C 4.B 5.B 6.B 7.C

参考答案

第 7 页

共 7 页 8.B 9.C 10.B 11.B 12.A 13.答案为:∠AED=50度.

14.答案为:4

15.答案为:2.

16.答案为:1<AD<9.

17.答案为:(-2,0),(-2,4),(2,4);

18.答案为:①②③.

19.【解答】解:∵△ABF≌△DCE

∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE; ∴AF∥ED,AC=BD,BF∥CE.

20.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;

(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm; ∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.

21.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中

∴Rt△ACD≌Rt△AED(HL);

(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.

22.证明:延长AC至E,使CE=CD,连接ED ∵AB=AC+CD ∴AE=AB ∵AD平分∠CAB ∴∠EAD=∠BAD ∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB ∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD ∴∠ACD=∠E+∠CDE=2∠E=2∠B 即∠C=2∠B

23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.

第 8 页

共 8 页

24.解:(1)如图2,∵∠ACB=90°,∠B=60°.∴∠BAC=30°. ∵AD、CE分别是∠BAC和∠BCA的平分线,∴∠DAC=0.5∠BAC=15°,∠ECA=0.5∠ACB=45°. ∴∠EFA=∠DAC+∠ECA=15°+45°=60°.

(2)FE=FD.如图2,在AC上截取AG=AE,连接FG. ∵AD是∠BAC的平分线,∴∠EAF=∠GAF,在△EAF和△GAF中∵

∴△EAF≌△GAF(SAS),∴FE=FG,∠EFA=∠GFA=60°.∴∠GFC=180°﹣60°﹣60°=60°.

又∵∠DFC=∠EFA=60°,∴∠DFC=∠GFC. 在△FDC和△FGC中∵∴△FDC≌△FGC(ASA),∴FD=FG.∴FE=FD.

(3)(2)中的结论FE=FD仍然成立.同(2)可得△EAF≌△HAF,∴FE=FH,∠EFA=∠HFA.

又由(1)知∠FAC=0.5∠BAC,∠FCA=0.5∠ACB,∴∠FAC+∠FCA=0.5(∠BAC+∠ACB)=0.5=60°. ∴∠AFC=180°﹣(∠FAC+∠FCA)=120°. ∴∠EFA=∠HFA=180°﹣120°=60°.

同(2)可得△FDC≌△FHC,∴FD=FH.∴FE=FD.

第 9 页

共 9 页

第二篇:人教版八年级数学上册第二章全等三角形单元复习测试题(含答案)

人教版八年级数学上册第二章全等三角形单元复习测试题(含答案)

一.选择题(共10小题)

1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()21世纪教育网版权所有

A.AB=CD

B.

EC=BF

C.

∠A=∠D

D.

AB=BC

(1题图)

(2题图)

(3题图)

2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()21教育网

A.6

B.

C.

D.

3.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()www.xiexiebang.comjy*com

(11题图)

(12题图)

(13题图)

(14题图)

12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是      .【来源:21cnj*y.co*m】

13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=      °.【出处:21教育名师】

14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=      .【版权所有:21教育】

15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)21教育名师原创作品

(15题图)

(16题图)

(17题图)

(18题图)

16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是      .21*cnjy*com

17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是      度.

18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=      度.

19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是      .

(19题图)

(20题图)

20.如图,在△A

BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是      .

三.解答题(共7小题)

21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.

(1)求∠EBG的度数.

(2)求CE的长.

22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.

(1)求证:△ABD≌△CAE;

(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.

23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:

(1)△AEF≌△CEB;

(2)AF=2CD.

24.如图:在△ABC中,∠C=90°

AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;21cnjy.com

说明:(1)CF=EB.

(2)AB=AF+2EB.

25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少?请说明理由.21·cn·jy·com

人教版八年级数学上册第二章单元测试题

一.选择题(共10小题)

1.A

2.A

3.B

4.C

5.C

6.A

7.D

8.D

9.B

10.C

二.填空题(共10小题)

11.4

12.70°

13.30

14.30°

15.AB=CD

16.AC=DE

17.60

18.90

19.20.4

三.解答题(共7小题)

21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;

(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.

22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°

在△ABD和△CAE中∴△ABD≌△CAE(AAS);

(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.

∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.

23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B

在△AEF与△CEB中,∴△AEF≌△CEB(AAS);

(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.

24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;

(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.

在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.

25.解:AB=60米.

理由如下:

∵在△ABC和△DEC中,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.

第三篇:全等三角形测试题

全等三角形测试题

(出题人孟令震2011 9 12)

一.选择题:

1. 在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC

≌△A’B’C’, 则补充的这个条件是()

A.BC=B’C’B.∠A=∠A’C.AC=A’C’D.∠C=∠C’

2. 直角三角形两锐角的角平分线所交成的角的度数是()

A.45°B.135°C.45°或135°D.都不对

3. 现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四

根木棒中应选取()

A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒

4.根据下列已知条件,能惟一画出三角形ABC的是()

A.AB=3,BC=4,AC=8;B.AB=4,BC=3,∠A=30;

C.∠A=60,∠B=45,AB=4;D.∠C=90,AB=6

二、填空题:

5.三角形ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大12度,则这个三角形是__三角形.

6.以三条线段3、4、x-5为这组成三角形,则x的取值为____.

三、解答题:

7. 已知:如图13-4,AE=AC,AD=AB,∠EAC=∠DAB,求证:△EAD≌△CAB.

8. 如图13-5,△ACD中,已知AB⊥CD,且BD>CB, △BCE和△ABD都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC≌△DBE;②△ACB≌△ABD;

③△CBE≌△BED;④△ACE≌△ADE.这些三角形真的全等吗?简要说明理由.

9. 已知,如图13-6,D是△ABC的边AB上一点, DF交AC于点E, DE=FE, FC∥AB,求证:AD=CF.F

B B CB图13-6 图13-5 图13-4

10. 阅读下题及证明过程:已知:如图8,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.

证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC……第一步∴∠BAE=∠CAE……第二步

问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.

11.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点,交AD于点F,求证:∠ADC=∠BDE.

D

图8 CD 图9 图9 E B

第四篇:八年级数学全等三角形证明题

中考网

第十三章全等三角形测试卷

(测试时间:90分钟总分:100分)

班级姓名得分

一、选择题(本大题共10题;每小题2分,共20分)

1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;

③BC=DF;④AB=EF中,能判定它们全等的有()

A.①②B.①③C.②③D.③④

2. 下列说法正确的是()

A.面积相等的两个三角形全等

B.周长相等的两个三角形全等

C.三个角对应相等的两个三角形全等

D.能够完全重合的两个三角形全等

3. 下列数据能确定形状和大小的是()

A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°

C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°

4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△

ABC≌△DEF()

A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F

5. OP是∠AOB的平分线,则下列说法正确的是()

A.射线OP上的点与OA,OB上任意一点的距离相等

B.射线OP上的点与边OA,OB的距离相等

C.射线OP上的点与OA上各点的距离相等

D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC

时,运用的判定定理是()A.SSS

C B.ASA B C.AAS

(第6题)D.SAS

7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC

B.∠C=∠D

C.AD∥BC

D.OB=OC

8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()

A.1对

B.2对

C.3对

D.4对 B(第7题)(第8题)D中考网

9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△

ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()

A.只有①

B.只有②

C.只有③

D.有①和②和③

B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()

A.

21B.18C.1

3C E D.9

(第10题)

二、填空题(本大题共6小题;每小题2分,共12分)

11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:

(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有

△ACD≌△。

13.如图,△ABC≌△ADE,此时∠.

A CBC B ED A(第11题)

(第13题)(第12题)

14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B

C C A C E(第15题)(第14题)(第16题)

16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④

BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。

三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.

求∠PCA的度数.

A

B

18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分

线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.

19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.

MB

D

N

20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;

(2)试猜想BE+CF与EF的大小关系,并加以证明.

21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?

A

DB

A

A

E

E

B

(1)

D

DC

B

D

(2)(3)

(4)

八年级(上)《全等三角形》试卷讲评课教案

九华初级中学李海燕

教学目标:

1.通过讲评,进一步巩固全等三角形的相关知识点。

2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:

第16,19,20题的错因剖析与矫正。教学过程:

一、考试情况分析:

班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。

二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。

学生用投影展示自己的所思所想。

三、重点评讲解答题的19、20题

1、学生小组交流

2、学生据黑板图形讲解

3、教师点评

四、学生自我完善考卷

五、总结课堂,教师质疑

六、学生课堂训练

教案说明:

本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语

言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。

课堂针对性练习

班级姓名组别

1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于

D,CE⊥AF于E.求证:DE=BD-EC

(2)对于(1)中的条件改为:直线AF在△ABC形外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若成立,请证明;若不成立,请写出正确的等式,并证明.

第五篇:全等三角形单元备课

第十一章 全等三角形单元备课

一、教科书内容和课程学习目标

(一)本章知识结构框图:

(二)本章的学习目标如下:

1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。

2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。

3.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。

二、本章教学建议

(一)注重探索结论

(二)注重推理能力的培养 1.注意减缓坡度,循序渐进。

2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。

3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。

(三)注重联系实际

三、几个值得关注的问题

(一)关于内容之间的联系

(二)关于证明

一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;

(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。分析证明命题的途径,这一步学生比较困难,需要在学习中逐步培养学生的分析能力。在一般情况下,不要求写出分析的过程。有些题目

已经画好了图形,写好了已知、求证,这时只要写出“证明”一项就可以了。

四、课时分配

本章教学时间约需15课时,具体分配如下(仅供参考): 11.1 全等三角形

2课时 11.定

11.质

小结与复习数试

三角形

角的平

2课时

全等的判

6课时 分线的性

3课时

2课时 测

下载2017年 八年级数学上册 全等三角形 单元测试题(含答案)(样例5)word格式文档
下载2017年 八年级数学上册 全等三角形 单元测试题(含答案)(样例5).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学上册第四单元测试题

    一、选择题(每小题3分,共24分)1.计算(-3a4)2的结果为( )A.-9a6B.9a6C.3a8D.9a82.下列各式中,不能分解因式的是( )A.4x2+2xy+y2B.4x2-2xy+y2C.4x2-y2D.-4x2-y23.下面是小亮做的......

    初二几何全等三角形测试题

    初二几何全等三角形检测姓名:一、填空题:1、在△ABC中,若AC>BC>AB,且△DEF≌△ABC,则△DEF三边的关系为___<___<___。2、如图1,AD⊥BC,D为BC的中点,则△ABD≌___,△ABC是___三角形。2 13、如图2,若AB=DE,BE=C......

    八年级数学全等三角形的判定4

    13.5全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等. 2、能力目标: (1)通过“角边角”公理及其推......

    八年级数学全等三角形的教学反思

    《全等三角形》复习的教学反思 一节复习课,为了能在有限的时间里得到比较有效的复习效果, 从选择例题,到组织形式都是需要深入思考的,就复习的组织形式来 看,我进行了反复的思考,......

    苏教版2018-2019学年度八年级数学上册全等三角形课堂作业题

    苏教版2018-2019学年度八年级数学上册 全等三角形课堂作业 周次 班级 姓名 等第 一、选择题 1. 如图,已知AB=AD,那么添加下列一个条件后,能用SAS判定△ABC≌△ADC的是 A.CB=C......

    八年级《全等三角形》教学设计

    八年级《全等三角形》教学设计 > >教学环节 >教师活动 >学生活动 >设计意图 >媒体使用及意图描述 >(交互式白板使用功能) >创设情境,导入新课 >1.>观察下列图案(电 >......

    八年级全等三角形经典证明题

    三角形全等的判定专题训练题1、 如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。2、 如图(2):AC∥EF,AC=EF,AE=BD。 求证:△ABC≌△EDF。3、 如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△......

    全等三角形经典题目测试含答案

    全等三角形经典题目测试含答案一.选择题(共13小题,共39分)1.(2013贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是(  )A.4cmB.6cmC.8cmD.9cm2.(2011芜湖)如图,已知△ABC中......