第一篇:《圆周角和圆心角的关系》说课稿(自己)
《圆周角和圆心角的关系》说课稿
“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析
本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。
1、本节知识点(1)圆周角的概念(2)圆周角的定理
2、教学目标
(1)理解并掌握圆周角的概念;
(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。
3、教学重点:圆周角定理。
教学难点: 认识圆周角定理需要分三种情况逐一证明的必要性。(重点与难点的突破将在教学过程中详细说明)
二、本节教材安排
本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。今天我向大家汇报的是第一课时的设计。
三、教学方法
数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。
四、教学步骤
(一)、旧知回放,探索新知(圆周角的概念的突破)
1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。
2、引导学生进行讨论,规范圆周角的概念。
(设计意图:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。)
特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.
3、巩固练习,看谁最棒(请同学们判断各图形的角是否是圆周角,并说明理由。)
(设计意图:巩固圆周角概念,明确圆周角必须满足两个条件:顶点在圆上;两边都和圆相交。)
(二)、探究合作,攻克重难点(圆周角定理的突破)
1、动手画画,争当赢家。(请你画出弧AB所对的圆心角和圆周角。)
(设计意图:通过这种具有探索性与挑战性的活动,培养学生独立思考、合作交流的能力,渗透化归思想,初步认识圆周角和圆心角这三种位置关系。)特别说明:若 学生不能准确地归纳出圆周角和圆心角这三种位置关系,可采用演示动态课件的方法,在教师的启发下达成这一教学目标。
2、试一试,你能行。(观察图形中同弧所对的圆周角和圆心角有什么关系?)
(设计意图:如果直接进行圆周角定理第一种情况的证明,可能有一定困难。因此,我设计了这一组前置练习。通过对同弧所对的特殊圆周角和圆心角关系的讨论、交流,初步认识同弧所对的圆周角是它所对圆心角的一半,为下面圆周角定理第一种情况的证明打好桥铺好路。)
3、证一证,我是数学小明星(圆周角定理的证明)
“圆心在圆周角的一边上”这种情况,学生完全可以自己通过交流完成,这一步是第二、三种情况证明的基础,然后我利用动画效果对学生进行启发,第二、三种情况是否可转化成第一种情况解决,认识到转化的条件是:加以角的顶点为端点的直径为辅助线。
(设计意图:在证明定理的过程中,体会由特殊到一般的思想方法。关键强调一点:一条弧所对的圆周角等于它所对的圆心角的一半。)
4、巩固练习
(1)赛一赛,谁第一(根据图中的数据,请学生求出α)
(设计意图:即可巩固圆周角定理,又可培养学生的竞争意识,以适应现代生活的需要。同时,对回答积极准确的同学及时表扬,激发学习的积极性。)
(2)化心动为行动。(如图,A、B是圆O上的两点,且∠AOB=70°,C是圆O上不与A、B重合的任意一点,求∠ACB的度数。)
(设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)
(3)议一议(如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)
(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)
(三)说小结
首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:
1、学到了知识;
2、掌握了哪些数学方法;
3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。
(四)、板书设计
为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。
(五)知识点的课外拓展
为了开阔学生视野,开拓学生思路,给学有余力的学生施展身手的机会,并为下一节“同弧或等弧所对的圆周角相等”的知识点作好铺垫。因此,我设计了课后探究题,让学生探讨“在同圆或等圆中,相等的弦所对的圆周角的关系”。
(六)媒体的运用及目的
新课标要求从学生的主观印象出发,然后引导学生探索圆周角的概念和定理,是遵守学生认知规律的,所以我在利用教材时沿用了这种方法,为了使学生迅速进入情景,激发他们学习的积极性,我设计运用了以上多媒体,提高了课堂效率,突破了教学难点。
第二篇:圆周角与圆心角的关系 说课稿
《圆周角与圆心角的关系》说课稿
13组
各位评委老师
你们好,我是,我说课的内容是北师大版九年级下册第三章第4节《圆周角与圆心角的关系》第1课时。
我将从教材分析、教学目标、教学重难点、教法分析、教学过程几个方面进行我的说课。
《圆周角与圆心角的关系》的第1课时是在学习了圆的圆心,半径,直径,弦,弧,圆心角等概念以及圆的对称性的基础上,并结合三角形内角和定理的推论和等腰三角形性质进行教学;从学生熟悉的足球射门游戏这一实例出发,引出圆周角的定义,再应用推理论证的方法研究圆周角定理,同时向学生渗透从特殊到一般和分类讨论的数学思想方法,并借助几何画板软件简单易学,可操作性强等特点让学生亲自动手操作更加直观的理解圆周角定理得相关问题。圆周角定理不仅是解决与圆有关问题的重要工具,还是以后学习圆有关性质的重要基础,因此这节课不论在知识上,还是在方法上,都起着承上启下的作用。
根据课程标准的要求和学生的认知水平以及本节课教学内容,我认为本节课的教学目标分为三个方面进行阐述:
1、掌握圆周角的概念及圆周角与圆心角的关系,能熟练地应用“圆周角与圆心角的关系”进行论证和计算;
2、经历圆周角定理的探索、证明、应用的过程,体验分类讨论的数学思想方法;
3、感受圆周角定理猜想,验证,推理的过程,增强主动探究,合作与交流的自信。
综合这些教学目标的确定,我认为本节课的
教学重点:经历探索“圆周角与圆心角的关系”的过程,理解掌握圆周角定理。
圆周角定理的证明中采用的分类思想及由“特殊到一般”的数学思想方法就是本节课的教学难点。
由以上分析,为了教之有序,行之有效的进行本节课的教学我采用了如下的教法与学法
教学上采用探究式的教学方法。教师着眼于引导,学生着重于探索。意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论、练习来深化对知识的理解。学法指导:
学生学习的关键在于教师如何调动、挖掘学生的积极性、主动性。教师的精讲应该与学生的独立思考,动手求知密切结合,环环相扣。本着最近发展区原则课堂上,学生主要采用动手实践,自主探索、合作交流的学习方法,在教师的引导下从直观感知上升到理性思考。经历观察、实验、猜想、验证、论证、归纳、推理的学习过程,让不同基础的学生有不同收获与发展,从真正意义上完成对知识的自我建构。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量;另一方面有利于突出重点、突破难点,更好地提高课堂效率。
为了有序的,有效的进行教学。我设置了五个教学环 1 创设情境,导入新课 2提出猜想,分类化归 3巩固训练,培养能力 4小结归纳,总结提升 5布置作业,深化认识。
(一)创设情境,导入新课
以学生熟悉的足球射门游戏为背景,在实物场景中,抽象出几何图形,并提问:球员射中球门的难易程度与什么有关?通过问题情景的创设,将实际问题数学化,激发学生的求知、探索欲望,让学生体验生活中圆周角的形象。接着引导学生用已经学过的圆心角的定义来类比给出圆周角的定义,并在此给出一组练习题。通过图形的辨析,强化对圆周角概念中蕴含的两个特征(顶点在圆上,边与圆周交于两点)的理解,达到教学目标中要求的理解圆周角概念的目的。
(二)提出猜想,分类化归
回到足球射门的问题,让学生思考球员在D、E位置射门,射中球门的难易与B相同吗?观察三个角在图中的位置,它们所对同一条弧AC,再联系“同圆或等圆中相等的弧所对的圆心角相等”,提出问题:在同圆或等圆中,相等的弧所对圆周角有什么关系?相等的弧所对圆周角与圆心角又有什么关系呢? 带着这样的问题,让同学们先作圆心角∠AOC,作弧AC所对的圆周角∠ABC,并用量角器初步测量一下它们角度的大小。接着,利用“几何画板”中的度量工具,测出同弧所对圆周角与圆心角的度数。通过改变圆周角顶点的位置,发现一条弧所对的圆周角度数大小不变且为圆心角的一半,进而引出圆周角的定理。
板演圆周角定理。并强调定理中的核心次 圆周角 圆心角 一半 随和,我提出问题:通过刚才的演示你们发现了同弧所对的圆心角和圆周角之间有哪些不同的位置关系? 让学生思考,根据刚才的演示过程,学生可以顺利的回答同弧所对的圆心角和圆周角有3中不同的位置关系,进而需要进行一一证明。(证明不都需要在课上完成,教师带领学生共同证明第一个,其他两个可根据时间进行学生课上板演或课下练习)依据“建构主义理论”,用化归思想推理验证圆周角定理,充分给予学生探索与交流的时间和空间,体会将一般情况转化成特殊情况的思维过程,理解添加辅助线的必要性,达到突破难点的目的。
当然,学完相关知识,我们还要知道怎么运用。所以,我以题组的形式编排了两组练习。本着不同的学生有不同的数学基础,以题组的方式进行训练,在题组之间以及每个题组内设置一定的梯度,其目的是满足各类学生的需求。
题组一:
1、举出生活中含有圆周角的例子。旨在使学生发现生活中的实例,切实感受圆周角在生活中的运用。
2、在圆O中,BOC50,求BAC的大小。
题组一,完全是从基础出发,检查学生对圆周角与圆心角关系最直接的认识 题组二:
1、AC为圆O直径,OB是圆O的半径,AOB2BOC,ACB与BAC的大小有什么关系?为什么? 针对本题我将采用提问的方式,待学生回答完毕,再次询问学生“角ABC的大小是什么呢?”;“三角形BOC是什么三角形呢 ?”
2,AC是圆O的直径,点B、D在圆O上,图中等于COB的角为? 针对第二题
通过刚才的学习,学生已经知道了圆周角和圆心角之间的关系,能够很容易看出CABCOB,我将重点关注学生是否能得出CDB11COB、DBOCOB;221212题组二,侧重考查学生综合运用知识的能力。本例题对圆周角的定义、同弧或等弧的圆周角相等与圆周角定理,即同弧或等弧圆心角是原周角的一半
进行了考察,并与之前所学过的圆心角和内错角的定义等知识紧密的结合起来,在练习中能更好的进行本节课的知识的理解,并尽快运用所学知识解决实际问题。即时反馈有助记忆,还能通过学生的练习,及时发现问题,评价教学效果。在运用知识,巩固能力后,本节课进入第四个教学环节——小结归纳,总结提升。结合学生的年龄特点,我将采用问答法来进行师生共同总结:
首先,大家在本节课学到了哪些知识?引导学生将知识简记为“一个角,一个定理”,并且强调圆周角的关键词与圆周角和圆心角的数量关系,加深学生对定理的理解与巩固;其次,同弧所对的圆周角与圆心角有哪些位置关系?引导学生回忆教学过程中的几何画板样例,加深学生的记忆;如何证明这三种位置关系下的圆周角定理?在此,强调将角放在三角中,利用圆的半径特点,构造出等腰三角形并联系三角形内角和定理相关推论,将化归的思想渗透在整个教学过程中。用三个基本问题来总结本节课的教学内容,旨在发展学生深入思考,注重内涵的良好思维方式与学习习惯。
在最后一个环节中我设计的是布置作业,引导预习,为了满足全体学生的需求,让学生做好分层测试,我面向学生布置了基础题和拓展题。同时,提出本节课最后一个思考题:半圆或直径所对的圆周角有什么特点呢?用这个2问题引导学生预习下一节课的内容——圆周角定理的相关推论,使学生养成预习的良好习惯。
总之,在教学过程中我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来发现结论,实现师生互动,我认识到教师不仅要教给学生知识更要培养学生良好的数学素养和学习习惯,让学生学会学习。以上是我对本节课的设想,感谢大家的聆听。
第三篇:圆周角与圆心角的大小关系说课稿
圆周角与圆心角的大小关系说课设计
黄土岗中学数学教研组------胡德东
一、说教材
1、教材的地位与作用:
本课内容是在学生已经学习圆心角、弧、弦、弦心距之间的关系的基础上进行研究的。通过本课的学习,一方面可以巩固圆心角与弧的关系定理,另一方面也是今后学习圆的性质、球的性质的重要基础,在教材中处于承上启下的重要位置。另外,通过对圆周角定理的探讨,培养学生严谨的思维品质,同时教会学生从特殊到一般和分类讨论的思维方法,因此,这节课无论在知识上,还是在方法上,都起着十分重要的作用。
2、教学重点与难点:
重点:圆周角与圆心角的关系及圆周角的性质。
难点:发现并证明圆周角定理。
二、说目标
1、认知目标:
(1)了解圆周角与圆心角的关系。
(2)掌握圆周角的性质并能运用圆周角的性质解决问题。
2、能力目标:
(1)通过观察、比较、分析圆周角与圆心角的关系培养学生的推理能力。
(2)通过观察图形,提高学生的识图能力。(3)通过引导学生添加合理的辅助线,培养学生的创新能力。
3、情感目标:引导学生对图形的观察,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学生的自信心。
三、说教法
1、类比教学法、启发式教学法
3、合作探究法
4、直观教学法
四、说教学流程
(一)1、创设情境
设计意图:由生活实践来创设情境,让学生感受数学与生活的联系。将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻求数学模型、建立数学关系的方法。引导学生对图形的观察、发现激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学生的自信心。
2、导入新知
设计意图:采用类比教学法,通过圆心角定义让学生得出圆周角定义,培养学生的观察能力、归纳能力。
(二)辩一辩
设计题图:通过练习加深对圆周角定义的理解。
(三)探究。(一个展示三个活动)设计意图:引导学生发现问题、提出问题、分析问题、并能解决问题。展示的设计:教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,在运动变化的过程中寻求不变的关系。活动一、二让学生亲自动手,利用度量工具(如量角器、几何画板)进行猜想、实验、探究,得出结论。激发学生的求职欲望,调动学生学习的积极性。
活动三是让学生对所发现的结论进行证明,培养学生严谨的治学态度。学生通过合作探索学会运用分类讨论的数学思想研究问题,培养学生思维的深刻性。同时让学生学会一种分析问题、解决问题的方式方法:从特殊到一般。学会用化归思想将问题转化,体验数学建模思想。同时也解决了难点、突出了重点。
(四)回归生活情境(足球图片)
设计意图:通过回归生活实践,将数学知识与现实生活相联系起来,让学生在解决实际问题中获得成功的体验。
(五)练习
设计意图:练习层层推进,难易结合,考查学生对定理的理解和运用,使学生很好地进行知识的迁移,让学生在练习中加深对本节知识的理解。老师通过练习及时发现问题,评价教学效果。
(六)小结
设计意图:小结使学生归纳、梳理总结本节课的知识、技能、方法,将本节课所学知识与以前所学知识进行紧密联接,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。
(七)作业
设计意图:课后作业是对课堂所学知识的检验,是让学生巩固、提高、发展,同时关注不同层次学生对所学内容的理解和掌握。五板书设计
设计意图:让本节课的学习内容及重难点一目了然。六教学反思
设计意图:本节课我比较注重学生的自主探究,把课堂交给学生,让不同的学生能较大限度地得到发展.
第四篇:圆周角和圆心角的关系教学反思
圆周角和圆心角的关系教学反思
反思一:圆周角和圆心角的关系>教学反思
把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。
反思二:圆周角和圆心角的关系教学反思
在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的>学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。
反思三:圆周角和圆心角的关系教学反思
本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。最开始,我是>计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对“为什么要分类”体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。
第五篇:圆周角和圆心角的关系(第二课时)
§3.3 圆周角和圆心角的关系(第二课时)
学习目标:
掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.学习重点: 圆周角定理几个推论的应用.学习难点: 理解几个推论的”题设”和”结论”. 学习方法: 指导探索法.学习过程:
一、举例:
【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?
【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.
【例3】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
【例4】四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,如图3-3-15,求BD的长.
【例5】如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB.
(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB是否成立?请说明理由.
(2)如图3,若两弦AC、BD的延长线交于P点,则AB= 结论,并证明你填写结论的正确性.
.参照(1)填写相应
二、练习:
1.在⊙O中,同弦所对的圆周角()
A.相等 B.互补 C.相等或互补 D.都不对
2.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是()A.5对 B.6对 C.7对 D.8对 3.下列说法正确的是()A.顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角 C.圆心角是圆周角的2倍
D.圆周角度数等于它所对圆心角度数的一半 4.下列说法错误的是()
A.等弧所对圆周角相等 B.同弧所对圆周角相等
C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等 5.如图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD= .
. 6.如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON=
7.如图6,AB是⊙O的直径,BC=BD,∠A=25°,则∠BOD= ∠BAC=60°,∠ABC=50°,则∠CBM=,∠AMB=
⌒⌒ .
.
8.如图7,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若9.⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于 . 10.如图8,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径.
11.如图9,AB是⊙O的直径,FB交⊙O于点G,FD⊥AB,垂足为D,FD交AG于E.求证:EF·DE=AE·EG.
12.如图,AB是半圆的直径,AC为弦,OD⊥AB,交AC于点D,垂足为O,⊙O的半径为4,OD=3,求CD的长.
313.如图,⊙O的弦AD⊥BC,垂足为E,∠BAD=∠α,∠CAD=∠β,且sinα=,cos
51β=,AC=2,求(1)EC的长;(2)AD的长. 3
14.如图,在圆内接△ABC中,AB=AC,D是BC边上一点.(1)求证:AB=AD·AE;
(2)当D为BC延长线上一点时,第(1)小题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由. 2
15.如图,已知BC为半圆的直径,O为圆心,D是AC的中点,四边形ABCD对角线AC、BD交于点E.
(1)求证:△ABE∽△DBC;
⌒55(2)已知BC=,CD=,求sin∠AEB的值; 22(3)在(2)的条件下,求弦AB的长.
16.如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,过E点作EF⊥BC,垂足为F,且BF:FC=5:1,AB=8,AE=2,求EC的长.