开关电源EMC产生机理及其对策

时间:2019-05-15 02:46:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《开关电源EMC产生机理及其对策》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《开关电源EMC产生机理及其对策》。

第一篇:开关电源EMC产生机理及其对策

开关电源EMC产生机理及其对策

EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3)Class B;国标IT类(GB9254,GB17625)和AV类(GB13837,GB17625)。FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。

EN55022为Radiation Test & Conduction Test(传导 & 辐射测试); EN61000-3-2为Harmonic Test(电源谐波测试);EN61000-3-3为Flicker Test(电压变动测试)。

CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15(Federal Communications Commission)适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。

EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。传导(150KHZ-30MHZ)LISN主要是差模电流, 其共模阻抗为100欧姆(50 + 50);LISN主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。

4线

AV

60dB/uV

150KHZ-2MHZ

start 9KHZ

5线

PEAK

100dB/uV

150KHZ-3MHZ

6线

PEAK

100dB/uV

2MHZ-30MHZ

7线

QP

70dB/uV

150KHZ-500KHZ

Radiated(30MHZ-1GHZ): ADD 4N7/250V Y CAP

90dB/uV

30MHZ-300MHZ

EMI为电磁干扰,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference)电磁干扰,EMI包括传导、辐射、电流谐波、电压闪烁等等。电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。EMI线性正比于电流,电流回路面积以及频率的平方即:EMI = K*I*S*F2。I是电流,S是回路面积,F是频率,K是与电路板材料和其他因素有关的一个常数。

EMI是指产品的对外电磁干扰。一般情况下分为 Class A & Class B 两个等级。Class A为工业等级,Class B 为民用等级。民用的要比工业的严格,因为工业用的允许辐射稍微大一点。同样产品在测试EMI中的辐射测试来讲,在30-230MHz下,B类要求产品的辐射限值不能超过40dBm 而A类要求不能超过50dBm(以三米法电波暗室测量为例)相对要宽松的多,一般来说CLASS A是指在EMI测试条件下,无需操作人员介入,设备能按预期持续正常工作,不允许出现低于规定的性能等级的性能降低或功能损失。

EMI是设备正常工作时测它的辐射和传导。在测试的时候,EMI的辐射和传导在接收机上有两个上限,分别代表Class A和Class B,如果观察的波形超过B的线但是低于A的线,开关电源EMC产生机理及其对策

那么产品就是A类的。EMS是用测试设备对产品干扰,观察产品在干扰下能否正常工作,如果正常工作或不出现超过标准规定的性能下降,为A级。能自动重启且重启后不出现超过标准规定的性能下降,为B级。不能自动重启需人为重启为C级,挂掉为D级。国标有D级的规定,EN只有A,B,C。EMI在工作频率的奇数倍是最不好过的。

EMS(Electmmagnetic Suseeptibilkr)电磁敏感度一般俗称为 “电磁免疫力”, 是设备抗外界骚扰干扰之能力,EMI是设备对外的骚扰。

EMS中的等级是指:Class A,测试完成后设备仍在正常工作;Class B,测试完成或测试中需要重启后可以正常工作;Class C,需要人为调整后可以正常重启并正常工作;Class D,设备已损坏,无论怎样调整也无法启动。严格程度EMI是B>A,EMS是A>B>C>D。

电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。

产生电磁干扰的条件: 突然变化的电压或电流,即dV/dt或dI/dt很大;辐射天线或传导导体。

电磁兼容标准对设备的要求有两个方面:一个是工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。前一个方面的要求称为干扰发射要求,后一个方面的要求称为敏感度要求。

电磁能量从设备内传出或从外界传入设备的途径只有两个,一个是以电磁波的形式从空间传播,另一个是以电流的形式沿导线传播。因此,电磁干扰发射可以分为:传导发射和辐射发射;敏感度也可以分为传导敏感度和辐射敏感度。

电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准。

基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据。基础标准不涉及具体产品。

产品类标准:针对某种产品系列的EMC测试标准。往往引用基础标准,但根据产品的特殊性提出更详细的规定。

通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。对使设备的功能完全正常,也要满足这些标准的要求。

关于制订电磁兼容标准的组织和标准的介绍:

IEC(国际电工委员会):有两个平行的组织制订EMC标准,CISPR和TC77。

CISPR(国际无线电

EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3)Class B;国标IT类(GB9254,开关电源EMC产生机理及其对策

GB17625)和AV类(GB13837,GB17625)。FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。

EN55022为Radiation Test & Conduction Test(传导 & 辐射测试); EN61000-3-2为Harmonic Test(电源谐波测试);EN61000-3-3为Flicker Test(电压变动测试)。

CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15(Federal Communications Commission)适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。

EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。传导(150KHZ-30MHZ)LISN主要是差模电流, 其共模阻抗为100欧姆(50 + 50);LISN主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。

4线

AV

60dB/uV

150KHZ-2MHZ

start 9KHZ

5线

PEAK

100dB/uV

150KHZ-3MHZ

6线

PEAK

100dB/uV

2MHZ-30MHZ

7线

QP

70dB/uV

150KHZ-500KHZ

Radiated(30MHZ-1GHZ): ADD 4N7/250V Y CAP

90dB/uV

30MHZ-300MHZ

EMI为电磁干扰,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference)电磁干扰,EMI包括传导、辐射、电流谐波、电压闪烁等等。电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。EMI线性正比于电流,电流回路面积以及频率的平方即:EMI = K*I*S*F2。I是电流,S是回路面积,F是频率,K是与电路板材料和其他因素有关的一个常数。

EMI是指产品的对外电磁干扰。一般情况下分为 Class A & Class B 两个等级。Class A为工业等级,Class B 为民用等级。民用的要比工业的严格,因为工业用的允许辐射稍微大一点。同样产品在测试EMI中的辐射测试来讲,在30-230MHz下,B类要求产品的辐射限值不能超过40dBm 而A类要求不能超过50dBm(以三米法电波暗室测量为例)相对要宽松的多,一般来说CLASS A是指在EMI测试条件下,无需操作人员介入,设备能按预期持续正常工作,不允许出现低于规定的性能等级的性能降低或功能损失。

EMI是设备正常工作时测它的辐射和传导。在测试的时候,EMI的辐射和传导在接收机上有两个上限,分别代表Class A和Class B,如果观察的波形超过B的线但是低于A的线,那么产品就是A类的。EMS是用测试设备对产品干扰,观察产品在干扰下能否正常工作,如果正常工作或不出现超过标准规定的性能下降,为A级。能自动重启且重启后不出现超

开关电源EMC产生机理及其对策

过标准规定的性能下降,为B级。不能自动重启需人为重启为C级,挂掉为D级。国标有D级的规定,EN只有A,B,C。EMI在工作频率的奇数倍是最不好过的。

EMS(Electmmagnetic Suseeptibilkr)电磁敏感度一般俗称为 “电磁免疫力”, 是设备抗外界骚扰干扰之能力,EMI是设备对外的骚扰。

EMS中的等级是指:Class A,测试完成后设备仍在正常工作;Class B,测试完成或测试中需要重启后可以正常工作;Class C,需要人为调整后可以正常重启并正常工作;Class D,设备已损坏,无论怎样调整也无法启动。严格程度EMI是B>A,EMS是A>B>C>D。

电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。

产生电磁干扰的条件: 突然变化的电压或电流,即dV/dt或dI/dt很大;辐射天线或传导导体。

电磁兼容标准对设备的要求有两个方面:一个是工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。前一个方面的要求称为干扰发射要求,后一个方面的要求称为敏感度要求。

电磁能量从设备内传出或从外界传入设备的途径只有两个,一个是以电磁波的形式从空间传播,另一个是以电流的形式沿导线传播。因此,电磁干扰发射可以分为:传导发射和辐射发射;敏感度也可以分为传导敏感度和辐射敏感度。

电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准。

基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据。基础标准不涉及具体产品。

产品类标准:针对某种产品系列的EMC测试标准。往往引用基础标准,但根据产品的特殊性提出更详细的规定。

通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。对使设备的功能完全正常,也要满足这些标准的要求。

关于制订电磁兼容标准的组织和标准的介绍:

IEC(国际电工委员会):有两个平行的组织制订EMC标准,CISPR和TC77。

CISPR(国际无线电扰特别委员会):1934年成立。目前有七个分会:A分会(无线电干扰测量方法与统计方法)、B分会(工、科、医疗射频设备的无线电干扰)、C分会(电力线、高压设备和电牵引系统的无线电干扰)、D分会(机动车和内燃机的无线电干扰)、E分会(无线接收设备干扰特性)、F分会(家电、电动工具、照明设备及类似电器的无线电干扰)、G分会(信息设备的无线电干扰)。

开关电源EMC产生机理及其对策

TC77(第77技术委员会):1981年成立。目前有3个分会:SC77A(低频现象)、SC77B(高频现象)、SC77C(对高空核电磁脉冲的抗扰性)。

CENELEC(欧洲电工标准化委员会):由欧共体委员会授权制订欧洲标准。EN标准中引用了很多CISPR和IEC标准,其对应关系如下:

EN55××× = CISPR标准,(例: EN55011 = CISPR Pub.11)

EN6×××× = IEC标准,(例: EN61000-4-3 = IEC61000-4-3 Pub.11)

EN50××× = CENELEC自定标准,(例: EN50801)

FCC(联邦通信委员会)全名为Federal Communications Commission:是管理电脑, 周边及通信产品等销售美国之审核授权机抅, 主要制订民用产品标准,关于电磁兼容的标准主要包括在FCC Part15和FCC Part 18中。

FCC Part 15 subpart B规定: 凡利用数位技术之电子装置或系统, 及使用或产生脉波频率超过10KHz之器材,皆须依规定进行测试认证后, 才可以在美国市场销售。

MIL-STD(美军标):典型的是MIL-STD –461D。这个标准不仅规定了最大辐射发射和传导发射的限制,还规定了系统对辐射和传导干扰的敏感度要求。配套标准MIL-STD-462规定了必要的测试装置。商业公司经常将MIL-STD-461中的某些部分作为产品内部EMC规范。

VCCI(干扰自愿控制委员会):民间机构,其标准与CISPR和IEC一致

GB(中国国家标准):基本采用CISPR和IEC标准,目前已发布57个。

GJB(中国军用标准):基本采用美军标,例如GJB151A = MIL-STD –461D。

军用设备

为军用设计的电子系统必须满足MIL-STD-461D的要求,另一个关于EMI的军用标准是保密的TEMPEST计划,这是用来保证保密通信系统安全的。现在可以接收并复现出大多数电子设备政党工作时所发射的功率很低的射频信号。象对电子窃听很脆弱的CRT终端那样的军用产品就属于TEMPEST的范畴。在实践中,TEMPEST控制设备和系统的发射,使无法解译携带信息的信号。

由于关于EMC的法规和标准十分复杂,关于信息技术设备的相关标准总结在表1.9中。一些标准的频率范围在图1-3中标明。

CE标示: 源自欧共体各会员国(European Community)缩写的总称, 并以此为标志。规范产品是否符合欧体为保障民众安全健康以及环境保护等利益所订定之基本安全要求。

开关电源EMC产生机理及其对策

CE = EMC + LVD

EMC : 电磁干扰及电磁相容性

LVD : 低电压指令

测量场地:GB要求在开阔场地中测量,GJB要求在屏蔽半无反射室中测量,由于电磁环境日趋恶化,开阔场中的背景干扰往往严重影响测量,因此,GB测量也开始在屏蔽半无反射室中做,但要求半无反射室中的电磁场分布与开阔场近似。

天线到EUT(受试设备)的距离:GB要求为3米、10米或30米,GJB要求为1米;

测量内容:GB仅测量电场辐射发射,GJB对电场辐射和磁场辐射都要测量;

测量频率范围:GB规定的测量范围为30MHz ~ 1GHz,随着时钟频率的升高,有扩展到18GHz的趋势,GJB规定的测量频率范围为10kHz ~ 18GHz。

EUT的布置:GB和GJB都要求EUT按照实际工作状态布置(互联电缆和所连接的外部设备全部按实际状态连接),GB要求EUT放置在木制测试台上,GJB要求EUT放置在金属板上。距离地面的距离为0.8米;

检波方式:干扰测量仪的读数与检波方式有关,因此标准中都明确规定检波方式,GB要求准峰值检波,GJB要求峰值检波;

最大辐射点:与处理电磁兼容问题的原则相同,仅关心最坏情况。因此,以EUT的最大辐射值为测量结果。最大辐射值的含义有4个,第一:EUT的工作状态处于最大辐射状态,第二:EUT最大辐射面对着天线,第三:天线的极化方向为接收最大场强的方向,第四:天线的高度为接收最大场强的位置。GJB中,没有第四点的要求,即,天线的高度是固定的。

测量设备:

骚扰测量设备:用来定量计量骚扰强度的设备,可以是EMI测量接收机,也可以是频谱分析仪,频率范围要覆盖150KHz~30MHz,具有峰值、准峰值和平均值检波功能。

线路阻抗稳定网络(LISN):由于电源端子传导发射的强度与电网的阻抗有关,因此为了使测量具有唯一性,必须在特定的阻抗条件下测量,LISN就提供了这样一个环境,GB9254标准中使用的LISN为50Ω/50μH。

接地平板:受试设备要放置在接地金属板上进行试验,该金属板比被测设备边框大0.5米,最小尺寸为2m×2m。

电快速脉冲试验模拟电网中的感性负载断开时产生的干扰。这种干扰不仅会出现在电源线上,而且会耦合到信号线上。因此,这个试验要对电源线和信号线做。设备能够通过浪涌试验,并不意味着也能通过电快速脉冲试验。一方面是因为后者的频率成份远高于前者,具备不同的干扰机理,令一方面是因为电快速脉冲试验中施加的干扰是重复性,这对电路具有一种积分效应,是电路中的积分型抗干扰电路实效。

频谱分析仪能够快速地在较宽的频率范围内扫描,因此是诊断电磁干扰发射的方便工具。使

开关电源EMC产生机理及其对策

用频谱分析仪时需要注意的问题:频谱分析仪不能观测瞬间干扰,如静电放电、雷电等;频谱分析仪的扫描时间不能设置得太短,即不能使扫描速度太快;从频谱分析仪屏幕上读取频率与幅度数据时,其精度与频谱仪的扫描范围有关,范围越窄,精度越高;当输入信号过大时,频谱分析仪会发生过载,使读取的幅度数据比实际的小,用输入衰减器可以避免过载;减小频谱仪的中频带宽可以提高仪器的灵敏度(和选择性),但扫描时间会更长;宽带信号的幅度会随着中频分辨带宽的增加而增加。

电磁干扰(EMI)接收机是另一种测量电磁干扰的设备,许多人在选购仪器时搞不懂接收机与频谱仪之间的区别,下面做一简单比较:

所有的接收机都标准配置预选器(频谱仪需要选配),能够有效地抑制带外噪声;所有的接收机用基频混频方式(频谱仪使用基频和谐频混频),具有较高的灵敏度;接收机的中频滤波器为矩形(频谱仪的中频滤波器为高斯形),具有更好的选择性;接收机适合于正式测量,不适合于诊断。

EMC试验室有华测(CTI)、SGS、信测、信华、华通威、冠准、莫特、广州ETL、广州五所、东莞经续、东莞沃特、厚街北南、长安世鸿、长安硕信(ATT)、大朗信宝、塘夏欧标、摩尔实验室、经续检验技术有限公司等。像美国的FCC只测EMI中的辐射和传导,不测EMS。有些国家EMI和EMS是分开测的,有些国家是一起像CCC认证CE认证。现在很多电器类产品做CE还要加测电磁波骚扰EMF,标准是EN-50336。电源EMI技术就算能达到标准,有的产品要求要达一定的湿度测试。在深圳湿试控制都比较难做。深圳几家大实验室,都比较难,空间问题。EMI不只包括传导,辐射,电流谐波与电压闪烁也是EMI的部分。谐波和闪烁是设备对外的,而不是外界对设备的,所以是EMI,不是EMS。

开关电源电磁干扰的产生机理及其传播途径

功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。现在按噪声干扰源来分别说明:

1、二极管的反向恢复时间引起的干扰

交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

开关电源EMC产生机理及其对策

2、开关管工作时产生的谐波干扰

功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在 阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐 波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生 尖峰干扰。

3、交流输入回路产生的干扰

无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因

元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布 置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。这增加了PCB分布参数的提取和近场干扰估计的难度。

Flyback 架构noise 在频谱上的反应

0.15 MHz处产生的振荡是开关频率的3次谐波引起的干扰。

0.2 MHz处产生的振荡是开关频率的4次谐波和Mosfet 振荡2(190.5KHz)基波的迭加,引起的干扰;所以这部分较强。

0.25 MHz处产生的振荡是开关频率的5次谐波引起的干扰;

0.35 MHz处产生的振荡是开关频率的7次谐波引起的干扰;

0.39 MHz处产生的振荡是开关频率的8次谐波和Mosfet 振荡2(190.5KHz)基波的迭加引起的干扰;

1.31MHz处产生的振荡是Diode 振荡1(1.31MHz)的基波引起的干扰;

3.3 MHz处产生的振荡是Mosfet 振荡1(3.3MHz)的基波引起的干扰;

开关管、整流二极管的振荡会产生较强的干扰

设计开关电源时防止EMI的措施:

1.把噪音电路节点的PCB铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,等。

开关电源EMC产生机理及其对策

2.使输入和输出端远离噪音元件,如变压器线包,变压器磁芯,开关管的散热片,等等。

3.使噪音元件(如未遮蔽的变压器线包,未遮蔽的变压器磁芯,和开关管,等等)远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线。

4.如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器。

5.尽量减小以下电流环的面积:次级(输出)整流器,初级开关功率器件,栅极(基极)驱动线路,辅助整流器。

6.不要将门极(基极)的驱动返馈环路和初级开关电路或辅助整流电路混在一起。

7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声。

8.防止EMI滤波电感饱和。

9.使拐弯节点和 次级电路的元件远离初级电路的屏蔽体或者开关管的散热片。

10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片。

11.使高频输入的EMI滤波器靠近输入电缆或者连接器端。

12.保持高频输出的EMI滤波器靠近输出电线端子。

13.使EMI滤波器对面的PCB板的铜箔和元件本体之间保持一定距离。

14.在辅助线圈的整流器的线路上放一些电阻。

15.在磁棒线圈上并联阻尼电阻。

16.在输出RF滤波器两端并联阻尼电阻。

17.在PCB设计时允许放1nF/ 500 V陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间。

18.保持EMI滤波器远离功率变压器;尤其是避免定位在绕包的端部。

19.在PCB面积足够的情况下, 可在PCB上留下放屏蔽绕组用的脚位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽绕组两端。

20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器(米勒电容,10皮法/ 1千伏电容)。

开关电源EMC产生机理及其对策

21.空间允许的话放一个小的RC阻尼器在直流输出端。

22.不要把AC插座与初级开关管的散热片靠在一起。

开关电源EMI的特点

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

1MHZ以内----以差模干扰为主,增大X电容就可解决

1MHZ---5MHZ---差模共模混合,采用输入端并一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并解决;

5M---以上以共摸干扰为主,采用抑制共摸的方法.对于外壳接地的,在地线上用一个磁环绕2圈会对10MHZ以上干扰有较大的衰减(diudiu2006);对于25--30MHZ不过可以采用加大对地Y电容、在变压器外面包铜皮、改变PCB LAYOUT、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并RC滤波器.30---50MHZ

普遍是MOS管高速开通关断引起,可以用增大MOS驱动电阻,RCD缓冲电路采用1N4007慢管,VCC供电电压用1N4007慢管来解决.100---200MHZ 普遍是输出整流管反向恢复电流引起,可以在整流管上串磁珠

100MHz-200MHz之间大部分出于PFC MOSFET及PFC 二极管,现在MOSFET及PFC二极管串磁珠有效果,水平方向基本可以解决问题,但垂直方向就很无奈了

开关电源的辐射一般只会影响到100M 以下的频段.也可以在MOS,二极管上加相应吸收回路,但效率会有所降低。

1MHZ 以内----以差模干扰为主

1.增大X 电容量;

2.添加差模电感;

3.小功率电源可采用PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

1MHZ---5MHZ---差模共模混合,采用输入端并联一系列X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,开关电源EMC产生机理及其对策

1.对于差模干扰超标可调整X 电容量,添加差模电感器,调差模电感量;

2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;

3.也可改变整流二极管特性来处理一对快速二极管如FR107 一对普通整流二极管1N4007。

5M---以上以共摸干扰为主,采用抑制共摸的方法。

对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10MHZ 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

对于20--30MHZ,1.对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;

2.调整一二次侧间的Y1 电容位置及参数值;

3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。

4.改变PCB LAYOUT;

5.输出线前面接一个双线并绕的小共模电感;

6.在输出整流管两端并联RC 滤波器且调整合理的参数;

7.在变压器与MOSFET 之间加BEAD CORE;

8.在变压器的输入电压脚加一个小电容。

9.可以用增大MOS 驱动电阻.30---50MHZ 普遍是MOS 管高速开通关断引起,1.可以用增大MOS 驱动电阻;

2.RCD 缓冲电路采用1N4007 慢管;

3.VCC 供电电压用1N4007 慢管来解决;

4.或者输出线前端串接一个双线并绕的小共模电感;

5.在MOSFET 的D-S 脚并联一个小吸收电路;

开关电源EMC产生机理及其对策

6.在变压器与MOSFET 之间加BEAD CORE;

7.在变压器的输入电压脚加一个小电容;

8.PCB 心LAYOUT 时大电解电容,变压器,MOS 构成的电路环尽可能的小;

9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

50---100MHZ 普遍是输出整流管反向恢复电流引起,1.可以在整流管上串磁珠;

2.调整输出整流管的吸收电路参数;

3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEAD CORE或串接适当的电阻;

4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET;铁夹卡DIODE,改变散热器的接地点)。

5.增加屏蔽铜箔抑制向空间辐射.200MHZ 以上 开关电源已基本辐射量很小,一般可过EMI 标准。

第二篇:开关电源EMC 传导整改总结

三合一主板的传导整改记录

要理解传导干扰测试,首先要清楚一个概念:差模干扰与共模干扰

差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。

共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。

下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:

下图为开关电源EMI原理部分:

图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。

对差模干扰的整改对策: 1.增大X电容容值

2.增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)

下图为共模干扰测试FALL数据:

电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISN,LISN检测到的噪声较小,而当主板的冷地与大地直接相连时,线缆与大地之间有了回路,此时若共模噪声未被前端LC滤波电路吸收的话,就会导致传导超标)

对共模干扰的整改对策: 1.加大共模电感感量

2.调整L-GND,N-GND上的LC滤波器,滤掉共模噪声

3.主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容。

第三篇:通信开关电源的EMI/EMC设计

通信开关电源的EMI/EMC设计 引言

通信开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高,另外还有体积小、重量轻、具有远程监控等优点,因此被广泛地应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是电磁干扰(EMD)源,他产生的电磁干扰EMI信号有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。同时,通信开关电源要有很强的抗电磁干扰的能力,特别是对雷击、浪涌、电网电压、电场、磁场、电磁波、静电放电、脉冲串、电压跌落、射频电磁场传导抗扰性、辐射抗扰性、传导发射、辐射发射等项目需要满足有关EMC标准的规定。开关电源引起电磁兼容性的原因

通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的。按耦合通路来分,可分为传导干扰和辐射干扰两种;按照干扰信号对于电路作用的形态不同,可将电源系统内的干扰分为共模干扰和差模干扰两种。通常,线路电源线上的任何传导干扰信号,都

可表示成共模和差模干扰两种方式。

在开关电源中,主功率开关管在高电压、大电流或以高频开关方式工作下,开关电压及开关电流的波形在阻性负载时近似为方波,其中含有丰富的高次谐波分量。由于电压差可以产生电场、电流的流动可以产生磁场,以及丰富的谐波电压电流的高频部分在设备内部产生电磁场,从而造成设备内部工作的不稳定,使设备的性能降低。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器问的分布电容传人内部电路或通过散热器及变压器向空间辐射。

如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰,例如返回噪声、输出噪声和辐射干扰等。进行开关电源EMI/EMC设计时,一方面要防止开关电源对电网和附近的电子设备产生干扰;另一方面要加强开关电源本身对电磁干扰环境的适应能力。下面用等效电路分别介绍共模和差模干扰产生的原因及路径。

如图2所示,当开关管转为“关”时,集电极与发射极间的电压快速上升达500 V,他产生的电流经集电极与地之间的分布电容返回整流桥,这个按开关频率工作的脉冲串电流是共模噪声。这个电压会引起共模电流Icm2向CP2充电和共模电流Icm1向CP1充电,其中CP1为变压器初、次级之间的分布电容,CP2为开关电源与散热器之间的分布电容(即开关管集电极与地之间的分布电容)。则线路中共模电流总大小为Icm1+Icm2。如图3所示,当开关管转为“开”时,储能电容Cs的能量由AC电网和整流桥提供,他被开关管变换器的快速开关频率所变换,并通过变压器形成脉冲电流IL,他具有非常丰富的开关频率谐波。储能电容不是一个纯电容,他有串联电阻和电感。当整流桥处开关管“开”时,在AC电网端,IL会产生一个由电容的L,R,C所呈现的阻抗电压,这就是开关电源产生差模发射源的原理。差模电流Idm和信号电流IL沿着导线、变压器初级、开关管组成的回路流通。开关电源的电磁兼容性设计

电磁兼容性(Electromagnetic Compatibility,EMC)是指在有限的空间、时间和频谱范围内,各种电气设备共存而不引起性能的下降。形成电磁干扰的三要素是干扰源、传播途径和受扰设备,因而,抑制电磁干扰也应该从这3个方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,降低其对噪声的敏感度。目前抑制开关电源EMI的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,常用的方法是屏蔽和滤波,他们的确是行之有效的办法。

3.1 无源补偿滤波技术

滤波是抑制传导干扰的一种很好的办法。在电源输入端接上滤波器,即可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。开关电源的工作频率一般在10~130 kHz,对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就能达到理想的滤波效果。干扰抑制电路如图4所示,CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。电阻R用于消除可能在滤波器中出现的静电积累。IEC-380安全技术条件标准的8.8部分指出,若CX>0.1 μF则R=t/2.2C(t=1 s,C=2CX μF)。由这些集中参数元件构成无源低通网络,抑制开关电源产生的向电网反馈的传导干扰,同时抑制来自电网的噪声对开关电源本身的侵害,为了使通过滤波电容C流入地的漏电流维持在安全范围内,CX=0.1~0.2 μF,CY的值一般适合取在0.1~0.33μF之间,不宜过大,相应的扼流线圈L应选大些,一般适合取在0.5μH~8 mH之间,这样既符合安全要求,又能抑制电磁干扰。

共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。使滤波器接入电路后,两只线圈内电流产生的磁通在磁环内相互抵消,不会使磁环达到磁饱和状态,从而使两只线圈的电感值保持不变。通常使用环形磁芯,漏磁小,效率高。但是绕线困难,如磁环的材料不可能做到绝对均匀,两个线圈的绕制也不可能完全对称等,使得两个绕组的电感量是不相等的,于是,形成差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个Ⅱ型滤波器。这种滤波器对差模干扰有较好的衰减。除了共模电感以外,图4中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。

使用LC滤波电路,可根据公式计算电路的谐振频率,调整电感、电容,使谐振频率与干扰频率相近或接近干扰频率的中心频率。对频率很高的电磁干扰,可以使用三端电容或穿心电容进行滤波。

3.2 屏蔽技术

屏蔽是抑制开关电源辐射干扰的有效方法。一般分为两类:一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响;另一类是电磁屏蔽,主要用于防止交变电场,交变磁场以及交变电磁场的影响。可以用导电性能良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。实际应用中,主要是应用于隔离变压器。变压器绕组间的交叉耦合电容为共模噪声流过整个系统提供了通路。这一交叉耦合电容可以在变压器结构中采用法拉第屏蔽(Faraday shield)来减小。法拉第屏蔽简单来说就是用铜箔或铝箔包绕在原方和副方绕组之间形成一个静电屏蔽层隔离区并接地,以减小交叉耦合电容。

图5为变压器原边绕组和副边绕组。其中N1A,N1B是原边绕组,分两次绕;N2A,N2B是副边绕组;N3,N4分别是辅助绕组;SCREEN为铜箔屏蔽。安规上一般要求散热器接地,那么开关管漏极与散热器之间的寄生电容就为共模噪声提供了通路,可以在漏极和散热器之间加一铜箔或铝箔并接地以减小此寄生电容。采用磁屏蔽效果比较好的铁氧体磁芯如PQ型或者P型来制作变压器可以很大程度上减小变压器漏磁从而减小原副方绕组漏感,有效抑制了EMI的传播。

结 语

随着开关电源不断向高频化发展,其抗干扰问题显得越发重要。在开发和设计开关电源中,如何有效抑制开关电源的电磁干扰,同时提高开关电源本身对电磁干扰的抗干扰能力是一个重要课题。几种抗干扰措施既相互独立又相互联系,必须同时采用多种措施才能达到良好的抗干扰效果。

第四篇:开关电源EMC的三个规律及三个要素

开关电源EMC的三个规律及三个要素

深圳市森树强电子科技有限公司

1、EMC三个重要规律

1.1、环路电流频率f越高,引起的EMI辐射越严重,电磁辐射场强随电流频率f的平方成正比增大。减少辐射骚扰或提高射频辐射抗干扰能力的最重要途径之二,就是想方设法减小骚扰源高频电流频率f,即减小骚扰电磁波的频率f。

1.2、EMC费效比关系规律: EMC问题越早考虑、越早解决,费用越小、效果越好。在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。经验告诉我们,在功能设计的同时进行EMC设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。相反,产品研发阶段不考虑EMC,投产以 后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改 进措施,导致产品不能上市。

1.3、高频电流环路面积S越大, EMI辐射越严重。

高频信号电流流经电感最小路径。当频率较 高时,一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路 之天线形式。对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的天线,如不连续的布线或有天线效应之元器件过长的插 脚。

减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。

2、EMC问题三要素

开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会 产生很强的辐射。电磁干扰包括辐射型(高频)EMI、传导型(低频)EMI,即产生 EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合途径、敏感 设备。辐射干扰主要通过壳体和连接线以电磁波形式污染空间电磁环境;传导干扰是通过电源线骚扰公共电网或通过其他端子(如:射频端子,输入端子)影响相连 接的设备。

2.1、电磁骚扰的特性

2.1.1、晶体振荡电平必须满足一定幅度, 数字电路才能按一定的时序工作,使晶振产生的骚扰呈现覆盖带宽、骚扰电平高的特点;

2.1.2、电源线传导骚扰主要由共模电流产生;

2.1.3、单位脉冲的频谱最宽;

2.1.4、辐射骚扰主要由差模电流形成的环路产生;

2.1.5、频谱中低频含量取决于脉冲的面积,高频分量取决于脉冲前后沿的陡度;

2.1.6、收发天线极化、方向特性相同时,EMI辐射和接受最严重;收发天线面积越大, EMI危害逾大;

2.1.7、骚扰途径:辐射,传导,耦合和辐射、传导、耦合的组合;2.2、IT、AV设备可能的骚扰源

2.2.1、数字电路工作需要的各种时钟信号及高频谐波、以及它们的组合,各种时钟如CPU芯片工作时钟、MPEG解码器工作时钟、视频同步时钟(27MHz,16.9344MHz ,40.5MHz)等;

2.2.2、F)对于敏感受体通过耦合途径接受的外部骚扰包括浪涌、快速脉冲群、静电、电压跌落、电压变化和各种电磁场;

2.2.3、FM接收机、TV接收机本机振荡,基波及谐波由高频头、本机振荡电路产生;

2.2.4、数字信号方波及高频谐波,晶振产生的高次谐波,非线性电路现象(非线性失真、互调、饱和失真、截止失真)等引起的无用信号、杂散信号;

2.2.5、非正弦波波形,波形毛剌、过冲、振铃,电路设计存在的寄生频率点;

2.2.6、开关电源的开关脉冲及高次谐波,同步信号方波及高频谐波,行扫描显像电路产生的行、场信号及高频谐波。

第五篇:大功率开关电源的EMC测试分析及正确选择EMI滤波器

大功率开关电源的EMC测试分析及正确选择

EMI滤波器

开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。开关电源产生电磁干扰的机理

图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。这是因为开关电源所产生的干扰噪声所为。开关电源所产生的干扰噪声分为差模噪声和共模噪声。

图1未加任何抑制措施所测得的传导骚扰

1.1共模噪声

共模噪声是由共模电流,IcM所产生,其特征是以相同幅度、相同相位往返于任一电源线(L、N)与地线之间的噪声电流所产生。图2为典型的开关电源共模噪声发射路径的电原理图。

图2 共模噪声电原理图

由于开关电源的频率较高,在开关变压器原、副边及开关管外壳及其散热器(如接地)之间存在分布电容。当开关管由导通切换到关断状态时,开关变压器分布电容(漏感等)存储的能量会与开关管集电极与地之问的分布电容进行能量交换,产生衰减振荡,导致开关管集电极与发射极之间的电压迅速上升。这个按开关频率工作的脉冲束电流经集电极与地之问的分布电容返回任一电源线,而产牛共模噪声。

1.2差模噪声

差模噪声是由差模电流IDM昕产生,其特征是往返于相线和零线之间且相位相反的噪声电流所产生。

1.2.1差模输入传导噪声

图3为典型的开关电源差模输入传导噪声的电原理图。

其一是当开关电源的开关管由关断切换到导通时,回路电容C 通过开关管放电形成浪涌电流,它在回路阻抗上产生的电压就是差模噪声。

图3差模输入传导噪声电原理图

其二是工频差模脉动噪声,它是由整流滤波电容c 在整流电压上升与下降期问的充放电过程中而产生的脉动电流与放电电流,也含有大量谐波成分构成差模噪声。

以上两种差模噪声都返回到输入端的交流电网,所以称为输入传导噪声,它不仅污染电网,还给其它接人电网的电子、电气设备造成危害,还直接导致输入功率因数的下降。

1.2.2 差模输出传导噪声

第三种差模噪声是输出传导噪声,它是整流输出部分二极管由正偏转为反偏时,反向电流与二极管结电容、分布电感产生尖峰电压而造成的差模噪声,图4为典型的半波整流滤波电路:

图4 差模输出传导噪声电原理图 EMI滤波器的正确选择

EMI滤波器是以工频为导通对象的反射式低通滤波器,插入损耗和阻抗特性是重要技术指标。EMI滤波器在正常工作时处于失配状态,因为在实际应用中,它无法实现匹配。如滤波器输入端阻抗(电网阻抗)是随着用电量的大小而改变的。滤波器输出端的阻抗。(电源阻抗)是随着负载的大小而改变的。要想获得最佳的EMI抑制效果,必须根据滤波器的两端所要连接的源端阻抗特性和负载阻抗特性来选择EMI滤波器的电路结构和参数,即遵循输入、输出端阻抗失配原则。一般选用方法是:

(1)低的源阻抗和低的负载阻抗:选取(T)n 滤波器结构;(2)高的源阻抗和高的负载阻抗:选取(π)n“滤波器结构;(3)低的源阻抗和高的负载阻抗:选取(LC)n“滤波器结构;(4)高的源阻抗和低的负载阻抗:选取(CL)滤波器结构。

若不能满足阻抗失配的原则,就会影响滤波器的插损性能,严重时甚至引起谐振,在某些频点处出现干扰放大现象,所以,阻抗失配连接原则是应用EMI滤波器必须遵循的原则。

针对图l所测得的传导骚扰值,可以看出在0.15~15MHz范围内严重超差,最大值超过限值近40dB,而且尖峰较为密集。说明电源所产生的浪涌电压和浪涌电流较大,即电源的du/dt、di/dt很大,也就是产生的_F扰能量很大。开关电源共模噪声等效电路呈高阻抗容性,而差模等效电路高、低阻抗同时存在。针对这种情况,EMI滤波器的电路结构选为二级共模电感和一个单独的差模电感型式,这样既可以滤除共模噪声,又可以滤除差模噪声。插入损耗为40dB,所测得的传导骚扰值如图5所示。

图5加EMI滤波器后所测的传导骚扰

由图5可以看出,传导骚扰值在某些频段处还有超差,效果不十分理想,这是因为,传导接受机所测得的传导骚扰值是个综合参数,它无法判断出在0.15—15MHz频率范围内,共模干扰和差模干扰孰重孰轻,一般讲:在0.15~0.5MHz低端差模干扰分量很大,在0.5~5MHz共模干扰和差模干扰同时存在,在5~30MHz之间共模分量较大。原因之二是由于滤波器的电感和电容元件都受其分布参数的影响,频率愈高所受的影响愈大。滤波器内部电感、电容的装配工艺、接地质量也会对插入损耗产生很大的影响。原因之三是,由于滤波器电感会受到电流浪涌的影响,它工作的峰值电流比额定电流要大一倍左右,在重载和满载时,差模电感容易产生磁饱和现象,致使电感量迅速下降,导致插入损耗性能变坏。较为理想的解决办法

针对以上情况,在EMI滤波器前端再串接一个一定值的电感,在交流电路中电感的数值 X= wL=2πrfL,电感就是一个电抗器,所以此电感也称为进线电抗器。由X =2πrfL可知,它的感抗与频率成正比,对于低频电流可以畅通无阻地通过进线电抗器,对于高频电流进线电抗器呈高阻抗、高压降。因此,进线电抗器可作为电流的低通(高阻)滤波器。

并且,开关电源所产生的谐波电压大部分都降在了进线电抗器上。所以,串接进线电抗器不但使传导骚扰值整体下降了,还使电压谐波得到了改善。当电感值选为6mH时,其抑制效果如图6所示。所以对已定型的大功率开关电源,选择进线电抗器+EMI滤波器,不失为解决其电磁骚扰的比较理想的方法。

图6进线电抗器+EMI滤波器后所测的传导骚扰 结语

大功率开关电源产生电磁干扰是一个复杂的问题,电源产生电磁干扰以传导干扰的危害尤为严重。根据电磁干扰产生的机理,正确选择EMI滤波器是有效抑制传导干扰的关键所在,其目的就是有效地抑制开关电源对电网的传导干扰,又可以降低从电网引入的传导干扰,使开关电源的电磁兼容性达到国家标准规定的限值要求。

下载开关电源EMC产生机理及其对策word格式文档
下载开关电源EMC产生机理及其对策.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    开关电源噪声的产生与抑制措施(5篇模版)

    1 噪声的种类 开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。但开关电源最大缺点是容易产生噪声。噪声的产生一般可分为两大类:一是开关电源内部元件......

    油品静电产生机理及其防护技术(五篇模版)

    油品静电产生机理及其防护技术 上海海事大学,电磁场与微波技术专业 摘要:本文综合国内外有关石油静电的研究成果,论述了油品在生产、储存、运输过程中静电的起电机理,给出油品......

    铁路路基病害的产生机理与防治措施

    专负责人: 业 技 术 工 作 总 中铁北京局一公司 作者岳飞 公章: 年 月 结 日 目录 摘要-----1 关键词---1 1、铁路路基病害类型特性-----------------1 2、铁路路基病害产生......

    浅析地震产生机理并解释雅安地震机制(5篇范例)

    浅析地震产生机理并解释雅安地震机制 毛宽振 Y1208521717 摘要:2013年4月20日发生在中国四川雅安芦山的Ms7.0级地震是2008年“5.12”汶川地震之后龙门山地震断裂带又一个灾难......

    城市黑臭水体产生机理及治理方法探讨

    城市黑臭水体产生机理及治理方法探讨 喻文昊 (广西大学 环境学院,广西 南宁530004) 摘要:现阶段随着城市工业发展的加速,以及城市人口的快速增长,污水排放量急剧增加,城市的河流黑......

    绿色消费形成机理分析及企业对策

    · 绿色消费形成机理分析及企业对策 一、引言 绿色消费是指消费行为不仅要满足我们这一代人的消费需求、安全和健康需要,还要满足后代的消费需求、安全和健康需要。它包括三......

    硫磺粉尘爆炸事故机理及对策5篇

    硫磺粉尘爆炸事故机理及对策 一、爆炸机理1 必要条件 1.1 燃料即硫磺粉尘与空气充分混合。 1.2 点火源:具有一定能量的点火源,使悬浮在空气中的粉尘点燃。2 爆炸过程:硫磺粉......

    医疗纠纷产生的原因及对策

    医疗纠纷产生的原因及对策 医疗纠纷主要变现为患者或家属对医疗机构信任度减低,对医疗服务和治疗效果不满意而采取的一些措施,如投诉 索赔 上访诉讼甚至暴力冲突等 外部原因 2......