第一篇:CRH380A动车组转向架的检修方法与改进方案
目 录
摘 要................................................................................................................................1 第 1 章
绪论..................................................................................................................1
1.1选题背景..............................................................................................................1 1.2主要内容..............................................................................................................2 第 2 章
CRH380A动车组转向架................................................................................3
2.1CRH380A动车组介绍.........................................................................................3 2.2CRH380A动车组转向架.....................................................................................3
2.2.1转向架的主要部件...................................................................................3 2.2.2转向架载荷传递过程...............................................................................5
第 3 章
CRH380A动车组转向架检修方法................................................................7
3.1转向架分解工艺分析..........................................................................................7 3.2转向架清洗以及防护流程分析..........................................................................8 3.3转向架构架检修流程分析..................................................................................8 3.4转向架组成工艺分析..........................................................................................9 3.5转向架的试验流程分析......................................................................................9 第 4 章
CRH380A动车组转向架检修改进方案.......................................................11
4.1引言.....................................................................................................................11 4.2转向架检修改进方案.........................................................................................11 参考文献..........................................................................................................................19 致
谢..............................................................................................................................20
摘 要
随着高速动车技术的发展以及高速动车的广泛使用,动车检修技术也随之快速发展。而动车转向架作为动车运行的关键部件,其检修工作更是不容忽视。根据国家1~2年强制检修的规定,动车转向架的检修工作量相当庞大,传统的动车检修车间的检修方式已不能满足目前以及未来动车转向架的检修要求。本文以江动车转向架为研究对象,分析介绍了对动车转向架检测生产线中的关键部件,并最终提出检测生产线上装备的优化方案。
关键词:CRH380A动车组;转向架;检修;改进方案
CRH380A型动车组转向架的检修方法与优化方案
第 1 章 绪论
1.1选题背景
自2007年4月18日我国铁路第六次大面积提速,并首次开行时速为200公里动车组以来,统称为"和谐号"的CRH系列动车组象征着我国铁路进入了高速铁路的行列,图1为CRH380A动车组实物图。目前,我国铁路投入运营的动车组己有1900余组,居世界首位,累计运行里程超过27.7亿公里。截止2015年底,高铁运营里程达到1.9万公里,居世界第一,占世界高铁总里程的60%以上。按照铁路中长期发展规划,预化到2020年,全国铁路运营里程将增加到12.1万公里,其中时速200-350km客运专线和城际铁路将达到1.8万公里。随着愈来愈多动车组的投入使用,加大了对动车组检修的工作量,维修费用也随之提高。从运营成本上讲,车辆运用维修费用占全寿命周期费用的66%-88%,是采购费用的2.9-8.3倍,由此可见,如何合理的制定维修策略,使它们安全、可靠、经济、高效地运营,无疑成为当前迫切需要解决的问题。国家也从"十二五"、"十三五"发展规划中要求加快铁路设施和维修管理的步伐。
图1CRH380A动车组实物图
转向架故障方法的研究不但关系到高铁列车的可靠性和安全性,并且也关系1
到高铁列车的运营成本.具体来说,对动车组转向架故障规律和维修的研巧具有下重要的意义:(1)铁路运输安全第一,但是我们在重视提速的同时却忽略了系统的可靠性问题,我国动车组运行以来出现了不少的故障,甚至造成了人员伤亡的重大事故,行车事故给国民经济造成了深远的影响。而转向架是动车組最重要而且故障发生最频繁的部件,因此,为了提高动车组运行的可靠性,降低维修费用,减少事故发生,对转向架故障的研巧是非常有必要的。(2)转向架是动车组重要组成部件之一,担负着承载、牵引、导向、缓冲、制动等任务,其技术状态是否良好直接影响着列车的运行品质和火车安全,因而转向架的故障规律的研究也就成为了动车绝维修工作中的重点。(3)由于转向架是一个多部件的复杂设备,故障模式和列车其他零部件的故障相似,因此对转向架关键零部化故障检修的研究具有代表性,对整个列车的故障检修有着很大意义。 1.2主要内容
本文以CHR380A动车组为研究对象,主要介绍了CHR380A动车组以及其转向架结构的组成,分析和介绍了动车组转向架的检修方法,在此基础上提出了检修方法的改进方案。2
第 2 章 CRH380A动车组转向架
2.1CRH380A动车组介绍
CRH380A是时速380公里高速综合列车,为8节编组,设计最高试验速度为380公里/小时,CRH380A动车组如图2所示。列车由南车青岛四方机车车辆股份研制。该型动车组的诞生标志着中国高速列车设计制造实现国产化所迈出的重要的一步。
图2我国CRH380A动车组
2.2CRH380A动车组转向架 2.2.1转向架的主要部件
转向架作为车辆最重要的组成部件之一。其设计合理性对车辆的动力性能和安全性非常重要。本文中动车转向架应用的是动力转向架,主要由四个部分组成:(1)轮对和轴箱:轮对作为车辆和线路的联系界面,直接向钢轨传递重力,通过轮轨间的黏着产生牵引或制动力,并通过车轮的回转实现车辆在钢轨上的运行。轴箱是连接构架与轮对的活动关节,它除了保证轮对进行回转运动以外,还能使轮对适应线路不平顺等条件。(2)构架:转向架的基本骨架,用于安装各个零部件,并承受和传递各种载荷。3
(3)弹簧悬挂装置:主要由弹簧和阻尼器组成。现代动车组车辆一般采用两系悬挂,一系悬挂装置设在轴箱和构架之间,二系悬挂设在构架与车体之间。弹賛悬挂装置用来平衡轴重分配,缓和线路不平顺对车辆的冲击,保证车辆运行稳定性和平顺性,保证车辆通过曲线时使转向架能相对于车体回转灵活。(4)车体与转向架间的纵向牵引装置:主要用以传递车体与转向架间纵向力,如牵引力和制动力。 CRH380A动车沮动车转向架有下特点:它是没有摇枕的,并且为转巧式轴箱定位结构。其构架是H型结构,它是由两根无缝钢管的横梁和两根箱型的侧梁组成的,采用压型焊接高强度耐候钢板,其特点是財巧蚀性强。在横梁上方焊接两纵向辅助箱型梁。侧梁是鱼腹箱型结构,其中部有点下凹,其上部焊有制动吊座、连杆座、抗蛇形巧振器座及定位座等部件,其内部是加强筋板,共有8块。横梁采用的是无缝钢管,其上焊有牵引拉杆座和纵向辅助箱型梁。在纵向辅助梁端部 的安装板上,通过巧栓将牵引电机和齿轮箱吊杆紧固。整个构架结构如图3所示。
图3转向架实物图
2.2.2转向架载荷传递过程
动车转向架在空间坐标内受到三个方向载荷作用,其传递过程如下:(1)垂直载荷的传递过程为: 车体 空气弹簧 构架 轴箱弹簧 轴箱 车轴 车轮 钢轨(2)横向载荷的传递过程为: 车体 空气弹簧 横向缓冲挡 纵向连接梁 构架横梁 轴箱弹簧 轴箱 车轴 车轮 钢轨 5
(3)纵向载荷的传递过程为: 车轮 车轴 轴箱 轴箱转臂定位 构架 牵引拉杆座 中央牵引拉杆 中央牵引座 车体 车钩 6
第 3 章 CRH380A动车组转向架检修方法
动车转向架的零部件繁多,针对动车转向架的检修工艺也相当复杂,因此在动车转向架检修基地的转向架检修输送线上的工位众多。几种不同型号的动车转向架的主要检修工艺类似,其流程如图4所示,大致可以分为: 1.动车转向架的入库清洗与烘干; 2.动车转向架的零部件分解; 3.分解后转向架各个零部件的检查、性能测试与维修; 4.动车转向架的流水线组装; 5.动车转向架组装完成后转向架整体的性能测试。
图4转向架检修流程图
3.1转向架分解工艺分析
转向架的分解工艺主要包括待修转向架、垂向减振器、分解牵引电机等十多7
项内容。分解转向架的工艺中应当注意以下几点:(1)空气弹簧应当避免和酸碱油等溶剂接触,从而避免造成人为损伤以及热损伤等;(2)对螺栓进行拆除的过程中,不能使用冲击扳手,主要是为了保护紧固件以及上面的防护镀膜,避免其受到冲击扳手的破坏。对拆解之后的部件实施搬运的过程中,确保轻拿轻放,避免损坏零部件;(3)转向架型号可以使用白色油性笔加以标记,避免转向架型号混乱;(4)应当做好工件识别工作,比如牵引电机、空气弹簧、轴箱体、轴箱弹簧等拆除之后,使用白色油性笔进行标记,促使相关人员清楚知道工件位置以及工件编号。3.2转向架清洗以及防护流程分析
一般来讲,转向架防护以及清洗工作主要包括:(1)对分解的零部件进行检查,并且确定防护状态良好性,对轮对、构架进行清洗,之后使用高压风对零部件进行吹干处理,并且检查零部件是否存在进水问题;(2)转向架防护部位包括横向减振器的托架螺栓孔、空气管路的进气口以及电缆插头等。轮对清洗过程中,手工水洗和高压清洗相互结合,比如,采用钢丝球、圆头刷、方头刷、擦车布等对转向架进行清洗,在清洗的过程中,为了防止轴承出现进水问题,高压水枪使用的时候应当尽量避免对冲轴承防护;(3)清洗完成之后,应当对轮对进行必要检查,防止轴承进水的问题。空气管路和电线接口的位置,需要相关人员做好防护工作,不但可以避免电线进水,而且可以防止空气室进水。3.3转向架构架检修流程分析
构架检修流程主要包括:(1)对转向架的构架螺纹孔进行吹干处理,并且对构架本体进行检查;(2)实施转向架配管以及制动单元的检查: A.应当对安装中的外露螺纹以及构架组成实施外观检查,特别是应当切实做8
好定位臂缺扣、电机吊座、毛刺以及乱丝的检查,避免有异物存在并且保持空隙的干爽及整洁; B.构架组可视缝隙的焊接检修,对焊接中密集气孔以及裂缝等进行检修; C.对安装管路进行检修的过程中,应当保证安装管路不松动以及无脱落,并且检查管路是否磨损,如果表面存在损伤、磨损问题,应当及时更换管路。3.4转向架组成工艺分析
转向架的落成组装的流程,主要包括以下几个方面:减振器、轮对提吊等附属配件、轮对以及构架件组装等等。在组装完成之后,需要对转向架的尺寸大小进行测量。在转向架的组装过程中,应当注意以下事项:(1)做好待组装配件检查工作,经检验是合格配件才能用于组装。组装过程中,明确配件属于拆解部件还是全新配件,将拆解部件和全新配件进行分类,放置在不同区域方便识别;(2)按规定扭矩紧固松弛的螺栓,使用白色标记笔进行防松标记,未经拆解检修的螺母等部位同样需要进行标记;(3)注意及时清除组件上的各种污染物质或油脂物质等,保持组件的干净以及整洁;(4)在组装过程中,注意不要将配件装反、装错以及漏装等。3.5转向架的试验流程分析
一般来讲,转向架试验流程主要包括以下步骤:(1)转向架进入试验台之前,试验制动闸片动作状态及测量相关间隙;(2)进入静载实验,对转向架进行加重状态之下的检查工作。比如,对轴距尺寸及轴箱距基准面尺寸测量等;(3)进行气密性实验以及差压试验等;(4)检验之后,做好记录并且填好记录表。转向架在试验步骤完成之后,进入转向架的整备作业;(5)进入交检交验程序。在这个过程当中,如果发现相关问题或者存在疑问,9
应当及早解决,避免留下安全隐患。10
第 4 章
CRH380A动车组转向架检修改进方案
4.1引言
动车转向架检修生产线,工位众多。转向架三~五级修的整个检修的流程工艺也较为复杂。本章首先介绍了动车转向架的检修生产线的设计思想。检修生产线通过使用空 中吊挂运输和地面专车配合检修,让空中轨道和地面轨道同时运行,提高检修效率。生产线采用“鱼骨型”轨道布置的形式,让行走在空中轨道上的多功能小车运行调度更加顺畅,这种设计安排布置更加合理,使得检修效率得到了提高。4.2转向架检修改进方案
动车转向架检修生产线由空中和地面两大轨道系统共同组成,配合空中运输装备多功能小车、地面运输专机、各个工位的专业检修装备以及各种专业性能测试维修库来完成动车转向架的检修任务。空中轨道系统采用的是“鱼骨型”结构的轨道分布,运输主线相当于鱼骨中间的主骨,分线相当于鱼骨主骨边上的鱼刺,主线用于安排空中多功能小车的运行调度,分线则是用来运输多功能小车至检修工位的。各个分线末端下部的地面上都回安放着各种检修工位。主线和分线之间使用空中动力转盘完成多功能小车从主线运行至分线的专线变轨。这种线路安排好处是,可以使多台多功能小车同时在检修生产线主线上运行,如果其中一辆小车出现问题,可直接使其运行至预留工位进行修理,不影响其他小车正常运行。由于动车转向架检修工位众多,各个工位的检修时间也各不相同,当某个工位遇到特殊状况,检修时间较长时,后面的小车也无需等待,配合预留的检修工位,直接绕过原来的工位进行检修,可以大幅度提高检修作业的效率。同时该检修生产线采用可循环式回路主线,并根据待修动车转向架的故障情况进入不同的检修线路,多功能小车的调度相当灵活多变。下图中展示的这种“鱼骨型”可循环式检修生产线的运输效率和灵活性都相当11
高。
图5鱼骨型检修生产线
动车检修生产线上的各种部件:(1)空中轨道系统:空中轨道系统主要由空中输送线和空中动力转盘组成。其中空中输送线运输轨道采用的是混合动力摩擦辊系统加上链传动系统的组合形。(2)多功能小车:多功能小车是整条生产线上一个比较关键的部件。如图6所示,该小车主要由行走托盘组件、升降组件、旋转组件、转向吊组件和电控系统组成。多功能小车主通过空中轨道作用到达指定位置后,通过升降组件运动以接近需要吊挂的物件一般为动车转向架主体构架,然后利用固定装置转向吊组件抓取检修工件。随后,工件便在小车的带动下进行运输,并在小车旋转组件作用下进行任意水平角度的旋转。
图6多功能小车
该多功能小车在多个关键部位设置有磨损检测、自动锁紧装置、自动报警系统12
以及安全防脱落装置等,确保使用过程中的安全可靠性。与此同时,上述各关键数据可以通过外部设备进行监控,以便及时发现安全隐患,提前进行检修或零件的更换,从而防患于未然,确保小车的安全稳定运作。多功能小车自身的主要运动是带动被吊挂工件的垂直上下运动以及转向吊组件的水平旋转运动。(3)地面轨道系统:如图7所示,地面轨道系统由地面动力转台和地面输送线组成,其中地面输送线是一种可移动轨道,采用仿形链板结构,这种可移动式轨道系统解决了动车转向架脱离动车主体进入检修基地之后自身无动力问题。
图7地面轨道与地面动力转盘
(4)地面翻转装置:地面翻转装置主要完成转向架构架主体的翻转作业任务,主要作用为:a.翻转构架180°供多功能小车吊挂,完成后续检修任务;b.翻转构架180°,对构架进行人工检查作业;c.翻转构架180°,对构架进行检修作业;d.翻转构架180°,同时起到支撑作用。(5)地面运输专机:当动车转向架构架主体由多功能小车吊挂运行至工位时,如果该工位需要在专门的检修库里进行检修作业,这个时候,多功能小车把主体构架下降放置于地面运输专机上,由地面运输专机运输主体构架至相应的检修库进行检修,这种运输小车的有点是结构设计简单、功能单
一、造价便宜。整条检修生产线上运输检修装备众多,它们通过系统的控制,完成整个检修过程。13
整条转向架检修生产线采用可循环式主线“鱼骨型”分线布置,工位众多,检修流程复杂,传统的检修工艺手册、说明书或者工程图纸等无法简洁、高效、直观的描述动车转向架的拆分、检测、组装、试验的整个检修过程。
图8整条检修生产线仿真全景图
这里主要针对动车转向架的三级检修流程进行可视化仿真。(1)动车转向架脱离动车主体后,在地面移动导轨的带动下进入转向架检修基地,入库前需要先拆除动车转向架的动力装置进行检修,并在对动车转向架的其它电气部分进行防尘、防水处理保护,为接下来的对整个动车转向架的清洗和烘干的顺利进行做必要准备。图9为转向架在地面移动轨道的带动下驶入检修基地,图10为进行清洗前对转向架动力装置进行拆除。
图9动车转向架进入检修基地
图10拆除转向架动力装置
(2)入库整体清洗烘干完毕之后,动车转向架就要驶入空中悬挂检修车间,进行14
进一步的拆解。如图11所示,动车转向架行驶至相应的工位之后,转向架轮对和主体构架就需要分离进行分别检修。其中多功能小车吊挂着主体构架,进入空中检修生产线完成后续检修工作。
图11轮对和构架分离
图12轮对脱离构架单独行驶
而如图12所示的轮对则通过地面轨道系统,单独行驶至专门的轮对检修工位进行检修。并在空中检测轨道末端等待总体组装落成。图13地面小车进行托运
(3)如图13所示,运输主体构架的多功能小车每运行至一个检修工位,都会经由空中动力转盘,进入分线并停止在分线末端地面上的相应检修工位上方,然后多功能小车通过升降组件把主体构架下降至工位,一般都是由专业的检修工作人员15
对主体构架进行的拆解检测。有些分线末端会设置专门的检修测试库,这个时候就会采用图13中所示的地面运输专机配合多功能小车一起完成运输任务。小车把吊挂工件停放在地面运输专机上,由地面运输专机把工件运输进入检修测试库,并在检修完毕之后,把工件运输回至多功能小车下方,让多功能小车将其提吊和运输至下一个工位。图14探伤
(4)每个工位的检修内容各不相同,在空中检修生产线上,会把轮对轴箱组、空气弹簧、轴向弹簧、减震器、速度传感器、排障装置等部件从构架上拆下进行检修。另外还会根据检修级别的不同分别对主体构架进行单体制动试验、探伤、抛丸、漆厚度及附着力试验、构架管线修配、部件构架油漆等检修工艺。如图14所示的检修内容为工艺比较复杂的入库专门检修。其中图14中所示的探伤检修采用了空中循环积放链式轨道进行小车的运输入库。每个检修库采用何种运输方法一般由该工艺的检修方法、检修时间、要求定位精度等因素决定。(5)在检修生产线的下半段的主要任务是对动车转向架的主体构架进行组装,并在组装完成之后进行压力试验、电缆安装、找补油漆、翻转检测等检修工序。(6)最后需要完成转向架主体构架与轮对的对接,并安装上悬挂系和摇动座等组件。转向架落成和尺寸调整在专用台为上进行,组装后各部位尺寸满足轴距2500+-1mm,对角线之差小于等于1mm;同一轮对与构架侧梁基准面距离203.5mm,其横向之差小于等于1mm。图15和图16所示的为检修生产线较末端的组装落成 16
等工艺流程。图15轮对主体组装
图16悬挂系组装
(7)最后出库前动力转向架需要安装入库前拆卸掉的动力装置如图17所示。
图17动力装置组装
在所有的组装工艺都完成之后,在离开检修基地之前,还需要对组装完毕的动车转向架进行整车的性能检测,确保出库的动车转向架能够满足行车要求。动车转向架检修生产线,工位众多。转向架三~五级修的整个检修的流程工艺也也较为复杂。本章首先介绍了动车转向架的检修生产线的设计思想。检修生产线通过使用空中吊挂运输和地面专车配合检修,让空中轨道和地面轨道同时运行,提高检修效率。17
同时空中轨道和地面轨道都采用了可以±90°旋转的动力转盘,来实现运输装备在输线上的转向变轨,避免了使用岔道技术造成的占用空间大,变轨复杂等问题。“鱼骨型”轨道布置的形式,让行走在空中轨道上的多功能小车运行调度更加顺畅,这种设计安排布置更加合理,使得检修效率得到了提高。其次,本章还对检修生产线上的关键装备的结构原理做了简要分析。最后对整条生产线进行可视化仿真。为生产线的研发和展示提供了一种新的思路。
图18整车检测
参 考 文 献
[1]王庆涛.时速200250km动车组转向架四级检修技术概述[J].铁道车辆,2011,49(2):3740 [2]王伯铭.动车组运用与检修[M].北京:中国铁道出版社,2011 [3]中华人民共和国铁道部.CRH3型动车组随车机械师应知必会手册[M].北京:中国铁道出版社,2010 [4]闫文立,孙永谦,陈青云.潘诚城.CRH380A型动车组转向架检修及分解工艺[J].技术讲座,2012(5):49.[5]鲍明全.CRH3型动车组转向架三级检修工艺规划设计沈谊[J]运用检修2013,51(1):37-39.[6]鲍明全,沈谊,张宝祥.CRH3型动车组转向架检修清洗工艺[J].运用检修,2011,1(24):47-48.[7] 邱勇.CRH380A型动车组总组装工艺上的优化思路探讨[J].工业设计,2016,(3):138-139.[8]闫文立,孙永谦,陈青云,等.CRH380A型动车组转向架检修及分解工艺[J].铁道机车车辆工人,2012,(5):47-49.[9]赵小辉.CRH2动车组转向架三级修检修工艺浅谈[J].无线互联科技,2014,(3):135-137+140.19
致 谢
历时将近三个月的时间终于将这篇毕业设计写完,在毕业设计的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。尤其要强烈感谢我的毕业设计指导老师,他对我们进行了无私的指导和帮助,不厌其烦的帮助进行毕业设计的修改和改进。在此向帮助和指导过我们的各位老师表示最中心的感谢!感谢这篇毕业设计所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我们将很难完成本篇毕业设计的写作。感谢我们的同学和朋友,在我写毕业设计的过程中给予我了很多你问素材,还在毕业设计的撰写和排版等过程中提供热情的帮助。由于我们的学术水平有限,所写毕业设计难免有不足之处,恳请各位老师和学友批评和指正!20
第二篇:动车组转向架故障原因及改进方法
摘要
安全是铁路运输的永恒主题,客车安全又是铁路安全的重中之重。旅客列车作为复杂系统集成,任何细小的故障隐患,都将可能造成无法估量的损失。本论文以 25K 型客车 CW-2 型转向架的故障统计数据作为分析依据,统计梳理了客车走行部的多种故障模式,综合乌鲁木齐车辆段的运营线路、季节气候、运行里程以及维修水平等多方面因素,运用数据统计以及相关性分析,确定出影响客车走行部故障主要的相关因素以及故障模式。合现场作业实际,本论文选取了客车走行部维修班组作为基于风管理维修策略的实施对象。根据“管理规范化”的要求,融合岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面,修订出符合现场风险管理实际的《检车员岗位风险控制说明书》;根据“作业标准化”的要求,客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的《25K 型客车转向架流程风险辨析指导书》。通过对基于 25K 型客车 CW-2 型转向架故障统计以及因素相关性分析,运用故障模式故障树分析,基本事件的风险辨析、评估和层级防控,完善了分级管理、预警预控的客车维修策略,确保了现场安全作业管理的全面、准确、有效,进一步提高了客车维修水平。
关键词:CRHIn型动车组;转向架构架;车轴齿轮箱;转向架轴承
I
目 录
摘要.............................................................................................................................I 第1章.绪论..................................................................................................................1
1.1转向架的总体概括.........................................................................................1 1.2故障案例分析.................................................................................................1 1.3故障原因分析.................................................................................................2 第2章转向架的结构....................................................................................................3
2.1转向架由那些组成.........................................................................................3 2.2转向架的结构图.............................................................................................3 2.3轮对踏面压到异物后的异响.........................................................................3 2.4管路泄露故障引发的异响.............................................................................3 2.5油压减振器引发的异响.................................................................................3 2.6 自动车钩偏移引发的异响............................................................................4 第3章.转向架的作用..................................................................................................6
3.1转向架的历史.................................................................................................6
3.1.1准高速客车型.....................................................................................6 3.1.2高速型.................................................................................................7 3.2转向架的主要作用.........................................................................................7 第4章 转向架的故障分析..........................................................................................9
4.1动车转向架故障类型分析.............................................................................9 4.2动车组转向架故障原因分析.......................................................................12 4.2.1部件设备漏油分析...........................................................................12 4.3制动装置故障分析.......................................................................................12 4.4其他零部件的故障分析...............................................................................12 4.5动车组转向架的故障模式、致命性分析(FMECA).....................................13 第5章.动车组转向架轴承的检测技术与处理........................................................14 5.1动车组转向架轴承故障诊断的基本内容...................................................14 5.2动车组转向架轴承故障监测常用技术.......................................................14 5.3机车车辆轴承故障机理分析.......................................................................16 5.3.1轴承故障的振动原因.......................................................................16 5.3.2动车组转向架轴承缺陷产生的特征频率........................................16 结束语..........................................................................................................................18 参考文献:..................................................................................................................19
第1章.绪论
1.1转向架的总体概括
转向架是轨道车辆结构中最为重要的部件之一,其主要作用如下: 1)转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。2)支撑车体,承受并传递从车体至车轮之间或从轮轨至车体之间的各种载荷及作用力,并使轴重均匀分配。
3)转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,减小动应力,提高车辆运行平稳性和安全性。
4)充分利用轮轨之间的粘着,传递牵引力和制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。
5)车辆上采用转向架是为增加车辆的载重、长度与容积、提高列车运行速度,以满足铁路运输发展的需要;
1.2故障案例分析
动车组在检修时发现有部分构架组成制动吊座表面有损伤现象,损伤状态主要呈现麻点状损伤(片状麻点,深度小于1 mm)、线性损伤1(长度贯穿吊座安装面,宽度小于0.5 mm,深度约0.1 mm)、线性损伤2(长度小于10 mm,宽度约2 mm,深度小于0. 5mm)、面状损伤(长度约10 mm,宽度约5 mm,深度小于0.5mm)四种现象,具体如图1 ~ 4 所示。
图1 麻点状损伤 图2 线性损伤1
图3 线性损伤2 图4 面状损伤
2012年6月2日D6242次CRH1092A运行途中随车机械师发现05车A架异响,出动热备车组替换CRH1092A回动车所后对05车A端转向架进行落轮检查,落轮后手动旋转05车2轴4位轴箱轴承时,可以听到轴承内部有异音。随后对轴承进行分解,内圈和滚子组件油脂状况:后挡侧(A)保持架上有金属。
图5 后挡侧(A)保持架
外圈滚道状况 :A侧外圈滚道面承载区有约90°范围的剥离区(见图 5)。外圈滚道状态 :A侧外圈滚道承载区下方约90°范围剥离剥离区内可见与滚子接触形状和间距对应的原始剥离区域,非剥离有其它点状异物压痕,且非承载区较轻。由此可见该转向架异响是由轴承外圈滚道剥离造成的。
1.3故障原因分析
通过汇总动车组转向架在运行中出现的异响故障,分析主要原因如下:(1)轴承内部故障引发的异响中巡视发现(故障表现为动车组运行达到一定速度后发出固定频率的异响,通过随车机械师途因福州动车段发现的轴承故障造成的异响均在故障初发阶段,轴温升高尚未达到报警界限,所以在监控动车组状态的 IDU 上未能发现该(故障),此故障较难发现,要在一定速度才会发出异响,需随车机械师认真甄别。其产生的主要原因为:[1]轴承材质问题;[2]热处理不良;[3]局部外伤、锈蚀、偏载或过载;[4]材质正常疲劳破坏。
(2)轮对踏面擦伤、剥离或局部凹入引发的异响故障表现为运行过程中走行部发出固定频率的响声,并引起车辆振动。运行速度越快,响声频率越高;擦伤、剥离长度越长,响声越大。这类故障较易发现。踏面擦伤是动车运行中制动力过大、抱闸过紧,车轮在钢轨上滑行,踏面局部被磨成平面。
第2章转向架的结构
2.1转向架由那些组成
转向架的附属装置,轮对电机组装,构架,一系弹簧悬挂装置,二系弹簧悬挂置牵引装置,电机悬挂装置基础制动装置,手制动装置和砂箱等组成。
2.2转向架的结构图
图2 2.3轮对踏面压到异物后的异响
故障表现为某一转向架轮对踏面压到钢上的异物后发出一声巨响,因坚硬异物造成轮对踏面局部凹入而发出固定频率的异响。
2.4管路泄露故障引发的异响
故障表现为车辆下部发出尖啸声,漏泄量大可通过 IDU 所报故障信息进行判断,漏量小可通过随车机械师途中巡视或地勤机械师入库检查作业发现。其主要原因为车组经长时间运行震动或运行途中管路遭异物击打,使管路连接处出现松动、变形,导致管路中的压力空气漏泄发出异响。
2.5油压减振器引发的异响
其主要原因为车组在转弯时车体两边出现高度差情况下(特别是左右空气弹簧压力差超过 20kpa 以上时),造成油压减振器的偏磨(主要为二系横向)而发出异响,此为正常现象。如油压减振器发生严重偏磨或漏油则属于故障。
2.6 自动车钩偏移引发的异响
在动车组运行中,通过曲线时自动车钩支架左右弹簧位置发生偏移,导致晃动产生共所发出间断的敲击声,此为正常现象。(1)车钩的结构特点
车钩的连挂间隙小;车钩具有联锁和防脱功能;钩舌销不受力;耐磨性;良好的防跳性能;结构强度高;自动对中功能。(2)车钩的结构图见图3
图3 4
(3)原送料皮带存在的问题
在用户使用过程中,发现送料机构问题不少。由于每边采用(根3带,两边共有6根,换带时间长6虽然皮带的型号是一样的,但张紧后,还是有紧有松,影响正常送料。如果下面或中间的一根带断了,更换起来特别费劲6而且换了一根新的,松紧程度又不同了;特别是由于采用A型带,6带露在带轮外面的高度最多只能有5mm(如露在外面的部分多,带轮的轴线是在竖直方向,即带是在垂直方向工作,这样带很容易从带轮上滑落),皮带用不了10天就得更换6造成生产线停顿,经济损失大,用户的意见非常大。(4)新型送料皮带的优点
为了改变这种状况,对送料机构进行了改造。去掉原来的3带,重新设计了一种新式带。因为这种带的内面带有凸起的糟形,使得带在垂直位置工作时,靠凸起的槽形定位,不会改变位置,而向下掉,相应的带轮也改成中间有一槽。配合情况这种带实际上是由平带和 3 带组合而成。采用这种皮带后,调整带的张紧力非常方便,也不会出现松紧的现象。送料过程中也不会出现停顿,更换也非常方便。更为重要的是,这种带的厚度增加(相对平皮带来说),带的寿命大大增加。5
第3章.转向架的作用
3.1转向架的历史
20世纪50年这个时期,我国首次自行设计了转向架,主要型号有101、102、103型,是21型客车使用的导框式转向架,构造速度是100km/h,其结构复杂,笨重,运行性能差,现已淘汰!70年代,四方厂研制了U型结构的206型转向架,浦镇厂研制了H型构架的209转向架。206型转向架采用侧部中梁下凹的U型构架,干摩擦导柱式轴箱定位装置,带横向拉杆的小摇动台式摇枕弹簧悬挂装置,双片吊环式单节长摇枕吊杆外侧悬挂以及吊挂式闸瓦基础制动装置等,结构可靠,运行平稳,磨损少,检修方便,1993年开始在中央悬挂部分加装横向油压减振器,加装两端具有弹性节点的纵向牵引拉杆,形成206G型转向架,后加装盘型制动装置,形成206P型转向架。
209转向架是浦镇厂在205转向架的基础上研制的,于1975年开始批量生产。它采用H型构架,导柱式轴箱定位装置,摇动台式摇枕弹簧悬挂装置,长吊杆,构架外侧悬挂,两高圆弹簧,摇枕弹簧带油压减振器,吊挂式闸瓦基础制动装置等。1980年后,又生产了具有弹性定位套的轴箱定位结构和牵引拉杆装置的209T转向架。在此基础上,还生产了采用盘型制动的209P转向架。
在209T转向架的基础上,浦镇厂又开发了供双层客车使用的209PK转向架,其构造速度为160km/h。主要有以下方面的改进:采用盘型制动和单元制动缸,取消踏面制动;设空重调整阀;采用空气弹簧和高度调整阀;安装抗侧滚扭杆;保留了摇动台结构。209PK 转向架(P 代表盘型制动,K 代表空气弹簧)在这段时期内,我国还制造了少量用于公务车的三轴转向架,在原德意志民主共和国进口的软座,软卧车上采用了 211 等型号的转向架。
3.1.1准高速客车型
1994 年,四方厂、长客厂、浦镇厂相继研制出了 206WP、206KP、CW-2、209HS 转向架,在广深线动力学试验中最高时速达到了 174km/h,这些转向架的研制成功,标志着我国客车转向架技术上了一个新台阶。
206KP、206WP 转向架是四方厂为广深线准高速客车和发电车设计的转向架,二者除中央悬挂部分和构架侧梁全旁承支重;中央悬挂为有摇动台结构;设带橡
胶套的中心销轴牵引拉杆横向挡,横向拉杆,横向油压减振器,抗侧滚扭杆;轴箱悬挂系统设垂直油压减振器;基础制动装置为单元盘型制动,设电子防滑器;广泛采用橡胶元件,改善隔振、隔音性能,减小磨耗。
3.1.2高速型
1998 年起,各工厂相继推出了自己的高速转向架,例如浦镇厂的PW-200转向架,长客厂的CW-200转向架,四方厂的SW-200、SW-220K转向架等。PW-200转向架(PW代表PuzhenWork)是在209HS转向架的基础上重新研制的,它优化了一系和二系悬挂参数;采用了无磨耗的橡胶堆轴箱弹性定位装置;采用高速轻型轮对;轴颈中心距改为2000mm ;更换轴箱减振器安装位置;装用带可调阻尼和弹性支承的空气弹簧,采用两端为球铰的纵向拉杆;装用新型盘轴式基础制动装置;优化了结构设计。
SW-200 转向架结构与 SW-160 转向架基本相同,其改进如下:优化了一系、二系悬挂系数;采用轴盘式基础制动装置,适用于200km/h的高速列车。该转向架在1998年6月的郑武线动力学试验中最高时速达到了240km/h。在这一阶段,长客厂生产了我国第一台 CW-200 型无摇枕转向架。其构架采用4块钢板拼焊,横梁采用无缝钢管,与侧梁连通作为附加空气室,中央悬挂。
3.2转向架的主要作用
转向架是承载车体重量和传递走行动力的导向部件,是大型养路机械的重要组成部分,其主要作用如下:
1)承载车体重量转向架作为一个独立的走行装置,它直接支撑车体,承受和传递车架以上各部分(车体,车架,动力传递装置及作业装置等)的重量。2)传递走行动力把轮轨接触处产生的轮轴牵引力,以及通过曲线时轮轨之间的横向作用力传至转向架构架,经过减震环节再传向车体,同时,转向架引导车辆在线路上运行。
3)曲线通过转向架可相对车体回转,其固定轴距也较小,故能使车辆顺利通过半径较小的曲线,并大大减少车辆的运行阻力。
4)提高车辆的运行平稳性转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,使车体在各振动方向上的位移量减小,提高车辆运行平稳性和安全性。
5)保证必要的粘着力和制动力,充分利用轮轨之间的粘着,传递牵引力和
制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。
6)便于检修,转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。易于从车辆底架下推进,推出,便于检修,有利于劳动条件的改善和检修质量的提高。
7)转向架的主要技术要求,转向架是大型养路机械的主要组成部分之一,它用来传递车辆的各种载荷,并利用轮轨间的粘着作用保证牵引力的产生。转向架结构性能的好坏,直接影响大型路养机械的牵引能力、运行品质、轮轨磨耗和运行安全。
第4章 转向架的故障分析
4.1动车转向架故障类型分析
在分析产品故障时,一 般是从产品故障的现象入手,通过故障现象(故障模式)找出原因和故障机理。对机械产品而言,故障模式的识别是进行故障分析的基础之一。
由于故障分析的目的是采取措施、纠正故障,因此在进行故障分析时,需要在调查、了解产品发生故障现场所记录的系统或分系统故障模式的基础上,通过分析、试验逐步追查到组件、部件或零件级(如螺母)的故障模式,并找出故障产生的机理。
故障的表现形式,更确切地说,故障模式一般是对产品所发生的、能被观察或测量到的故障现象的规范描述。
故障模式一般按发生故障时的现象来描述。由于受现场条件的限制,观察到或测量到的故障现象可能是系统的,如制动系统不能制动;也可能是某一部件,如传动箱有异常响声;也可能就是某一具体的零件,如油管破裂等。因此,针对产品结构的不同层次,其故障模式有互为因果的关系。
故障模式不仅是故障原因分析的依据,也是产品研制过程中进行可靠性设计的基础。如在产品设计中,要对组成系统的各部分、组件潜在的各种故障模式对系统功能的影响及产生后果的严重程度进行故障模式、影响及危害性分析,以确定各种故障模式的严酷度等级和危害度,提出可能采取的预防改进措施。因此将故障的现象用规范的词句进行描述是故障分析工作中不可缺少的基础工作。
依据某检修部门几年内积累的故障数据;故障数据中的列车号主要是从002A到190A;车辆编号是从1车厢到8车厢;二级系统包括车体系统、车外系统、电气系统、给水卫生系统、供风系统、内装系统、转向架系统7大系统;各系统的故障百分比如表1所示。
由表1可知转向架系统在整个动车组系统中故障频率所占有效百分比达20%以上。根据转向架系统的结构特点和功能,将转向架划分为悬挂装置、架构组成。轮对轴箱定位装置、排障装置、驱动装置、制动装置、转向架配管及配线等。
表1 二级系统频率分布的输出结果
制动夹钳安装槽底部的加工刀痕是新造时遗留的质量问题,在制动夹钳检修工艺文件中并未规定该部位细化的检修要求。据此完善制动夹钳检修工艺文件,增加了安装槽底部检查及打磨工艺要求,在检修过程中须检查制动夹钳安装槽底部是否存在异物及是否有明显的接刀痕迹的施工工序。对于安装槽底部有异物的,须打磨清除;对于安装槽底部存在明显加工刀痕的,使用细砂纸打磨消除刀痕,保证安装槽底部的平面度。同时要求将检修过程出现的问题在后续新造产品中须做好产品质量控制,即对于新造产品也增加了底部平面度检查工序,确保后续产品的质量,这样就可杜绝出现损伤现象。在完善制动夹钳检修工艺的前提下增加了制动夹钳底部安装面的防护工艺。要求制动夹钳在运输过程中需对底部安装槽进行合理防护,以防止安装槽底部受到磕碰或沾染异物而影响组装质量。
依据某机车车辆股份有限公司采集积累的大量使用维护数据,进行了分类处理,得到动车组转向架的故障部位和故障类型表,如表2所示。
0
表2 转向架系统故障模式统计表
从表2中明显看出,转向架系统总共有42个故障模式,制动装置包括轮对等故障达到30条,占26.78%,应重点加强与制动装置相关部件的管理维修和保养工作,及时发现故障隐患,杜绝事故。1 4.2动车组转向架故障原因分析 4.2.1部件设备漏油分析
通过表2分析可知零部件设备漏油在转向架故障中较为常见,可以占到总故障数的25%。通过对设备运行的观察发现可能故障原因是
(1)动车在运转时,在相对封闭的机械箱里,机器在运转时会产生大量的热量。动车组在全日制工作时,箱内温度逐渐升高,箱内压力也会逐渐增大.油液在箱内压力作用下从密封间隙处渗出。
(2)设计不合理;制造质量不良;使用维护不当,检查不及时。设备上的某些静、动配合面缺少密封装置,或采用的密封方案不合适;设备上的某些润滑系统只有给油路,而没有回油路,使油压越来越大,造成泄漏。
4.3制动装置故障分析
动车组制动装置故障在转向架系统故障中占到最大的比例,达到了26%以上。动车组转向架制动装置采用空液转换液压制动方式。制动装置故障不仅会造成动车组途中晚点,而且如处理不当会导致动车组发生事故,严重影响运输秩序,威胁乘客的生命财产安全。
制动系统的常见故障包括了制动控制装置传输不良、制动控制装置故障、制动控制装置速度发电机断线、制动力不足、制动不缓解、监控显示器显示抱死、列车紧急制动不能复位、监控器等控制设备无电等。制动控制装置传输不良时,制动时会检测制动力不足。传输不良主要是光连接器的连接插头松动、接触不良,终端装置接口卡板故障。当制动控制装置速度发电机断线时,车辆将无法进行滑行控制。制动力不足时,可能是UB-TRTD继电器故障、电路故障、制动管系泄漏、EP阀故障、检测传感器故障、BCU故障等。但出现制动抱死故障显示时,可能是由速度传感器断 线、PCIS防滑阀故障、CI与BCU信息传输故障导致再生制动与空气制动同时发生、BCU内部滑行、抱死检测控制错误显示制动系统故障等造成的。
4.4其他零部件的故障分析
轮对组成故障损伤,因其裸露车体外,且直接与地面钢轨接触,运行状况复杂,且轮对组成乃转向架的重要部件,如有故障易造成严重的事故。其次空气弹簧故障因其材质特殊为橡胶所制,较易被划伤,若运行时间长易造成空气弹簧的故障。其次还有横向减振器和抗蛇行减振器,这两者均为油压减振器,易造成漏 1 2 油故障,从而降低减振效果。制动夹钳的长时间使用及检修维护不当,使制动装置易出现故障。
4.5动车组转向架的故障模式、致命性分析(FMECA)
经过前面的分析,基本了解了动车组转向架的故障模式和发生原因,但是仍不清楚每种失效模式对转向架功能所造成的致命度的大小,所以需要对转向架进行FMECA分析[5-7],以便掌握其可靠性薄弱环节,为可靠性评估与提高可靠度提供科学依据
部件i以失效模式j 发生失效时,该零部件的致命度为:
CRij =α
ijβijλ
i
ij是部件式中aij是部件i以失效模式j而引起部件的失效模式概率;βi以失效模式j发生失效造成部件损伤的概率。国标草案中将此称为丧失功能的条件概率。其值为1,表示肯定发生损伤;0.5表示可能发生损伤;0.1表示很少可能发生损伤;0表示无影响。λi是部件i成为基本失效件的故障率采用平均故障率。
通过上面的分析,可以看到在转向架的各个主要部件中轮对部件的部位致命度最大,主要是因为轮对承受了车辆与线路间相互作用的全部载荷及冲击,且直接与地面钢轨接触。其次是制动卡钳(动车)、空气弹簧和轴箱体,它们将是影响转向架可靠性的关键部件。另外,横向减振器部件的致命度也不小,虽然抗蛇行减振器的故障致命度并不很大,但它是使动车组在行驶时具有良好的平稳性、舒适度和安全性的保证,列车在高速行驶中易发生转向架蛇行运动,所以也应该加以重视。具体到故障模式致命度来看轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损等,是重点针对的对象,对此可以采取以下措施:
(1)对于轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损、磨损、弹簧断裂、弹力不足等故障,要加强车辆行驶前、行驶后检查,必要时采取无损检测或磁力探伤,如发现部件有微小裂纹,应及时更换防止裂纹进一步扩展,磨损加剧等。同时建议使用抗拉压、抗剪切、抗扭转、耐磨损的材料来制造,合理改进制造工艺过程,提高部件的质量和使用寿命。
(2)动车组维修部门维护转向架时应严格按照维修手册规定进行,并对致命度大的部件和模式加以重视。
第5章.动车组转向架轴承的检测技术与处理
5.1动车组转向架轴承故障诊断的基本内容
动车组转向架轴承故障诊断与监测是通过轴承的劣化损伤以及性能状态参数,来判断和预测其可靠性和使用性,对异常情况的部位!原因和危险程度进行识别和诊断,及时的可靠的反映故障,防止事故的发生,保证整个动车组运行正常“总的来说,动车组转向架故障诊断的内容是:状态的监测,故障诊断和正确指导轴承的管理与维修三部分。
1.状态监测状态监测就是要采用各种方法掌握设备的运行状态,如检测!测量!分析和判别等”还需要结合系统的现状以及经验,考虑环境和突发因素,准确判断轴承状态,当其出现异常时,发出警报,提醒相关人员采取及时的措施“系统要具有显示和记录其状态的功能,为设备的故障分析和可靠性分析提供信息和基础数据”
2.故障诊断故障诊断技术的实质是:根据状态监测所获得的信息与数据,结合滚动轴承的运行历史!结构特性和参数条件,对滚动轴承的各种不同类型的故障进行预报和分析,并确定其性质!类型!原因!部位!严重程度!性能趋势和后果“
3.指导轴承的管理维修根据诊断结果,决定设备的维修方式和维修周期”避免/过剩维修0,防止因不必要的拆卸使设备精度降低,延长设备寿命;减少维修时间,提高生产效率和经济效益;减少和避免重大事故发生,故不仅能获得巨大经济效益,而且能获得很好的社会效益“ 5.2动车组转向架轴承故障监测常用技术
机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点,从诊断技术的各分支技术来看,美国占领先地位”美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平“发展至今,动车组转向架轴承故障监测的常用技术主要有:振动诊断技术,温度诊断技术,油样分析技术,油膜电阻诊断技术,声发射诊断技术等”下面简要介绍这些方法“1.振动诊断技术振动诊断技术是应用最早的!使用范围最广的故障监测诊断技术”运行的机械设备产生振动的原因是:表面的接触摩擦和旋转部件的不平衡等“进一步的研究表明:振动的强弱及其包含的主要频率成份和故障类型!部位和原因等有着密切的联系。本论文就是采用振动诊断技术是通过安装在轴承座和箱体上的压电式传感器采集轴承的振动信号,并采用有效的方法对其进行分析和处理,振动分析法具有: 4 1.对各种类型工况的轴承适用;对早期轻微故障诊断有效;信号采集方便,分析简单,直观;诊断结果可信度高,在实际中得到了极为广泛的应用,在实际诊断中,传感器采集振动信号中不仅反映轴承本身的工作情况,还包含了动车组中其他运动部件和结构的干扰噪声,在动车运行中,有轻微的局部故障的滚动轴承的振动信号成分往往会被干扰信号淹没,很难被分离与识别,对轴承的工况和故障的诊断会有一定的影响,因此,轴承振动诊断技术的关键是采用先进合理的振动诊断分析处理技术来抑制干扰信号,提取故障特征信息,有效地及时地发现轴承故障。
2.温度监测技术温度监测是通过测量运行中滚动轴承的温度来监测其工作状态是否正常的方法,温度监测法是一种常规!操作简单的故障诊断技术,轴承的温度对轴承的磨损程度和烧伤较为敏感,其应用在一定程度上能较好的反映轴承运行故障,提高了故障检测效率和增加了行车可靠性,但这种方法的缺点是:只有当轴承故障累积到相当严重的程度后,也就是轴承故障的晚期症状,温度才有明显的变化,而轴承出现早期故障如点蚀!剥落和轻微磨损时,温度监测无法发现”由于摩擦产生的热量与相对速度的平方成正比,车辆速度与切轴时间成反比,因此,温度监测逐渐成为滚动轴承的辅助监测技术,降低风险。
3.油样分析技术磨损断裂腐蚀和润滑不当是动车组转向架轴承失效的方式,其中润滑不当占主要部分,由于轴承在运行过程中是用油润滑或油冷却,零部件磨损等原因产生微小颗粒必然会带入到循环油液中,对轴承所使用的润滑油进行常规理化分析,或对其中的金属颗粒进行铁谱分析!颗粒计数等分析以及根据其形状和尺寸来判断轴承故障,就是油样分析技术,它能发现轴承的早期疲劳失效,可作磨损机理研究等特点,但是,这种方法易受其它外界因素的影响,一般用于离线监测,这样会导致信息可能不全面,还得依靠人力来管理,所以,这种方法具有很大的局限性
4.油膜电阻诊断技术动车组转向架轴承在旋转过程中,如果润滑良好,滚道和滚动体之间会有一层良好的油膜,由于油膜的作用,内圈与外圈之间有很大的电阻,达到兆欧姆以上;当油膜遭到破坏时,其电阻的值就会降低,甚至接近0欧姆,故电阻越大,油膜就越厚,摩擦就小,属于正常运行状态;若电阻很小时,油膜就比较薄,轴承摩擦大,属异常运行状态,我们可以通过测量轴承内外圈的电阻, 1 5 对滚动轴承磨损腐蚀等异常进行判断,但对表面剥落压痕裂纹等异常诊断效果差,其特点是适用于旋转轴外露的场合,对不同的工况条件可使用同一评判标准。
5.声发射诊断技术声发射(AcousticEmiSSion简称AE)是指物体在受到形变或外界作用时,因迅速释放弹性能量而产生瞬态应力波的一种物理现象发射检测是一种动态无损检测方法,即:使构件或材料的内部结构,缺陷或潜在缺陷处在运动变化的过程中进行无损检测发射信号来自缺陷本身,对被检件的接近要求也不高,可以利用发射诊断技术长期监测轴承的运行状态与安全性发射检测到的是一些电信号,根据这些电信号来解释结构内部的缺陷变化往往比较复杂,需要丰富的知识和其他试验手段的配合,另一方面,声发射检测环境常常有强的噪声干涉,虽然声发射技术中己有多种排除噪声的方法,但在某些情况下还会使声发射技术的应用受到限制。
5.3机车车辆轴承故障机理分析 5.3.1轴承故障的振动原因
动车组转向架一般是内圈与动车的传动轴的轴顶过盈配合连接,工作时随轴一起转动;而外圈安装在轴承座或箱体上,工作时是固定或相对固定“由于内圈与传动轴连接,外圈又安装在轴承座或轴箱上,这样在动车组的运行过程中,对轴承和轴承座或箱体组成的振动系统产生激励,使该系统振动”引起轴承振动的原因除了外部激励因素(传动轴上其它零部件的运动和力的作用等)之外,如图 3-1所示。
5.3.2动车组转向架轴承缺陷产生的特征频率
当滚动体和滚道接触处遇到一个局部缺陷时,就有一个冲击信号产生缺陷在不同元件上,接触点经过缺陷的频率是不相同的,这个频率就称为特征频率,特征 6 频率可以根据轴承的转速!轴承零件的形状和尺寸由轴承的简单运动关系分析得到如图3一2所示,在外圈固定,内圈与轴一起旋转的情况下,假如内圈滚道!外圈滚道或滚动体上有一处局部缺陷,则两种金属在缺陷处相接触时的冲击振动间隔频率。1 7
结束语
踉踉跄跄的忙碌了半个月,我们的实习论文课题也终将告一段落,也基本达到预期的效果,心里也有一丝丝的成就感。但由于能力和时间的关系,总是觉得有很多不尽如人意的地方,本设计在何剑和曹楚君老师的悉心指导和严格要求下已经完成。从课题选择、方案设计到具体的设计和定稿,每一次改进都是我学习的收获。在实训的这段时间,也始终感受着导师们的精心指导和无私的关怀,我受益匪浅,在此向何剑和曹楚君老师表示深深的感谢。
转向架是动车组的走行部,而构架组成作为转向架的重要组成部分,其重要性尤为突出。一个小的产品缺陷也有可能引发大的产品质量问题。车辆检修过程不仅是产品功能恢复的过程,而且是车辆故障隐患排除的过程。所以对待修车要从问题的根源进行分析并彻底解决,完全消除影响列车安全运行的因素,为列车的安全运行保驾护航。1 8 参考文献:
[1].袁清武.车辆构造与检修[M].北京:中国铁道出版社,2006.[2].陈世和.车辆修造工艺与装备[M].北京:中国铁道出版社,2004.[3].宋永增.动车组制造工艺[M].北京:中国铁道出版社,2007.[4].中国铁道部.CRH1型动车组途中故障应急处理手册[M].北京:中国铁道出 [5].曾全君.地铁车辆车轮寿命分析[J].铁道技术监督,2008,36 [6].国莹,马贤海,杨存法.转K2型转向架轮对偏磨故障分析[J].铁道机车车辆,2007,27(4).[7].李春艳,霍秀峰.转K2型转向架故障分析及改进建议[J].铁道车辆,2001,39(6).[8].萨师煊,王珊数.数据库系统概论[M].北京:高等教育出版社.2000.[9].施敏芳.滚动轴承在线监测与故障诊断系统[J].轴承,2001,(8):4一7.1 9
第三篇:CRH3动车组受电弓检修与改进方案
摘要
自从19世纪铁路运输诞生以来,就一直朝着更高速的方向发展。高速铁路具有载客量高、输送力强、速度较快、安全性好、正点率高、舒适方便以及能耗较低等明显的经济效益和社会效益,在全世界范围内显示出旺盛的生命力。高速铁路是当今世界铁路发展的共同趋势。
各国高速铁路在运营中发生了一些由于列车设备故障引起的事故,由于高速铁路的运营速度高、密度大,行车事故的发生严重影响了高速铁路系统的安全、正点,一些重大的事故甚至对乘客的生命和财产安全造成了不可弥补的损失。因此,防范行车事故、行车设备故障的发生是高速铁路运营部门的不懈追求。
受电弓作为动车组关键设备,受电弓的好坏直接决定动车组列车能否正常行驶。本文以CRH3型动车组受电弓为研究对象,结合受电弓结构特点和CRH3型动车组运行实际情况进行分析,分析了受电弓的检修方法,在此基础上提出了相应的改进措施和建议,以确保动车组正常运用安全。关键词:CRH3动车组;受电弓;检修;改进方案
I
目录
摘要.....................................................................................................................................I 第1章绪论........................................................................................................................2
1.1选题背景................................................................................................................2 1.2主要内容................................................................................................................3 第2章CRH3动车组受电弓............................................................................................4
2.1CRH3动车组介绍..................................................................................................4 2.2CRH3动车组SS400+受电弓................................................................................5 第3章CRH3动车组受电弓故障及检修........................................................................8
3.1受电弓故障............................................................................................................8
3.1.1受电弓自身故障.........................................................错误!未定义书签。3.1.2外部环境故障...............................................................................................8 3.1.3共同作用故障...............................................................................................8 3.2受电弓故障发生原因............................................................................................9 3.3受电弓故障对策..................................................................................................10
3.3.1库内检修故障对策.....................................................................................10 3.3.2路线运转故障对策......................................................................................11 3.4受电弓检修指导...................................................................................................11
3.4.1受电弓性能检查..........................................................................................11 3.4.2受电弓外观检查.........................................................................................13 3.4.3受电弓表面清洁.........................................................................................14
第4章CRH3动车组受电弓改进方案..........................................................................16
4.1快速降弓阀的改进方案......................................................................................16 4.2ADD供风阀的改进方案.....................................................................................17 4.3受电弓升弓故障改进方案..................................................................................18 4.4受电弓磨损问题的改进方案..............................................................................19 参考文献..........................................................................................................................21
第1章绪论
1.1选题背景
高速铁路经过50年的发展,高铁技术取得了巨大的进步,同时其独特的技术优势;运行速度快、运能大,能源消耗低,安全舒适便捷,并且能够全天行运营、巨大的社会经济效益使得高速铁路在世界范围内得到广泛的应用并已成为世界各国客运发展的共同趋势。
自高铁技术发展来,日本、德国、法国、等西方国家在高铁技术应用和研究方面取得了巨大的进展,目前己形成了日本新干线系列、德国ICE系列、法国TGV系列为代表的H大动车组体系。日本、法国和德国高速铁路的成功经验也带动了世界其它国家和地区高速铁路的发展。意大利、西班牙、瑞典、韩国和我国台湾地区均已有高速铁路投入运行。各国动车组从本国实际需要出发,具有各自的技术特色,为推动世界铁路向高速化发展起到了积极的作用。
虽然我国高速铁路技术起步比较晩,但是今年中国高铁技术的发展可称得上是举世瞩目,我国通过技术的引进、消化、吸收、合作和创新,先后成功的制造出自CRH2、CRH3、CRH5和CRH6)以及CRH380己的产品CRH系列(主要有CRH1、系列(主要有CRH380A、CRH380BL和CRH380C)等,同时在这基础上研发出了各种适合不同车速、不同牵引模式、不同档次级别和满足不同需求的动车组。
随着我国高铁事业的迅猛发展,线路的增加必然会造成线路的复杂化,速度的增加必然会引起车辆系统的振动加大,这就必然造成车辆系统的安全性、稳定性及乘坐舒适性要求更高,而动车组的检修及维护是保证上要求的根本保证。随着车辆的运行必然会造成车辆系统部件的磨损和伤害,研究车辆系统部分的损害规律,从而提出更加合理的、更加经济的维修方案十分必要。深化动车组修程、修制研究己成为重要研究课题。受电弓结构如图1所示。
图1受电弓示意图
受电弓-接触网系统是高速铁路非常重要的子系统,对高速铁路的运营起着至关重要的作用。其中作为动车组关键设备的受电弓,直接决定动车组列车能否正常行驶。因此,动车组受电弓的检修就成为高速铁路运营中的一个重要课题。
1.2主要内容
本文以CRH3动车组为研究对象,主要介绍了CRH3动车组以及其受电弓结构的组成,在此基础上对动车组受电弓的故障开展深入研究,分析了受电弓的检修方法,以及提出了检修处理的改进方案。
第2章CRH3动车组受电弓
2.1CRH3动车组介绍
高速动车组通常是指运行速度超过200km/h的列车,其具有运载量大、行驶速度快、能量耗散低、安全性能好、准点率高等特点,现己在世界各国呈现出巨大的发展潜力。截止目前,我国所具有的自主知识产权的动车类型主要包括CRH系列CRH2、CRH3、CRH5和CRH6)(主要有CRH1、以及CRH380系列(主要有CRH380A、CRH380BL和CRH380C)等,动车实物如图2所示。这将为高速列车的快速发展奠定坚实基础。
图2我国动车组主要车型图
目前,我国高速列车建设正处于快速发展的繁荣鼎盛时期。2008年8月1日,我国开通了第一条标准高速铁路一京津城际铁路,其最高速度达350km/h,这标志着我国高速列车己基本实现技术自主化和标准化的重大创新。截止2015年年底,我国"四纵四横"高速铁路骨架也己基本建设完成,全国铁路营业总里程数达12万公里,其中高铁总里程数为1.9万公里,占总里程数的15.8%,规模与里程位居世界首位。随着高速铁路的快速建设,我国的交通网络也日益完善,高速铁路经历„技术引进一中国制造一中国创造‟的大跨越。"十五"期间,我国铁路建设投资将持续保持上升趋势,根据规划,2016年全国铁路固定资产将投资8000亿元、新线
投产7000公里、新开工项目64项;同时,我国高速铁路也正积极向海外市场进军。
2.2CRH3动车组SS400+型受电弓
CRH3系列动车组采用SS400+型受电弓。受电弓安装在动车组车顶,通过它与接触网的可靠接触才能驱动动车组实现运营,因此受电弓是动车组关键设备。受电弓的安全性和稳定性对于动车组的运营有着决定性的作用,所以受电弓的检修是铁路运营部门和动车组造修部门面临的一个重要课题。以CRH3系列动车组受电弓为例,要研究降低其故障率,首先应该对以上两种受电弓的工作原理和重要参数做全面的研宄。
CRH3系列动车组受电弓实物和原理如图3和图4所示。
图3 SS400+型受电弓图
图4受电弓控制原理示意图
受电弓控制原理示意图中包括过滤器、升弓电磁阀、ADD电磁阀、压力开关、碳滑板、ADD阀、精密电磁阀、压力传感器、调压阀、电气控制模块等主要部件,这些部件的功能及作用如下:
(1)过滤器:向受电弓气路提供干燥清洁的压力空气。
(2)升弓电磁阀:常失电状态,司机室发出升弓指令后变为常得电,压力空气通过升弓电磁阀输送至调压阀,使受电弓升弓。
(3)ADD电磁阀:常失电状态,与碳滑板ADD装置检测气路连通,受电弓发生故障时得电,触发自动降弓。
(4)压力开关:有常幵和常闭两个回路,由碳滑板ADD装置检测气路内的压 力空气控制其状态,列车总线根据压力开关的状态判断受电弓处于升弓或降弓状态。(5)碳滑板:受电弓升弓状态下与接触网接触受流,内部有ADD装置检测气路,当碳滑板磨耗到限或遭撞击损坏时ADD装置检测气路向大气排气,并触发自动降弓。
(6)ADD阀:阀体内部由上、下两个腔室组成,上腔室连接碳滑板ADD装置来检测气路,下腔室连接受电弓气囊,ADD装置检测气路漏气时,触发自动降弓。
(7)精密电磁阀:根据速度压力曲线中的压力目标值调节调压阀预控腔内的气压,进一步调节气囊压力。
(8)压力传感器:检测气囊压力。
(9)调压阀:向气囊输送压力空气;根据预控腔的压力调节气囊内的空气压力。
(10)电气控制模块:通过软件控制精密电磁阀调节气囊压力;与列车进行MVB通信。
当司机室发出受电弓升弓指令后,升弓电磁阀随即处于得电状态,列车压力空气经过升弓电磁阀、调压阀及供气管路进入气囊驱动受电弓升弓。
同时,压力空气通往控制模块内各元器件以及碳滑板ADD装置检测气路,实时检测受电弓状态。
当司机室发出降弓指令后,升弓电磁阀处于失电状态,气囊内的压力空气排出,受电弓在重力作用下降弓。受电弓ADD装置检测气路可以在自动降弓触发的第一秒内将弓头降下至少200mm。
第3章CRH3动车组受电弓故障及检修
3.1受电弓故障
受电弓是动车组获取电能的唯一设备,作为动车组最为关键的子系统之一,一旦出现故障,将会严重影响动车组的正常行车。
动车组受电弓故障,是指动车组在运行和检修过程中,由于各种原因造成的受电弓不能正常工作或处于非正常工作状态。
自从2011年6月30日京沪高铁开通以来,有大量受电弓在我国的京沪高铁、哈大客运专线、京广高铁等线路上运行,在近四年的运行过程中,出现了一些由于受电弓故障导致动车组不能正常出库或线路行车时临时停车的事故。
3.1.1受电弓自身故障
受电弓集成了机械、气路两个模块,其中任何-个模块出现故障,都会导致受电弓不能工作或处于非正常工作状态,根据受电弓系统的组成,通常有以下常见的受电弓自身故障。
(1)机械故障:运营中机械部件出现损坏,检修中部件更换后安装不良。(2)气路故障:受电弓是靠压缩空气驱动的,并且由于安装了自动降弓装置(ADD),所以气路的密封不严或者泄露都会导致受电弓故障,例如碳滑板出现裂纹、气囊漏气、风管漏气、风管脱开等。
3.1.2外部环境故障
受电弓运行时持续暴露在外界环境中,并需要时刻与接触网保持良好接触,任何的外部影响都会对受电弓的性能产生影响。常见的外部环境故障有异物撞击、接触网硬点干扰、车顶有外来物品遗落等,在高速运行中上述因素往往会对受电弓造成破坏性的损伤。
3.1.3共同作用故障
受电弓在运行时通过碳滑板从接触网获収电能,然后通过自身的金属机构将电能输送到车内电气设备,由于电的特殊性,很多情况下受电弓的导电性能都会受到影响。常见的共同作用故障有受电弓表面脏污和恶劣天气环境(如雨雪及雾霾)复
合作用下造成的高压闪络。
京沪高铁、京广高铁在运营过程中都出现过由于极端雾霾天气,导致列车不能正常运行的情况,造成大面积晚点。其主要原因是因为雾霾中含有大量金属离子和烟尘微粒,造成绝缘子表面积存污坂,在高压电作用的情况下,绝缘子会被击穿,导致“雾闪”(也称污闪)现象的发生。
3.2受电弓故障发生原因
由于受电弓故障产生的原因往往涉及弓网两方面,组织电力机车和牵引供电2个专业的专家和工程技术人员针对动车组受电弓典型故障案例及现象进行专题研讨,对动车组受电弓故障案例进行剖析。
(1)受电弓总进风管故障原因分析:受电弓总进风管(或称压缩空气绝缘管)具备绝缘和压力2种功能;有一定长度,其两端有固定,中间未固定,进风管裸露在空气中,不断随气流发生振动或抖动,极易遭受飞鸟、冰雪、树枝等异物打击,导致击破、脱落及折断。
(2)碳滑板故障原因分析:一是磨损不均匀导致漏风;二是异物打击导致破损而漏风;三是进风软管固定失效或遭打击破损;四是本身制造出厂质量不良;五
是检修未及时发现存在的缺陷;六是更新时安装不符合技术要求;七是动车组运用公里数越长,碳滑板使用寿命越短;八是动车组速度越高碳滑板磨耗越大。
(3)气囊故障原因分析:一是橡胶气囊老化;二是异物击打。
(4)支撑绝缘子(橡胶类)故障原因分析:一是绝缘橡胶老化;二是遭受异物击打;三是本身存在质量问题;四是检修时未及时发现技术状态的改变。
(5)碳滑板支架及导流片、弓头、上下导杆、上下臂、底架、转轴等部件综合故障分析:一是遭受异物击打;二是本身存在质量问题;三是检修时未及时发现技术状态的改变。
(6)接触网综合性能分析:一是接触网导线及其固定装置质量直接影响受电弓碳滑板使用寿命;二是接触网局部状态不良或某线段检修质量不高;三是接触网使用寿命和检修周期有待优化。
3.3受电弓故障对策
根据受电弓故障发生的环境不同,可以分为库内检修和线路运行两部分,针对这两种不同的情况,需要制定不同的故障对策。
3.3.1库内检修故障对策
动车组施行计划性预防修的体制,分为五级修程。其中每运行4000至5000公里(因车型而异)或运用48小时就会进行一次一级检修。一级修的主要内容是对动车组进行全方位的检查、试验。每月或者每运行一定的公里数(例如3万公里、10万公里)会进行规定项目的二级修。二级修的内容是对专门的部件或系统进型检查、测量、试验。一级修、二级修统称为运用检修。在运用检修中要及时发现和解决故障,避免动车组带故障隐患上线运行。受电弓作为动车组关键部件,更是每日检修的重中之重。一旦发现受电弓有故障或故障隐患,一定要及时采取措施解决,否则不应安排上线。
针对不同的故障原因,针对性的采取措施包括:
(1)加强制造源头质量控制。受电弓在高速运行过程中承受着高频的震动和巨大的空气阻力,因而不论是金属部件还是橡胶部件,都需要在设计、制造环节保证足够的强度,避免发生断裂、折损等故障。
(2)及时清洁受电弓及车顶高压设备。受电弓绝缘子、供风管路、弓架等部位表面要每日清洁,及时除去表面脏污以防止运行中可能出现的闪络放电故障。特别是在雨雪雾霾天气下,通过替换幵行等方式增加车顶绝缘子擦拭的频次,能够取得比较显著的效果。
(3)加强受电弓检修。一旦发现受电弓有任何的异常,需要及时排除故障,对于不能及时解决的故障,则需要对故障件及时进行更换并调试保证性能良好。一级检修重点跟踪易耗易损件状态,发现碳滑板、接地导线、弓头等破损裂损或磨耗到限,要做好及时更换。更换配件必须做到安装良好,并进行无电升弓试验,防止维修过程中操作不当造成次生故障。二级检修重点对管路泄露情况测试,还需要对升降弓的时间、压力进行测量、调节,确保复合规定数值。
3.3.2路线运转故障对策
受电弓如果在动车组运行过程中发生故障,会对整条线路的正常运营产生巨大的影响,在这种情况下,需要列车随车机械师和司乘人员及时做出故障判断。
对于能够立即排除的故障,应当及时排除并确保无后续影响的情况下继续行车,对于无法立即排除的故障,应停止使用故障受电弓,升另外的受电弓继续行年,当列车回库后及时检修并排除故障。
针对由于线路原因引起的运行故障,应在检修天窗中做好供电线路的检查维修,有条件的情况下可以在载客运营前开行确认列车,这一做法能够提前发现线路隐患,及时整改后可以削弱不利影响。或在动车组上增加辅助设备,如增加摄像头记录弓网状况以及增加驱鸟装置防止鸟类撞击受电弓。在新造统型动车组上已经实现了加装弓网监控摄像头的设想,可以为机械师监控弓网情况、弓网故障后原因分析提供可靠手段。关于飞鸟驱散技术,在民航系统中有较多的研究运用,但动车组开行的情况与民航客机差异较大,不适合安装固定的驱散设备,所以可以考虑研宄在动车组头车车顶增加干扰设备,驱散鸟类等飞禽达到减少撞击受电弓的目的。
3.4受电弓检修指导
受电弓旳日常检修包括性能检查、外观检查和表面清洁三个部分,为了保证检修的质量,检修人员需要按照相关检修作业指导开展检修工作。
注意:受电弓登顶检修工作必须在接触网无电的工况下才能进行,检修结束后,必须清理车顶异物,确保无物品遗漏。
3.4.1受电弓性能检查
受电弓性能检查分为受电弓静态接触力测量和升降弓试验。(1)受电弓静态接触力测量
确认受电弓压缩空气压力在额定范围内(340-420kPa),司机室发出升弓指令后,车顶人员目视确认受电弓上升。用轻弹簧种连接顶管弓的中间,在升弓高度从0.5-2.4m范围内慢慢向下移动中测量接触压力,下降速度最大不超过0.1m/s;升弓高度从0.5-2.4m范围内慢慢向上移动测量接触压力,上升速度最大不超过0.1m/s。向下运动时,接触力范围为90士5N,向上运动时,接触力范围为70±5N。
如果静态接触力超出上述范围,则需要通过受电弓阀板上的减压阀重新调节静态接触力。
图5试验台原理图
(2)升降弓试验
受电弓静态压力检测合格后,司机室发出升弓指令,车顶人员观察受电弓升起是否平顺并记录升弓时间。受电弓从降弓位升起至绝对位移0.9m处的时间小于4s,升弓过程中受电弓不允许有任何回弹。
司机室发出降弓指令,车顶人员观察受电弓降下是否平顺并记录降弓时间。受电弓从绝对位移0.9m处降至落弓位置的时间小于4s,降弓时应有缓冲,上框架顶管应落在檢胶减振座上,允许受电弓在降弓位轻微弹跳。
如果升降弓时间超出了上述范围,在静态接触压力和气囊压力均正常时,可以通过调节受电弓阀板上的节流阀来调节升降弓时间,顺时针旋转则升降弓时间增加,逆时针旋转则升降弓时间减小,反复操作受电弓上升与降下,调定后的升降弓时间应满足0-2.4m升弓时间为6-10s,0-0.9m升弓时间小于4s;2.4m至落弓位降弓时间小于6s,0.9m至落弓位降弓时间小于4s。
图6试验流程图
3.4.2受电弓外观检查
受电弓外观检查主要针对碳滑板等易耗件是否磨耗到限需要更换以及受电弓零件有无脱落、裂纹和损坏。
(1)碳滑板检查
目视检查碳滑板外观状态,测量碳条残存厚度,当受电弓碳滑板超过规定限度或损坏到规定限度必须更换。检查结束后使用粉笔在销托架上注明碳滑板厚度,并拍照留影相。
发生以下情况时,需要及时更换碳滑板:
1、正常磨耗到限(碳条残高小于5mm);
2、碳滑板断裂;
3、接头或接缝处漏气;
4、裂缝导致滑板漏气;
5、碳滑板中部(与接触网摩擦区域)有3条以上裂纹;
6、碳滑板边缘的宽度大于0.3mm的横向裂纹,7、明显的纵向裂纹;
8、碳滑板边缘处磕碰导致碳条大面积脱落(接近宽度的1/2);
9、招托架严重烧损(招托架烧穿孔洞2mm以上);
10、由于撞击造成滑板扭曲变形;更换碳滑板时,应保证两条滑板高度差不超过3mm,必要时全部更换。
(2)受电弓零件检查
1、目视检查弓头支架及附属零部件,确认无变形、脱落、裂纹等现象;
2、检查弓角涂层,确认无损伤脱落;
3、目视检查下导杆两端的关节轴承以及升弓装置销轴,关节轴承以及升弓装置销轴处保持润滑,转动灵活,没有缺损。
4、目视检查底架橡胶堆,确认无老化变形,安装水平。
5、目视检查气囊装置,确认气囊无破损,如有裂纹,裂纹深度长度25mm;
6、目视检查阻尼器,确认外观及安装状态良好,无漏油现象;
7、目视检查钢丝绳,确认钢丝绳无断股现象,在降弓位置,两侧钢丝绳的张紧程度应一致;
8、目视检查各部软连接线,确认无破损,连接螺母紧固,接触良好;
9、目视检查车顶气路管道,确认气路管道安装良好无破损、漏气;<0检查各部紧固零部件安装,确认安装良好、无松动。
3.4.3受电弓表面清洁
受电弓运行时一直暴露在外界环境中,会造成表面的脏污,在一级检修过程中,需要及时清洁受电弓及绝缘子表面。同时在遇有雨雪雾霾等不良天气时,可以通过安排库停列车替换下线或使用存放时间来安排车顶高压绝缘子的清洁作业,及时清洁受电弓表面可以有效降低闪络放电故障的发生。通过实际运用表明可以有效保证动车组后续乃至次日的安全运营,减少对行车的不良影响。
对受电弓旳日常检修进行总结,得到受电弓检修流程图如图7所示。
图7受电弓检修流程图
第4章CRH3动车组受电弓改进方案
根据第3章对CRH3动车组受电弓的故障类型、故障发生原因、故障对策以及受电弓检修指导等方面的分析,得到了受电弓检修改进方案,其检修改进方案如图8所示。
图8受电弓检修改进方案图
4.1快速降弓阀的改进方案
在某次作业中发现动车组受电弓ADD快速降弓阀严重松动,并且供风管与ADD快速降弓阀连接处出现漏风时,在处理过程中,由于快速降弓阀紧挨升弓装置气囊安装固定螺栓,不但将快速降弓阀的连接接头拆掉都无法转动,还要把升弓装置气囊固定螺栓拆掉才能转动花费将近一个多小时,浪费了大量时间,也会影响作业节点。
因此笔者提出改进建议(如图9所示),将快速阀的位置向气囊外侧移动4~5厘米,这样在紧固或更换快速降弓阀的拆装提供方便,节省大量时间。
图9快速降弓阀的改进方案图
4.2ADD供风阀的改进方案
ADD供风阀是向碳滑条供风,如果碳滑条漏风时可切断该阀向碳滑条供风,但该阀安装在车顶上不但配件容易损坏,而且当碳滑条出现漏风现象随车机械师不便应急处理。改进建议如图10将ADD供风阀改放在车厢内。
图10ADD供风阀的改进方案图
4.3受电弓升弓故障改进方案
受电弓由于机械结构的设计和升弓过程中运动速度和轨迹的非线性,会使气囊内压力空气在升弓初期出现压力跳动现象,这是受电弓固有的机械性能。如果对受电弓机械结构进行变更,则可能会对已经经过大量风洞试验,具有良好的空气动力学性能的受电弓产生不良影响。因此,针对受电弓在升弓初期发生的升弓故障,提出2种不涉及机械结构变更的改进措施。
(1)压力开关参数调整
分析图11和图12的受电弓气囊内压力曲线,在升弓初期气囊内压力会出现跳动现象。可采集足够数量的受电弓升弓气囊内压力数据,根据大量的数据分析,找出受电弓升弓过程中,气囊内压力出现波动时的最小压力值,将压力开关状态发生变化时的参数调整至小于该最小压力值,则可避免压力开关的二次动作现象的发生,消除升弓故障。
(2)升级受电弓控制软件
由于升弓故障仅发生在受电弓升弓初期,且对受电弓升起后的其他机械和电气性能没有影响,因此可对受电弓控制软件进行升级,列车控制系统在发出升弓命令10s内,不判断受电弓是处于升弓或降弓状态,即不检测压力开关的输出信号和状态。10s后再检测压力开关是否动作,对受电弓升降弓状态进行判断。
图11MVB信号升弓状态下升弓故障时的监控曲线
图12硬弓升弓状态下升弓故障时的监控曲线
4.4受电弓磨损问题的改进方案
针对CRH3型动车组受电弓软连线、支持绝缘子磨损断裂较为严重问题,结合受电弓结构特点和CRH3型动车组运行实际情况进行分析,提出了相应的改进措施和建议,以确保动车组正常运用安全。
(1)改变受电弓软连线截面形状
将软连线截面形状由平矩形结构改为圆形,圆柱形表面的迎风处正对来流方向为正压区,沿曲面向两侧,正压逐渐减小变为负压。在相同的截面面积和空气动力的情况下,该截面结构软连线所受的平均压力值较低,另外,该结构的抗弯曲和剪切许用应力值又较高,软连线不易断股。
(2)改善受电弓支撑绝缘子机械性能
绝缘子伞裙与护套连接处裂损,可大大降低绝缘子的爬电距离,在连续雨、雾等潮湿条件的天气情况下极易发生放电闪络。因此,改善并保证其机械性能尤其是撕裂强度的稳定性是保证支持绝缘子外绝缘伞套良好的抗漏电起痕和蚀损性能、增水性及抗老化性能的关键。有关厂家应合理选择配方,在确保硅橡胶耐紫外线性能和热稳定性的前提下,加强对原材料质量的检验和对添加剂、补强剂使用质量的分析监控。通过比较和近3个月的运用表明,CRH3型动车组车顶高压跨接电缆目前采用的硅橡胶支持绝缘子伞裙机械强度优于受电弓支持绝缘子,能适应350km/h速
度等级要求。CRH3型动车组受电弓支持绝缘子已更换为此类绝缘子。
(3)加强接触网检测减少硬点数量
CRH3动车组在京津城际客运专线投入正式运行,其对动车组受电弓和接触网的关系要求是很高的。良好的受流条件是动车组的有关设备正常运行的前提,也是接触网寿命延长的关键。对于高速电气化铁路接触网,硬点的检测是十分重要的。加强接触网检测和调整、完善,减少硬点数量,能大大降低交变的动态接触压力的变化范围,减小受电弓所受的冲击和振动。
参考文献
[1] 王庆涛.时速200-250km动车组转向架四级检修技术概述[J].铁道车辆,2011.[2] 王伯铭.动车组运用与检修[M].中国铁道出版社,2011.[3] 中华人民共和国铁道部.CRH3型动车组随车机械师应知必会手册[M].中国铁道出版社,2010.[4] 吴学杰.张卫华.梅桂明.接触网-受电弓振动主动控制问题的研究[J].振动工程学报,2002.[5] 王敏.王俊勇.CRH380BL 高速动车组受电弓自动降弓系统[J].机械工程与自动化,2013.[6] 张雪.王俊勇.高速受电弓自动降弓阀研究分析[J].铁道机车车辆,2014.[7] 姜红.邓艳俊.CRH380AL 型动车组受电弓四级检修技术研究[J].机械工程师,2014.[8] 陈文芳.CRH2 型动车组受电弓常见故障处理及改进建议[J].学周刊,2011.致谢
历时将近三个月的时间终于将这篇毕业设计写完,在毕业设计的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。尤其要强烈感谢我的毕业设计指导老师,他对我们进行了无私的指导和帮助,不厌其烦的帮助进行毕业设计的修改和改进。在此向帮助和指导过我们的各位老师表示最中心的感谢!感谢这篇毕业设计所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我们将很难完成本篇毕业设计的写作。感谢我们的同学和朋友,在我写毕业设计的过程中给予我了很多你问素材,还在毕业设计的撰写和排版灯过程中提供热情的帮助。由于我们的学术水平有限,所写毕业设计难免有不足之处,恳请各位老师和学友批评和指正!
第四篇:车组转向架故障原因分析及改进方法
摘要
安全是铁路运输的永恒主题,客车安全又是铁路安全的重中之重。旅客列车作为复杂系统集成,任何细小的故障隐患,都将可能造成无法估量的损失。客车安全工作就是运用科学的维修策略,做到超前处置,预警预控,提前将各种故障源排查出,将风险点消除掉,加强安全控制力,降低事故损失,确保旅客列车安全秩序平稳。本论文以 25K 型客车 CW-2 型转向架的故障统计数据作为分析依据,统计梳理了客车走行部的多种故障模式,综合乌鲁木齐车辆段的运营线路、季节气候、运行里程以及维修水平等多方面因素,运用数据统计以及相关性分析,确定出影响客车走行部故障主要的相关因素以及故障模式。针对影响客车走行部的主要故障模式,运用故障树的模型分析,查找出影响故障模式中基本事件,以风险管理的理念,对故障模式中的基本事件进行风险要素分析评估,确定影响岗位质量安全的风险点,通过风险对策措施表,对影响质量安全的关键环节以及卡控流程进行完善,做到隐性故障的提前消除,预防客车安全事故的发生。合现场作业实际,本论文选取了客车走行部维修班组作为基于风管理维修策略的实施对象。根据“管理规范化”的要求,融合岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面,修订出符合现场风险管理实际的《检车员岗位风险控制说明书》;根据“作业标准化”的要求,客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的《25K 型客车转向架流程风险辨析指导书》。通过对基于 25K 型客车 CW-2 型转向架故障统计以及因素相关性分析,运用故障模式故障树分析,基本事件的风险辨析、评估和层级防控,完善了分级管理、预警预控的客车维修策略,确保了现场安全作业管理的全面、准确、有效,进一步提高了客车维修水平。关键词:故障模式;相关性;维修策略 1
目 录
摘 要...............................................................1 第1章 绪论..........................................................4 1.1 研究背景及意义....................................................4 1.1.1我国机车车辆维修现状与发展.......................................4 1.1.2课题选择及意义...................................................5 1.2 文献综述..........................................................6 1.2.1国内外检修策略的发展.............................................6 1.2.2以可靠性为中心的维修(RCM)概述..................................7 1.3 文献分析及总结....................................................8 1.4 论文的研究内容及方法.............................................8 第2章..............................................................10 2.1动车转向架故障类型统计............................................10 2.2动车组转向架故障原因分析..........................................12 2.2.1部件设备漏油分析................................................13 2.3制动装置故障分析..................................................13 2.4其他零部件的故障分析..............................................13 第3章..............................................................14 3.1动车组转向架的故障模式、致命性分析(FMECA)..................14 第4章..............................................................17
4、结束语.............................................................17 参 考 文 献...........................................................18
第1章 绪论
1.1 研究背景及意义
1.1.1 我国机车车辆维修现状与进展
(1)我国机车车辆修制状况近年来随着我国高速铁路的开通运营,以及动车组的广泛开行,我国在机车车辆的维修模式上也逐渐发生着显著地变化[1]。一方面以高速动车组的维修模式已经脱离了原有的传统检修模式,运用先进的可靠性和安全性维修理念,以走行公里合理安排一、二、三、四、五级修程,实行白天运行,夜间停留检修的修制,充分利用库停时间,按不同修程完成各检修单元,体现灵活多样的维修特点。另一方面是传统的普速铁路,依然沿用比较成熟的计划性预防维修体制,并增加了关键零部件的寿命管理,虽然提高了计划标准化维修的高安全性,在统一的计划修体制下,维修的灵活性不足,直接造成维修成本居高不下。
(2)我国机车车辆维修存在的问题
1、我国机车车辆维修制度不均衡。随着近几年我国高速列车的投入使用,机车车辆维修工作将呈现以向“以可靠性为中心(RCM)”的维修制度发展的动车组检修制度
[1],和以计划预防修为主的普速列车检修制度这两种维修模式共存的局面。一是在部分检修段两种维修制度同时存在必然会增加维修组织的难度。二是检修周期短、维修成本高、停车时间长的计划预防维修制度已经逐渐无法适应“大密度、高频次、高安全”的列车组织模式。
2、我国维修理论基础薄弱。多年来,我国客车车辆维修重视实践,轻理论现象比较突出,致使实践中经常出现基本概念混乱,导致“维修不足”和“过度维修”维修的现象。随着铁路运营体制的深入改革,客车维修部应进一步对可靠性、可维护性、可用性方面的研究和实践,加强对设备设施的风险研判,建立适应自身环境特色的维修理论体系。
3、客车车辆采购、设计中缺乏可靠性、维修性工程的应用。这种现象尤其凸显在普速列车的维修中,在我国铁路客车车辆在出厂设计方面只对客车车辆性能和结构进行设计,没有对可靠性、维修性指标提出要求,也没有对客车车辆交货后进行可维护性检验验证,这就造成客车车辆可靠性和维修性方面得不到很好的保证,给运营维修带来了不少的困难。
1.1.2 课题选择及意义
位于祖国大西北的某车辆检修段承担着日均检修到发列车18列300余辆,确保着日均发送20000余名旅客出行安全,并担负着2100余辆运用客车的维修、保养安全管理任务。主型车为构造时速140公里、转向架为CW-2型准高速25K型车底,主要担负乌鲁木齐至北京(T69/70)、上海(T53/54)、汉口(T193/194)的旅客运输,一次往返需连续运行4-5天,走行里程达8000公里以上。转向架是铁路客车运用安全的核心部件之一,它直接承载车体和旅客重量,保证车辆顺利通过曲线,它的各种参数直接决定了车辆的稳定性和乘坐舒适性,其运用的高安全性和高可靠性是确保旅客生命财产安全的关键中的关键。该客车车辆段主型客车是长春客车厂2000年制造的以CW-2型转向架为走行部的25K型客车,保有量为467辆,约占保有客车总数的40%。长春客车厂生产制造的准高速客车CW—2型客车转向架,是在充分吸收借鉴国外先进技术经验的基础上,并结合我国实际情况新设计的转向架,在通过安全性、平稳性实验后,已于1995年春投入运行。该段自2001年8月正式投入CW-2型转向架运用以来,在检修理念、维修体系、作业方式等方面产生了翻天覆地的变化。同时,为运用维护好该型客车,结合人员结构、配件供给模式、以及相关的工装设备改进等方面,在确保25K型客车安全、可靠方面历经9年做了大量的探索与尝试,并积累了内容丰富的故障和维修数据资料。论文选题将从主型25K型车的CW-2转向架结构、检修人员的素质、检修设备、检修标准和制度等方面来思考25型客车走行部安全性、可靠性的维修模式。同时根据西北地区客车运行的线路环境和检修情况,结合事故致因模型化进一步分析导致转向架事故的原理和机制,采用数理统计方法对转向架系统故障数据进行了分析,通过获得转向架系统故障模式生成规律,进一步运用以可靠性为中心的维修思想,改进完善客车转向架运用维修策略,降低维修费用,确保25型客车持续、安全平稳、可靠运行。
1.2 文献综述
1.2.1 国内外检修策略的发展
工业化从手工作坊对机械化、电气化、信息化时代,各个时期的设备管理与检 4 修方式有很大的变化[2],一般来说可分为故障检修阶段、计划检修阶段和状态检修阶段。
(1)故障检修阶段
故障检修阶段也称为事后检修阶段[2],是设备检修最早出现的方式。也是一种比较直观的维修方式,即设备设施出现故障不能确保安全有效运行的时候,对设备设施采取故障消除性维修,也属于一种应急性维修,由于对检修条件的安全性考虑的不是很充分,在维修过程中往往付出较高的维修成本。
(2)计划检修阶段
针对故障维修存在准备工作不足的弊端,计划性检维修根据设备故障功能失效与运行时间之间的关系,确定检修内容和检修周期,维修人员根据所确定的维修内容准备相应的维修配件、工装和场地,并在周期临界点实施维修,提前将故障预防在事故发生之前,确保了设备设施在运转中期内的可靠性和安全性,这种 维修模式对与时间有关的损耗性部件有较好的效果,但对非损耗性部件就难以确定出其周期性,为了确保安全,往往采取提前更换的方式,也造成了不必要的“过度维修”现象的出现。
(3)状态检修阶段
随着故障诊断水平的提高,以及故障诊断设备的广泛运用,设备的在线监测成为确保安全必不可少的辅助方式,对设备运行状态的实时监控,也为设备功能性的失效状态提供了比较直观发现手段,维修人员可根据监测结果在设备部件临近,失效的时候,进行实时维修,达到了设备按需维修的目的。但对于设备系统 性强、构造复杂的设备,由于监测点繁多,增加了检测的难度和维修计划的复杂程度,不利于维修效率的提高。
(4)以可靠性为中心的维修
在1960年代,美国联邦航空局对当时最先进的波音747飞机有着严格的维修要求[2],导致产生非常繁重的维修任务计划,使这种技术先进的飞机给维修体制提出了严峻的考验。而繁杂的维修任务使得航线运营波音747飞机难以盈利。同时也暴露出,即便使用基于时间的更换或翻修之类的预防性维修,也没有有效地现住地 5 减少产品失效率。1980年通过对航空工业费用效益的观察得到广泛共识,军事工业和其他工业也都作为加强维修程序的要求,开始应用以可靠性为中心的维修方式,诸如核电站、化工、汽车、制造、石油和天然气、建筑等行业。
1.2.2 以可靠性为中心的维修(RCM)概述
RCM(以可靠性为中心的维修,Reliability Centered Maintenance)是当前维修领域比较通行的以设备预防维修理念为基础的体系性维修的工程过程[2]。
(1)RCM的基本观点
1、设备设施的固有可靠性和安全性是由最初设计和制造水平决定的,如果设备的固有可靠性与安全性水平不能满足使用要求,相通过提高维修的次数来提高设备的安全性是达不到预期效果的。因此,增加维修次数,不一定会使设备越可靠和越安全。
2、设备设施在运行过程中出现故障隐患是不可避免的,而且每种设备故障产生的原因也不尽相同,维修工作的重点就是预防有严重后果的故障发生。因此,在故障维修工作中,要根据设备故障所产生的不良影响及后果,有针对地制定不同的维修策略。
3、探查设备设施故障规律,合理安排维修时机。在对设备进行维修工作时,要尽量弄清设备的故障模式,对有耗损性的设备可很据故障统计规律安排较为合理的保养和维修(更换),来预防故障隐患造成设备功能性失效。对损耗较少的设备设施,如果按照故障统计规律,安排定期的维修或更换,可能对设备的维护效果不是很理想,对此类设备更适宜于通过检查、监控采取视情维修方式。
4、以最小经济费用保证设备设施的安全性和可靠性。维修工作中,对设备采用不同的维修策略,其所需要耗费的维修资源是不相同的,甚至是相差巨大。
1.3 文献分析及总结
从上述文献综述可以看出,无论是传统的事后维修还是现代发展起来的RCM/LCC模式,都把确保设备的安全可靠作为维修的第一出发点。由于行业、地域、装备、人员、环境的差异,对设备的维护往往是各种维修方式相互交叉、综合运用,在满 足可靠性、可用性的前提下,尽可能的减少维修费用和人力成本。
维修理论发展历史表明,任何一种维修方式、维修理论,都是通过总结前人的理论、方法以渐进的方式发展起来,不存在基于某一种设备检修理念和维修策略可以确保使用设备的绝对安全,再科学的检修理念和设备维护手段也只有和现场实际环境紧密结合,基于相似设备的维修经验和现场数据统计,分析清楚理论、方法与现场的实际差距,相互取长补短才能发挥其应有的效果。
随着现代设备的系统复杂性和运行环境的不确定性,只有在巩固和加强现有的维修基础上,充分吸收、借鉴当代最新的维修理论和方法,努力探索出新的维修模式,才有可能不断改善现有环境对维修的束缚,进而实现设备安全性、可靠性和可用性的新的突破。
1.4 论文的研究内容及方法.本论文以铁路交通运输系统某站 25K 型客车 CW-2 型转向架作为研究对象,以该对象故障统计数据作为分析依据,运用数据统工具计统计,分析了客车转向架的多种故障模式,综合该车辆段所处的地理位置、气候条件、运营线路、运行里程以及维修水平等多方面故障影响要素,分析确定出影响故障的主要因素,并结合因素相关性分析,寻找出影响客车走行部主要故障模式的关键风险因素。
运用故障树的模型分析,对影响客车走行部的主要故障模式,查找出影响故障模式中基本事件。运用风险管理的理念,对故障模式中的基本事件进行风险要素分析评估,辨析出影响维修质量的风险点,通过制定合适的风险对策措施表,对容易造成故障隐患安全的关键环节进行有效维修,做到隐性故障的提前消除,预防客车安全事故的发生。
本论文结合客车安全现场作业实际,根据“管理规范化”的要求,选取了影响客车走行部维修质量的库检班组和乘务组作为基于风险管理维修策略的实施对象。通过构建风险管理维修策略体系,从岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面入手,重点是为了修订出符合现场风险管理 实际的控制流程。根据“作业标准化”的要求,认真分析客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的风险辨析措施。
通过对转向架故障统计以及因素相关性分析,运用故障模式事故树分析,基本 事件的风险辨析、评估和层级防控,目的是为了构建确保了现场安预警预控的客车维修策略,能够进一步提高客车维修水平。
第2章
2.1动车转向架故障类型统计
在分析产品故障时,一 般是 从 产 品 故 障 的 现 象 入手,通过故障现象(故障模式)找出原因和故障机理。对机械产品而言,故障模式的识别是进行故障分析的基础之一。
由于故障分析的目的是采取措施、纠正故障,因此在进行故障分析时,需要在调查、了解产品发生故障现场所记录的系统或分系统故障模式的基础上,通过分析、试验逐步追查到组件、部件或零件级(如螺母)的故障模式,并找出故障产生的机理。
故障的表现形式,更确切地说,故障模式一般是对产品所发生的、能被观察或测量到的故障现象的规范描述。
故障模式一般按发生故障时的现象来描述。由于受现场条件的限制,观察到或测量到的故障现象可能是系统的,如制动系统不能制动;也可能是某一部件,如传动箱有异常响声;也可能就是某一具体的零件,如油管破裂等。因此,针对产品结构的不同层次,其故障模式有互为因果的关系。
故障模式不仅是故障原因分析的依据,也是产品研制过程中进行可靠性设计的基础。如在产品设计中,要对组成系统的各部分、组件潜在的各种故障模式对系统功能的影响及产生后果的严重程度进行故障模式、影响及危害性分析,以确定各种故障模式的严酷度等级和危害度,提出可能采取的预防改进措施。因此将故障的现象用规范的词句进行描述是故障分析工作中不可缺少的基础工作。
依据某检修部门几年内积累的故障数据;故障数据中的列车号主要是从002A 到190A;车辆编号是从1车厢到8车厢;二级系统包括车体系统、车外系统、电气系统、给水卫生系统、供风系统、内装系统、转向架系统 7大系统;各系统的故障百分比如表1所示。由表1可知转向架系统在整个动车组系统中故障频率所占有效百分比达20%以上。根据转向架系统的结构特点和功能,将转向架划分为悬挂装置、架构组成。轮对轴箱定位装置、排障装置、驱动装置、制动装置、转向架配管及配线等。
表1 二级系统频率分布的输出结果
依据某机车车辆股份有限公司采集积累的大量使用维护数据,进行了分类处理,得到动车组转向架的故障部位和故障类型表,如表2所示。
表2 转向架系统故障模式统计表
从表2中明显看出,转向架系统总共有42个故障模式,制动装置包括轮对等故障达到30条,占26.78%,应重点加强与制动装置相关部件的管理维修和保养工作,及时发现故障隐患,杜绝事故。
2.2动车组转向架故障原因分析 2.2.1部件设备漏油分析
通过表2分析可知零部件设备漏油在转向架故障中较为常见,可以占到总故障数的25%。通过对设备运行的观察发现可能故障原因是(1)动车在运转时,在相对封闭的机械箱里,机器在运转时会产生大量的热量。动车组在全日制工作时,箱内温度逐渐升高,箱内压力也会逐渐增大.油液在箱内压力作用下从密封间隙处渗出。(2)设计不合理;制造质量不良;使用维护不当,检查不及时。设备上的某些静、动配合面缺少密封装置,或采用的密封方案不合适;设备上的某些润滑系统只有给油路,而没有回油路,使油压越来越大,造成泄漏。
2.3制动装置故障分析
动车组制动装置故障在转向架系统故障中占到最大的比例,达到了26%以上。动车组转向架制动装置采用空液转换液压制动方式。制动装置故障不仅会造成动车组途中晚点,而且如处理不当会导致动车组发生事故,严重影响运输秩序,威胁乘客的生命财产安全。
制动系统的常见故障包括了制动控制装置传输不良、制动控制装置故障、制动控制装置速度发电机断线、制动力不足、制动不缓解、监控显示器显示抱死、列车紧急制动不能复位、监控器等控制设备无电等。制动控制装置传输不良时,制动时会检测制动力不足。传输不良主要是光连接器的连接插头松动、接触不良,终端装置接口卡板故障。当制动控制装置速度发电机断线时,车辆将无法进行滑行控制。制动力不足时,可能是 UB-TRTD继电器故障、电路故障、制动管系泄漏、EP阀故障、检测传感器故障、BCU 故障等。但出现制动抱死故障显示时,可 能 是 由 速 度 传 感 器 断 线、PCIS防滑阀故障、CI与 BCU信息传输故障导致再生制动与空气制动同时发生、BCU内部滑行、抱死检测控制错误显示制动系统故障等造成的。
2.4其他零部件的故障分析
轮对组成故障损伤,因其裸露车体外,且直接与地面钢轨接触,运行状况复杂,且轮对组成乃转向架的重要部件,如有故障易造成严重的事故。其次空气弹簧故障因其材质特殊为橡胶所制,较易被划伤,若运行时间长易造成空气弹簧的故障。其次还有横向减振器和抗蛇行减振器,这两者均为油压减振器,易造成漏油故障,从而降低减振效果。制动夹钳的长时间使用及检修维护不当,使制动装置易出现故障。
第3章
3.1动车组转向架的故障模式、致命性分析(FMECA)
经过前面的分析,基本了解了动车组转向架的故障模式和发生原因,但是仍不清楚每种失效模式对转向架功能所造成的致命度的大小,所以需要对转向架进行FMECA 分析,以便掌握其可靠性薄弱环节,为可靠性评估与提高可靠度提供科学依据部件i以失效模式j发生失效时,该零部件的致命度为:
式中αij是部件i以失效模式j而引起部件的失效模式概率;βij是部件i以失效模式j发生失效造成部件损伤的概率。国标草案中将此称为丧失功能的条件概率。其值为1,表示肯定发生损伤;0.5表示可能发生损伤;0.1表示很少可能发生损伤;0表示无影响。λi是部件i成为基本失效件的故障率采用平均故障率,其计算公式为:
式中ni为部件i 在规定时间内的故障总次数;Tj为部件i在规定时间内故障间隔时间序列中的第j个故障间隔时间;m 为故障间隔时间的个数。
根据上面介绍的FMECA分析方法,结合笔者掌握的动车组转向架使用维护故障数据,经过处理,得到该车型转向架主要部件的FMECA分析结果如表3所示。
通过上面的分析,可以看到在转向架的各个主要部件中轮对部件的部位致命度最大,主要是因为轮对承受了车辆与线路间相互作用的全部载荷及冲击,且直接与地面钢轨接触。其次是制动卡钳(动车)、空气弹簧和轴箱体。
表3 动车组转向架主要部件FMECA分析表
续表3
它们将是影响转向架可靠性的关键部件。另外,横向减振器部件的致命度也不小,虽然抗蛇行减振器的故障致命度并不很大,但它是使动车组在行驶时具有良好的平稳性、舒适度和安全性的保证,列车在高速行驶中易发生转向架蛇行运动,所 15 以也应该加以重视。具体到故障模式致命度来看轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损等,是重点针对的对象,对此可以采取以下措施:(1)对于轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损、磨损、弹簧断裂、弹力不足等故障,要加强车辆行驶前、行驶后检查,必要时采取无损检测或磁力探伤,如发现部件有微小裂纹,应及时更换防止裂纹进一步扩展,磨损加剧等。同时建议使用抗拉压、抗剪切、抗扭转、耐磨损的材料来制造,合理改进制造工艺过程,提高部件的质量和使用寿命。(2)铁路管理部门,应加强铁路线路钢轨和沿线设施设备和运行环境的整理维护,以减少车辆运行除外的意外故障。(3)动车组维修部门维护转向架时应严格按照维修手册规定进行,并对致命度大的部件和模式加以 重视。
第4章
4、结束语
通过FMECA方法分析可以发现同一设备系统中不同功能的零部件因其重要程度不同以及结构上的差异,其危险优先数也会有所不同,因此在设计中就需要区别对待,将危险优先数特别高的部件优先考虑。本文通过现场使用维护数据,对动车组转向架故障车控制电器柜其他空气断路器故障导致的质量问题。
参 考 文 献
[1] 董锡明.近代铁道机车车辆维修现状与发展趋势.铁道机车车辆, 2002 增刊: 213-218.[2] 董锡明.机车车辆运用可靠性工程.中国铁道出版社, 2002.[3] 贾希胜.以可靠性为中心的维修决策模型.国防工业出版社, 2007.[4] 程五一, 王贵和, 吕建国编著.系统可靠性理论.中国建筑工业出版社, 2010.[5] 吴波, 丁毓峰, 黎明发编著.机械系统可靠性维修及决策模型.化学工业出版社, 2007.[6] 束洪春.电力系统以可靠性为中心的维修.机械工业出版社, 2009.[7] 国务院.铁路交通事故应急救援和调查处理条例.中国铁道出版社, 2007.[8] 铁道部.铁道交通事故调查处理规则.中国铁道出版社, 2007.[9] 崔殿国.机车车辆可靠性设计及应用.中国铁道出版社, 2008.[10] 杨玉兴, 朱启新.预防性维修活动关键件的确认方法和流程.电子产品可靠性与环境试验, 2008, 26(3): 13-15.[11] 贾俊平编著.统计学(第二版).清华大学出版社, 2007.[12] 何钟武, 肖朝云, 姬长法编著.以可靠性为中心的维修.中国宇航出版社, 2007.[13] 杨景辉 , 康建设.RCM 维修管理模式及其应用分析.科学技术与工程 , 2007, 7(15):3881-3885.[14] Kumar U.D.等编.可靠性、维修与后勤保障——寿命周期方法.电子工业出版社, 2010.[15] 王卫江.故障与预防性维修对机械可靠性影响的统计分析.机械管理开发, 2000, 6: 60-61.[16] 金玉兰, 蒋祖华.以可靠性为中心的多部件设备预防性维修策略的优化.上海交通大学学 报,2006, 40(12): 2051-2057.[17] 余卓民,赵洪伦.以可靠性为中心的机车车辆结构生命周期安全管理体系.中国铁道科学, 2005, 26(6): 0001-0005.[18] 严俊, 周峰.以可靠性为中心维修在地铁车辆制动系统中的应用.城市公共事业, 2008, 22(4): 30-33.[19] 周学兵,段国富.以可靠性为中心的装备维修管理系统.机械工程与自动化,2008,1: 0054-0056.[20] 狄威.简论机车车辆的可靠性与维修性及维修信息管理.北京交通大学学报, 2007,6.[21] 金莲珠,杨晨辉.CW-2 型准高速客车转向架.铁道车辆, 1995, 33(12): 57-60.
第五篇:动车组总体与转向架复习题及参考答案
中南大学网络教育课程考试复习题及参考答案
动车组总体及转向架
一、名词解释: 1.动车组
2.动力集中型配置 3.铰接式转向架动车组 4.车辆定距
5.转向架固定轴距 6.列车风
7.列车头部长细比 8.转臂式轴箱定位 9.体悬式驱动转装置 10.电磁涡流轨道制动 11.牵引网
12.电机变频调速 13.缓冲器的容量
14.缓冲器的能量吸收率 15.列车自动防护系统 16.列车信息控制系统 17.列车运行控制系统 18.行车指挥自动化系统
二、判断题:
1.动车组以固定编组运营,不能解编。
2.现代城市轨道车辆通常采用动车组的形式。
3.动力转向架的车轴可以是全动轴,也可以是部分动轴。4.高速动车组通常采用电气制动与空气制动的复合制动。5.CRH6型动车组适用于城市间以及市区和郊区间的短途客运。6.CRH系列动车组均采用磨耗型车轮踏面。7.CRH动车组的车轴轴承均采用滚动轴承。
8.高速动车组的轴箱弹簧一般采用双圈钢弹簧。
9.CRH2动车组制动卡钳的夹紧动作是由液压缸驱动的。
10.脉冲宽度调制技术把变压与变频集中在逆变器中一起完成。11.列车速度越高,允许的制动力越大。
12.CRH2动车组紧急制动时,采用压缩空气作为指令压力,实施纯空气制动。13.密接式车钩允许两相连接车钩在铅垂面有相对位移。14.正常运行时,动车组不需要使用过渡车钩。
15.CRH1动车组中间车钩可以自动连接,但需要手动解钩。
三、问答题:
1.高速动车组的主要技术特点有哪些? 2.高速动车组对车体结构的要求有哪些? 3.高速动车组减小空气阻力的措施有哪些? 4.高速列车的噪声源有哪些?
5.动车组轻量化设计的措施有哪些?
6.高速动车组车体为什么需要密封,密封措施有哪些? 7.减小动车组噪声源发出的噪声强度的措施有哪些?
8.动车组转向架的作用有哪些?由哪些部分组成?非动力转向架与动力转向架的最主要区别是什么?
9.轮对低动力设计的措施有哪些?
10.动车组常用的轴箱定位方式有哪些?原理是什么? 11.转向架驱动装置结构形式有哪些?各有什么特点? 12.转向架二系悬挂装置形式有哪些?各有什么特点? 13.高度控制阀的作用和原理是什么? 14.抗侧滚扭杆装置的原理是什么?
15.高速动车组基础制动装置形式有哪些?原理是什么?
16.直流电传动和交流电传动各有什么特点?有哪几种形式?CRH动车组采用哪种形式的电传动? 17.介绍CRH2动车组牵引传动系统组成与原理。18.柴田式密接车钩的原理是什么?
19.黏弹性胶泥缓冲器的工作原理是什么? 20.介绍CRH2型动车组风挡的功能和组成。21.请简单介绍CRH1动车组转向架的结构。
四、分析题:
1.为什么高速动车组要重视头型设计?头型设计具体采取哪些措施?
2.为什么CRH2动车组没有抗侧滚扭杆,而CRH1和CRH5动车组需要抗侧滚扭杆装置? 3.CRH2和CRH5动车组转向架的驱动装置结构上有什么不同?各有什么优缺点?
参考答案
一、名词解释:
1.动车组:动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组,就是动车组。带动力的车辆叫动车,不带动力的车辆叫拖车。
2.动力集中型配置:将列车电气和动力设备集中安装于位于列车两端的动力车上。动力车不载客或仅设置较小的客室,旅客主要在中间拖车乘坐。
3.铰接式转向架动车组:将动车组车辆车体间以弹性铰相连接,在相邻车辆的连接处放置一个共用转向架,因此每节车辆不能从列车中解开成为独立的车辆。4.车辆定距:车辆两转向架中心间的距离 5.转向架固定轴距:转向架两轴之间的距离
6.列车风:当列车高速行驶时,在线路附近将产生空气运动,这就是列车风。7.列车头部长细比:即列车前端鼻部长度与其衔接的一般截面等效半径之比。
8.转臂式轴箱定位:转臂式定位一端通过橡胶节点连接构架,一端与轴箱做成一体。实现轴箱与构架间的弹性定位。
9.体悬式驱动转装置:牵引电机固定在车体底架,驱动扭矩由万向驱动机构和锥齿轮来传递。
10.电磁涡流轨道制动:在转向架上设电磁铁,与钢轨表面保持很小间隙。制动时,电磁铁被励磁,与钢轨相对运动,在轨头内产生感应电流即涡流,当这些涡流在磁场中运动时,产生一个与运动方向相反的力,即制动力,从而达到制动的目的。11.牵引网:接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。
12.电机变频调速:变频调速是通过把固定频率的交流电由变频器变换为可调电压、可调频率的交流电,向交流电动机供电。
13.缓冲器的容量:缓冲器在全压缩过程中,作用力在其行程上所作的功的总和称为容量,它是衡量缓冲器能量大小的主要指标。
14.缓冲器的能量吸收率:缓冲器在全压缩过程中,有一部分能量被阻尼所消耗,其所消耗部分的能量与缓冲器容量之比。
15.列车自动防护系统:列车自动防护系统是保证列车运行安全的基础设备。其主要功能是检测列车的实际位置、实时计算出列车运行的允许速度、限制列车在安全速度以下运行、保证列车的安全制动距离。16.列车信息控制系统:列车信息控制系统通过贯穿列车的网络传输控制指令及状态信息,对列车运行及各系统动作信息进行集中管理,有效地实现对司机和乘务员的辅助作用,指导对设备的维护与保养,实现牵引系统、制动系统、空调等子系统协调工作。
17.列车运行控制系统:列车运行控制系统是对列车运行方向、运行间隔和运行速度进行控制,使列车能够安全运行且提高运行效率的系统。
18.行车指挥自动化系统:行车指挥自动化系控制采用中心计算机系统根据计划运行图及列车实际运行情况,实现实时控制,指挥列车运行。各车站的控制计算机实现控制信号、道岔和排列列车进路。
二、判断题:
1.动车组以固定编组运营,不能解编。√
2.现代城市轨道车辆通常采用动车组的形式。√
3.动力转向架的车轴可以是全动轴,也可以是部分动轴。√ 4.高速动车组通常采用电气制动与空气制动的复合制动。√ 5.CRH6型动车组适用于城市间以及市区和郊区间的短途客运。√ 6.CRH系列动车组均采用磨耗型车轮踏面。√ 7.CRH动车组的车轴轴承均采用滚动轴承。√
8.高速动车组的轴箱弹簧一般采用双圈钢弹簧。√
9.CRH2动车组制动卡钳的夹紧动作是由液压缸驱动的。√
10.脉冲宽度调制技术把变压与变频集中在逆变器中一起完成。√ 11.列车速度越高,允许的制动力越大。×
12.CRH2动车组紧急制动时,采用压缩空气作为指令压力,实施纯空气制动。√ 13.密接式车钩允许两相连接车钩在铅垂面有相对位移。×
14.正常运行时,动车组不需要使用过渡车钩。√
15.CRH1动车组中间车钩可以自动连接,但需要手动解钩。×
三、问答题:
1.高速动车组的主要技术特点有哪些?
1)良好的空气动力学性能:外形设计上有效地减小运行空气阻力、列车交会压力波。同时控制噪声、提高气密性、改善空调与通风。
2)车体轻量化:以节省牵引功率。降低高速所引起的动力作用对线路结构。
3)高速动车组转向架具有良好的动力学性能,满足高速运行的稳定性、安全性,良好的曲线通过性能,以及满足乘客乘坐舒适度的要求。
4)高速动车组必须采用能提供强大制动力的制动系统。通常采用动力制动和空气制动的复合制动系统。5)高速动车组普遍采用密接式车钩连接装置,两车钩偏移很小,提高列车的运行平稳性。6)高速动车组既要大功率驱动又要求减轻轴重,所以采用交流传动系统以及VVVF控制技术。7)采用先进的列车自动控制及故障诊断技术,保证列车安全、高效、准时运行。2.高速动车组对车体结构的要求有哪些? 1)良好的空气动力学性能 2)车体的轻量化设计 3)严格的车辆气密性要求 4)防火、降噪等
3.高速动车组减小空气阻力的措施有哪些? 1)列车外表面光滑并流线化
2)增大列车头部的长细比:即列车前端鼻部长度与其衔接的一般截面等效半径之比,一般达到3以上。3)列车底部安装裙边整流罩 4)受电弓及其基座流线型化 5)列车密封,消除间隙
4.高速列车的噪声源有哪些? 1)轮轨噪声(碰撞声,摩擦声);
2)空气沿车体表面流动产生的摩擦声和受电弓与接触网导线的摩擦声; 3)风挡等构件的撞击声、设备的振动噪声;
4)列车进出隧道产生的压缩波和反射波所产生的噪声等。5.动车组轻量化的措施有哪些?
1)车体材料采用铝合金、不锈钢、玻璃钢; 2)优化车体结构; 3)采用无摇枕转向架;
4)采用铝合金轴箱、齿轮箱;
5)车轮小型化、车轴空心化,采用S形薄辐板车轮;
6)车内设备(如门、窗、行李架、卫生设备等)均可选用轻合金或高分子工程材料和复合材料; 7)采用交流电动机代替直流电机;
8)主变压器铁芯采用优质铁-铝合金,将铜编线改为铝编线; 9)采用再生制动取代电阻制动。
6.高速动车组车体为什么需要密封,密封措施有哪些?
高速动车组运行时,车外压力的波动大,反应到车厢内,会使旅客感到不舒服甚至造成伤害。所以需要对高速动车组车体进行密封。
密封措施包括:采用连续焊接的方法对车体结构密封;固定车窗采用密封材料密封;移动车门、车窗用密封胶条密封;通过台采用气密性风挡;厕所采用密闭式厕所;空调采用专门的换气装置设计。7.减小动车组噪声源发出的噪声强度的措施有哪些?
1)在车轮上安装消音器和开发弹性车轮,以有效地降低轮轨噪声.
2)车体外形设计成流线型,车体表面平整、光滑都有利于减小空气与车体的摩擦声。3)采用橡胶风挡。可减小撞击声。
4)在空调系统上安装消音器,降低牵引电机风扇的噪声、驱动装置等设备的振动噪声。
8.动车组转向架的作用有哪些?由哪些部分组成?非动力转向架与动力转向架的最主要区别是什么? 转向架的作用:承受车架以上各部分的重量;通过车轮自动导向。在车体和转向架之间设有心盘或回转轴,转向架可以相对车体转动,便于通过曲线。对于动车,一般在转向架上装有牵引电机和减速机构,以驱动车辆运行。:在转向架上设有弹簧减振装置,缓和线路不平顺对车辆的冲击;通过基础制动装置产生制动力,使车辆减速或停车。
动车组转向架由轮对、轴箱、一系悬挂、构架、二系悬挂、牵引装置、驱动装置、基础制动装置组成,非动力转向架与动力转向架的最主要区别是:非动力转向架没有驱动装置而动力转向架有。9.轮对低动力设计的措施有哪些?
1)减轻轮对质量:空心车轴,小轮径车轮 2)采用合理的车轮踏面 3)减小车轮动不平衡质量
4)采用弹性车轮(用于城市轻轨车辆)
10.动车组常用的轴箱定位方式有哪些?原理是什么?
拉板式定位:定位拉板的一端与轴箱体连接。另一端通过橡胶节点与构架连接。利用定位拉板在纵、横方向上的不同刚度来约束构架与轴箱的相对运动,以实现弹性定位。
拉杆式定位是指轴箱用一根或两根带有橡胶关节的轴箱拉杆与构架连接。当轴箱上下跳动时,轴箱拉杆以构架拉杆座心轴为圆心在一定弧度范围内上下摆动。
转臂式定位一端通过橡胶节点连接构架,一端与轴箱做成一体。转臂式结构通过定位节点内部的橡胶层获得定位刚度。
橡胶堆定位:采用橡胶堆作为轴箱弹簧,同时起弹性定位作用。11.驱动装置结构形式有哪些?各有什么特点?
轴悬式:牵引电机一端通过两个轴承支承于轮对轴上,另一端通过弹簧支于构架梁上。传动装置的很大一部分重量非弹性直接支于轮对轴上,增加了簧下部分的重量,对转向架的运行品质带来不利影响。架悬式:牵引电机完全固定在构架上。1)挠性联轴节式:牵引电机的输出扭矩通过挠性联轴节传递给主动小齿轮。齿轮箱的一端通过抱轴承悬挂在车轴上,另一端通过弹性吊杆吊挂在构架横梁上。簧下重量小。大大改善牵引电机的工作条件。结构较简单,拆装方便。牵引齿轮的工作条件未得到改善。2)轮对空心轴架悬式:齿轮箱固定在电机外壳上,也属于簧下重量很小。改善了牵引电机和牵引齿轮的工作条件。结构较复杂,制造、维修困难。
体悬式:牵引电机固定在车体底架。可减轻转向架质量,同时可改善电机的工作条件。车轴周围空间得到释放。驱动扭矩由万向驱动机构和锥齿轮来传递。传动效率有所降低;齿轮箱一端悬挂在车轴上,一端弹性连接在构架上。齿轮的工作条件未得到改善。12.二系悬挂装置形式有哪些?各有什么特点?
摇动台方式:采用摇动台用以布置弹簧,设置吊杆承担横向弹簧作用,转向架结构复杂,振动较大,由心盘提供摩擦阻力矩,作用不稳定,极难满足高速运行的要求。
摇枕方式;采用垂向大挠度的空气弹簧,摇枕支承在空气弹簧上,利用旁承摩擦副提供回转阻力矩,作用较稳定。
无摇枕式:采用大位移空气弹簧,取消摇动台和摇枕,采用抗蛇形减振器取代旁承可更好地抑制车辆的蛇形运动。无摇枕式转向架,既减轻了转向架的质量,同时大大简化了转向架结构,便于维修。13.高度控制阀的作用和原理是什么?
在高度控制阀的作用下,空气弹簧的高度始终保持不变,与载荷的大小无关。
假定空气弹簧上的载荷增加,这时车体将下,并且高度控制阀的杠杆在拉杆的作用下按顺时针方向转动,因此与主风缸连接的高度控制阀的进气阀被打开。这时,空气因压力差而开始流入附加空气室和空气弹簧,一直到车体升高到原来位置为止。于是杠杆恢复到原来水平位置,高度控制阀的进气阀被关闭。假定空气弹簧上的载荷减少,这时车体将上升,而高度控制阀的杠杆按反时针方向转动,通大气的高度控制阎的排气阀被打开。空气从空气弹簧和附加空气室排出到大气,一直到车体降到原来的位置,排气阀被关闭。
14.抗侧滚扭杆装置的原理是什么?请绘图说明。
抗侧滚扭杆由拉杆、扭臂、扭杆组成。拉杆一端固定在车体上,扭杆安装在转向架上。
当车体逆时针侧滚时,左、右拉杆分别向下、向上运动,通过扭臂使扭杆变形,产生扭矩,以抵抗车
体的侧滚。这样就增大了车体的角刚度,减少侧滚角位移,防止车体倾斜。但它不影响车体在上下方向的运动。
15.高速动车组基础制动装置形式有哪些?原理是什么?
盘形制动:制动盘安装在车轴或车轮辐板上,通过闸片与其盘面相摩擦产生热量来散逸能量。不用闸瓦直接磨耗车轮踏面,可延长车轮使用寿命。
磁轨制动:制动时,用风缸将磁轨器落到钢轨上。同时激磁线圈通电,使磁轨器以一定的吸力吸附在钢轨上,磨耗板与钢轨之间便产生摩擦力,此力即为不受轮轨间黏着力限制的制动力。
电磁涡流制动:1)电磁涡流轨道制动:在转向架上设条形电磁铁,与钢轨表面保持很小间隙。制动时,电磁铁被励磁,由于它与钢轨相对运动,因此在轨头内产生感应电流即涡流,当这些涡流在磁场中运动时,受到一个与运动方向相反的力的作用,这个力就是制动力。2)电磁涡流盘形制动:电磁感应体是旋转的盘形体,装在车轴或牵引电机的电枢轴头上,或者将车轮作为电磁感应体。在电磁感应体一侧或两侧设置电磁铁。在电磁铁线圈上通过制动电流时,在盘形电磁感应体内产生涡流,由于磁力相互影响产生制动力。
16.直流电传动和交流电传动各有什么特点?有哪几种形式?CRH动车组采用哪种形式的电传动?
直流电传动采用直流牵引电动机,特点是调速方便,直流串励电机具有适合于牵引需要的“牛马”特性。可分为直—直、交—直方式。
交流电传动:采用交流牵引电动机,特点是单位体积重量的功率大、可靠性好、易维护等。可分为:交—直—交、交—交、直—交方式。CRH动车组采用交—直—交电传动方式。
17.介绍CRH2动车组牵引传动系统组成与原理。
CRH2动车组主牵引系统主要由受电弓、牵引变压器、牵引变流器及牵引电机组成。
CRH2动车组有两个相对独立的主牵引动力单元。正常情况下,两个牵引单元均工作。1个主牵引动力单元由1台牵引变压器、2台牵引变流器、8台牵引电机构成。1台牵引变流器驱动4台牵引电机。四台牵引电机并联使用。列车正常时升单弓运行,另一个受电弓备用。
受电弓通过电网接入25kV的高压交流电,输送给牵引变压器,降压成1500V的交流电。降压后的交流电再输入牵引变流器,变成电压和频率均可控制的三相交流电,输送给牵引电机,通过电机的转动而牵引整个列车。
18.柴田式密接车钩的原理是什么?
柴田式密接车钩工作过程包括:待挂、闭锁和解钩三个状态。
1)待挂状态:为车钩连接前的准备状态,此时钩舌定位杆被固定在待挂位置,拉簧处于较大拉伸状态,钩锁连接杆退缩至凸锥体内,钩舌上的钩嘴对着钩头正前方。
2)闭锁状态:相邻两钩的凸锥体伸入对方的凹锥孔,凸锥将带心轴导杆向后压向棘爪,由卡子释放棘爪。这样,通过拉簧将钩锁按逆时针方向转动到连挂位置,直至钩舌与钩锁(钩板)啮合。当车辆连挂后,锁紧装置会形成一个平行四边形形状,这样可以将牵引荷载均匀地分布在两个钩锁和钩舌拉杆上。3)解钩状态:解钩时,顺时针转动弹簧加载的钩锁,直至将钩舌从钩锁上释放。当棘爪与带心轴导杆啮合在一起时,保持钩锁的锁定位置。列车分离时,弹簧加载的带心轴导杆和导杆卡子同时向前移动
并释放棘爪。车钩锁在拉簧的作用下按逆时针方向转动,直至棘爪与导杆卡子相啮合。车钩锁回至待挂位,再次准备连挂。
19.黏弹性胶泥缓冲器的工作原理是什么?
黏弹性胶泥缓冲器采用弹性胶泥作为工作介质,弹性胶泥是一种未经硫化的有机硅化合物,具有弹性、可压缩性和可流动性。在充满弹性胶泥材料的缓冲器体内,设有带环形间隙(或节流孔)的活塞。当活塞杆受到冲击力时,弹性胶泥材料受压缩产生阻抗力,并通过环形间隙(或节流孔)的节流作用和胶泥材料的压缩变形吸收冲击能量。
弹性胶泥材料受到的预压缩力越大、活塞的运动速度越快,则产生的阻抗力也越大。这有利于提高缓冲器在大冲击下的容量。
20.介绍CRH2型动车组风挡的功能和组成。
CRH2型动车组车厢间的连接处设有气密式内风挡。
内风挡的内部设有扶手,利用平滑的搭板及可动式镶板,确保乘客安全通过车厢连接处。在内风挡外侧设有压缩型的外风档,起到隔声及防尘的作用。
CRH2型动车组外风挡与通常的车端缓冲器(衰减系数50kN/m/s左右)具有同等的减振性能。同时还使车体间的车辆连接部位尽量平滑化外,能够使列车运行时的空气阻力适当降低。21.请简单介绍CRH1动车组转向架的结构。
CRH1动车组转向架转向架构架为‘H’型焊接结构。轮对分为动力轮对和非动力轮对,动车车轴上装有一个齿轮箱和两个轮盘,拖车车轴上装3个轴盘。每台动车转向架装有两套驱动装置,驱动装置采用牵引电机架悬式结构;通过弹性齿式联轴节,在驱动电机和齿轮箱之间传递力。一系悬挂采用双圈钢弹簧和垂向油压减振器,采用转臂式轴箱定位。每个转向架有两个空气弹簧。每一空气弹簧分别由各自的高度调整阀控制。转向架两侧有两个垂向液压减振器两个横向液压减振器位于侧架和车体之间。两个抗蛇形减振器布置在转向架两侧,与车体相连。每个转向架有四根吊缆,防止转向架与车体垂向分离。在车体和转向架之间安装一个抗侧滚扭杆装置。牵引装置位于转向架中部,采用带有橡胶关节的单牵引杆。基础制动装置采用单元式空气盘形制动,动车转向架采用轮盘,且制动单元安装在端梁上。拖车转向架采用3个轴盘/轴。
四、分析题:
1.为什么高速动车组要重视头型设计?头型设计具体采取哪些措施?
对于高速动车组来说,列车头形设计非常重要,好的头形设计可以有效地减少运行空阻力、列车交会压力波,还能解决运行稳定性等问题。
对于速度在200公里/小时以上的高速动车组,需将车头设计成流线型。列车头部的长细比一般要求达到3甚至更大。应尽可能降低头部纵向对称面上的外形轮廓线的垂向高度,使头部趋于扁形,这样可以减小压力冲击波,并改善尾部涡流影响。同时,将端部鼻锥部分设计成椭圆形状,可以减少列车运行时的空气阻力。
2.为什么CRH2动车组没有抗侧滚扭杆,而CRH1和CRH5动车组需要抗侧滚扭杆装置?
动车组为改善舒适性,采用了大挠度的空气弹簧.但同时也使得车体侧滚振动的角刚度也随之变得相对柔软。从而运行中车体侧滚角位移增大。尤其是当车辆通过曲线和道岔时,车体滚角大,易晃动。因此需要提高抗侧滚性能。
CRH2动车组的空气弹簧采用外侧悬挂,空气弹簧横向间距为2460mm,能有效减小侧滚角位移,满足要求。而CRH2和CRH5动车组的空气弹簧采用中心悬挂,横向间距较小,因此需要采用抗侧滚扭杆装置,以提高抗侧滚性能。
3.CRH2和CRH5动车组转向架的驱动装置结构上有什么不同?各有什么优缺点?
CRH2动车组采用架悬式,每个动车转向架有两个牵引电机,牵引电机连接在转向架构架上,通过弹性齿式联轴节,在驱动电机和齿轮箱之间传递力。CRH5动车组驱动装置采用体悬式,牵引电机悬挂在车体底架上,通过万向轴将转矩传递给车轴齿轮箱。动车转向架只有一根动轴,即只装一套牵引电机和驱动装置。
CRH2动车组结构簧下重量较小,较简单,拆装方便,但牵引电机处于一系弹簧和二系弹簧之间,工作条件不如体悬式。CRH5动车组牵引电机处于二系弹簧上,可进一步改善电机的工作条件,减轻转向架质量,释放车轴周围空间。但结构复杂,驱动扭矩由万向驱动机构和锥齿轮来传递,传动效率有所降低。