2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版)

时间:2019-05-15 03:25:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版)》。

第一篇:2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版)

2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷【5】含答案考点及解析 班级:___________

姓名:___________

分数:___________ 题号 一 二 三 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上

评卷人得分

一、选择题 1.执行如图所示的程序框图,输出的S值为()

A.1B. C.D. 【答案】D 【解析】 试题分析:程序执行过程中,的值依次为,.考点:程序框图.2.执行右面的程序框图,如果输入的N是6,那么输出的p是()

A.120B.720C.1440D.5040

【答案】B

【解析】试题分析:第一次循环:,第二次循环:,第三次循环:,第四次循环:,第五次循环:,第六次循环: 此时条件不成立,输出,选B.考点:本题考查了循环程序框图的运用 点评:正确读懂程序框图的含义是解决此类问题的关键,属基础题 3.用“辗转相除法”求得和的最大公约数是()

A.B.6C.D. 【答案】D 【解析】解:,4.某次考试有70000名生参加,为了了解这70000名考生的数成绩,从中抽取1000名考生的 数成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数成绩的平均数是总体平均数;(3)70000名考生是总体;(4)样本容量是1000。其中正确的说法有:()A.1种B.2种C.3种D.4种 【答案】A 【解析】略 5.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情 况差异不大,在下面的抽样方法中,最合理的抽样方法是(). A.简单随机抽样B.按性别分层抽样 C.按学段分层抽样D.系统抽样 【答案】C 【解析】 试题分析:因为三个学段学生的视力情况有较大的差异,所以应按照学段分层抽样. 考点:分层抽样 6.执行如图所示的程序框图,则输出的结果是()A.7B.12C.17D.19 【答案】B

【解析】

试题分析:由程序框图,得,,,;故选B.

考点:程序框图. 7.如图所示的程序框图,输出的值为()

A.B.C.D. 【答案】C 【解析】 试题分析:第一次循环:;第二次循环:;第三次循环:

;第四次循环:;结束循环输出,选C.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环

终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8.如下图,是一个算法流程图,当输入的时,那么运行算法流程图输出的结果是()

A.10B.20C.25D.35 【答案】D 【解析】当输入的时,;

; ;

否,输出,故选D.9.执行如图所示的程序框图,如果输出的值为,则输入的值可以是 A.B.C.D. 【答案】D

【解析】由程序框图知,第1次循环后,, 第2次循环后,第3次循环后,由题意知,此时不满足,退出循环,输出,所以,故选D.10.执行如图所示的程序框图,则输出的S的值是

A.4B.

D.1C.

【答案】D 【解析】初始:S=4,i=第一次循环:1<6,第二次循环:2<6,第三次循环:3<6, 第四次循环:4<6, 第五次循环:5<6, 6<6不成立,此时跳出循环,输出S的值,S值为-1,故选D.考点定位:本题考查程序框图,意在考查考生对循环结构框图的理解应用能力 评卷人得分

二、填空题 11.执行下图所示的程序框图,若输入A=2014,B=125,输出的A的值是____ .

【答案】1 【解析】试题分析:第一次循环:,第二次循环:,,第三次循环: ,第四次循环:,否,所以输出, 考点:程序框图的循环结构

12.执行如图所示的程序框图,若输入的值为,则输出的值为______.【答案】 【解析】第一次循环后:;第二次循环后:; 第三次循环后:,此时故输出.;第四次循环后: 【考点定位】程序框图13.某班有学生54人,有4张上海世博会门票,现根据学生的学号,用系统抽样的方法分给 4位学生.若已知3号,29号,42号学生已被抽中,那么还有一个被抽到的学生学号是 ▲

【答案】16 【解析】略

14.某算法流程图如图所示,则输出的结果是

; 【答案】8 【解析】略

第二篇:人教B版高中数学必修三+1.1.1算法的概念+教案

1.1.1算法的概念

教学目标:

1.知识与技能目标

(1)了解算法的含义,体会算法的思想。(2)能够说明解决简单问题的算法步骤。

(3)了解正确的算法应满足的要求,即算法的特点。

(4)初步了解高斯消去法的思想,会写出解线性方程(组)的算法。(5)了解利用Scilab求二元一次方程组解的方法。2.过程与方法目标

通过分析高斯消去法的过程,体会算法的思想,发展对具体问题的过程与 步骤的分析能力,发展从具体问题中提炼算法思想的能力,发展有条理地清晰地 思维的能力,提高学生的算法素养。

3.情感、态度与价值观目标

通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。

重点:算法的概念和算法的合理表述。难点:算法的合理表述、高斯消去法。

教学过程:

一、引入新课

1.要把大象装入冰箱分几步? 第一步 把冰箱打开。第二步 把大象放进冰箱。第三步 把冰箱门关上。

2.组织学生模拟参加幸运52的竞猜游戏。

价格竞猜中我们运用了曾经学过的二分法的数学思想。利用二分法求函数的零点时,我们是一步一步进行的,每一步都能得到一个结果,如果结果满足精确度则停止运算;若不满足则继续寻找,直到找到满足精确度的结果为止。这样的求解过程就是这一类问题的算法。今天我们就来学习算法的概念。

我们学过的求函数零点的二分法以及在解析几何初步中利用公式计算的几何问题进行

分步求解,这些计算方法都有一个共同的特点,就是对一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到惟一的结果,通常我们把这一类问题的求解过程叫做解决这一类问题的算法。这些算法虽然很机械,计算量大,但优点是一种通法,只要按部就班地去做,总能算出结果。通常把算法过程成为“数学机械化”,数学机械化最大的优点是它可以利用计算机来完成。所以学习算法是为了学习编辑程序,让计算机去帮助我们去解决更多的问题。

用学生熟悉的问题来引入算法的概念,降低新课的入门难度,有利于学生正确理解算法的概念。二.新课讲解

随着计算科学和信息技术的飞速发展,算法的思想已经渗透到了社会的方方面面。在以前的学习中,虽然没有出现算法这个名词,但是实际在数学学习中已经渗透了大量的算法的思想,如四则运算的过程(先乘除后加减),完成这些工作都需要一系列程序化的步骤,这就是算法的思想。

(一)算法的概念:算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤,或看成按要求设计好的有限的、确切的计算序列,并且这样的步骤或序列能解决一类问题。

(二)描述算法的方式:自然语言、数学语言、形式语言、框图语言 【例1】写出你在家中烧开水的过程。解: S1、往壶内注水; S2、点火加热;

S3、观察:如果水开,则停止烧火,否则继续烧火; S4、如果水未开,重复“3”直至水开。

总结:1其实大部分事情都是按照一定的程序执行,因此要理清事情的每一步。2判断水是否烧开与是否继续烧火的过程是一个反馈与判断过程,因此有必要不断重复过程3。

广义地说,对于一项任务,按照事先设计好的步骤,一步一步地执行并在有限步内完成任务,则这些步骤称为该任务的一个算法.简单地说,算法就是就是完成工作所需要的一系列程序化的步骤,就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。

【例2】一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔

多少鸡?

算法1:

解 :S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。S3 再根据缺的腿的条数确定小兔的数量:(48-34)/2=7只 S4 最后确定小鸡的数量:17-7=10只.算法2:

解 :S1 首先设x只小鸡,y只小兔。

2x4y48S2 再列方程组为:

xy17S3 解方程组得:y7

x10S4 指出小鸡10只,小兔7只。

本题讲解紧扣算法的定义,层层诱导,提示学生如何设计步骤,可以先由学生提出,师生共同总结。最后提示学生,一个问题算法可能不止一个。深化对算法概念的理解,使学生体会到算法并不是高渗莫测的东西,实际上是我们从前解题步骤的总结。

再归纳一般二元一次方程组的通用方法,即用高斯消去法解一般的二元一次方程组

a11x1a12x2b1。a21x1a22x2b2S1 假定a110(如果a110,可以将第一个方程与第二个方程互换),① (a21aaab)②,得到:(a222112)x2b2211 a11a11a11原方程组化为:

(3)a11x1a12x2b1 aaaaxabab(4)211221122111122S2 如果a11a22a21a120,输出方程组无解或有无数组解

如果a11a22a21a120,解(4)得x2a11b2a21b1(5)

a11a22a21a1

2S3 将(5)代入(3),整理得:x1a22b1a12b2(6)

a11a22a21a12S4 输出结果x1,x2、方程组无解或有无数组解

令Da11a22a21a12,若D0,方程组无解或有无数多解。若D0,则x1b1a22b2a12bab1a21,x2211。

DD由此可得解二元一次方程组的算法。

S

1计算Da11a22a21a12;

S

2如果D0,则原方程组无解或有无穷多组解;否则(D0),x1b1a22b2a12bab1a21,x2211

DDS

3输出计算结果x1、x2或者无法求解的信息。

(三)写算法的要求

算法不同于求解一个具体问题的方法,是这种方法的高度概括。一个好的算法有如下要求:

1.求解的过程是事先确定的,事先都考虑好了,有确定的步骤.2.写出的算法,必须能解决一类问题(如一元二次方程求根公式),并且能重复使用。3.算法执行过程中的每一步都是能够做到的,要简洁,要清晰可读,不能弄搞繁杂,以以致于易程序化。

4.算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且在有限步内有结果,应完成给定的任务。

(四)算法的特征

确定性,通用性,可行性,有穷性,有输出

【例3】.写出一个求有限整数序列中的最大值的算法。解:为了便于理解,算法步骤用自然语言叙述: 算法1:

S1 先假定序列中的第一个数为“最大值”。

S2 将序列的第二个整数值与“最大值”比较,如果第二个整数大于“最大值”,这时就假定这个数为“最大值”。

S3 将序列的第三个整数值与“最大值”比较,如果第三个整数大于“最大值”,这时就假定这个数为“最大值”。

S4 将序列的第四个整数值与“最大值”比较,如果第四个整数大于“最大值”,这时就假定这个数为“最大值” 依此类推

Sn 将序列的第n个整数值与“最大值”比较,如果第n个整数大于“最大值”,这时就假定这这个数为“最大值”。

Sn+1 直到序列中没有可比的数为止,“最大值”就是序列的最大值。算法2 S1 先假定序列中的第一个数为“最大值”。

S2 将序列中的下一个整数值与“最大值”比较,如果大于“最大值”,这时就假定这个数为“最大值”。

S3 如果序列中还有其它整数,重复S2。

S4 直到序列中没有可比的数为止,这时假定的“最大值”就是序列的最大值。带领学生分析题目,找出算法。让学生观察算法1,思考如何简化算法?让学生体会到算法的特点是:“机械的、呆板的、可以按部就班执行”,体会到学习算法的意义和必要性。体会到算法优化的意义,指出算法要设计合理,运行要高效,让学生体会顺序结构的简单直观,但有时却很繁琐的特点。促使学生产生改进方法的欲望。

试用数学语言写出对任意3个整数a、b、c中最大值的求法

S

1max=a S

2如果b>max,则max=b S

3如果c>max,则max=c, S

4max就是a、b、c中的最大值。

三、巩固练习

1.给出求100!123100的一个算法。

2.给出求点P(x0,y0)关于直线AxByC0的对称点的一个算法。

3.一位商人有9枚银元,其中有1枚略轻的是假银元。你能用天平(不用砝码)将假银元找出来吗?

四、课堂小结:

1.算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

2.描述算法的方式:自然语言、数学语言、形式语言、框图语言 3.算法的特征:确定性,通用性,可行性,有穷性,有输出

五、作业

P7练习A

P8练习B 1、2、3

第三篇:新课标人教B高中数学必修3教案1.2.2条件语句

海量考试资源下载:快乐阅读网 www.xiexiebang.com

普通高中课程标准实验教科书—数学第三册[人教版]

1.2.2条件语句

教学目标:了解条件语句,进一步体会算法的条件分支结构 教学重点:了解条件语句,进一步体会算法的条件分支结构 教学过程: 条件语句:

其一般形式为: IF(逻辑表达式)语句1;ELSE 语句2;上述结构表示: 如果逻辑表达式的值为非0(TURE)即真, 则执行语句1, 执行完语句1从语句2后开始继续向下执行;如果表达式的值为0(FALSE)即假, 则跳过语句1而执行语句2。注意:

1.条件执行语句中“ELSE 语句2;”部分是选择项, 可以缺省, 此时条件语句变成:

IF(逻辑表达式)

语句1;

表示若逻辑表达式的值为非0则执行语句1 , 否则跳过语句1继续执行。

2.如果语句1或语句2有多于一条语句要执行时, 必须使用“{”和“}” 把这些语句包括在其中,此时条件语句形式为:

IF(逻辑表达式)

{ 语句体1;} ELSE { 语句体2;}

这里语句体指多个语句,每个语句都必须以“;”结尾。

3.条件语句可以嵌套, 这种情况经常碰到, 但条件嵌套语句容易出错, 其原因主要是不知道 哪个IF对应哪个ELSE。

例如:

IF(x>20 OR x<-10)IF(y<=100 AND y>x)A=“Good”;

海量考试资源下载:快乐阅读网 www.xiexiebang.com 海量考试资源下载:快乐阅读网 www.xiexiebang.com ELSE B=“Bad”;

对于上述情况, 规定: ELSE语句与最近的一个IF语句匹配, 上例

中的ELSE与IF(y<=100 AND y>x)相匹配。为了使ELSE与IF(x>20 OR x<-10)相匹配, 必须用花括号。如下所示: IF(x>20 OR x<-10){ IF(y<=100 AND y>x)

A=“Good”;}

ELSE

B=“Bad”;4.可用阶梯式IF-ELSE-IF结构。

阶梯式结构的一般形式为:

IF(逻辑表达式1)语句1;

ELSE IF(逻辑表达式2)语句2;

ELSE IF(逻辑表达式3)语句3;

课堂练习:第27页,练习A,练习B 小结:本节介绍条件语句及其简单应用

课后作业:第31页,习题1-2A第4题(机上作业)

海量考试资源下载:快乐阅读网 www.xiexiebang.com

第四篇:高中数学必修2新课标人教A版教案

目录

第一章:空间几何体...............................................................................................................................................1 1.2.1 空间几何体的三视图(1课时)........................................................................................................3 1.2.2 空间几何体的直观图(1课时)......................................................................错误!未定义书签。1.3.1柱体、锥体、台体的表面积与体积.....................................................................错误!未定义书签。§1.3.2 球的体积和表面积...........................................................................................错误!未定义书签。

第二章 直线与平面的位置关系..............................错误!未定义书签。

§2.1.1平面.....................................................................................................................错误!未定义书签。§2.1.2 空间中直线与直线之间的位置关系.................................................................错误!未定义书签。§2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系..........................错误!未定义书签。§2.2.1 直线与平面平行的判定.....................................................................................错误!未定义书签。§2.2.2平面与平面平行的判定.....................................................................................错误!未定义书签。§2.2.3 — 2.2.4直线与平面、平面与平面平行的性质.................................................错误!未定义书签。§2.3.1直线与平面垂直的判定......................................................................................错误!未定义书签。§2.3.2平面与平面垂直的判定......................................................................................错误!未定义书签。§

2、3.3直线与平面垂直的性质 §

2、3.4平面与平面垂直的性质............................错误!未定义书签。本章小结.........................................................................................................................错误!未定义书签。

第三章

直线与方程................................................错误!未定义书签。

3.1.1直线的倾斜角和斜率............................................................................................错误!未定义书签。3.1.2两条直线的平行与垂直()......................................................................................错误!未定义书签。3.2.1 直线的点斜式方程.............................................................................................错误!未定义书签。3.2.2 直线的两点式方程.............................................................................................错误!未定义书签。3.2.3 直线的一般式方程.............................................................................................错误!未定义书签。3.3-1两直线的交点坐标................................................................................................错误!未定义书签。3.3.2直线与直线之间的位置关系-两点间距离...........................................................错误!未定义书签。3.3.3两条直线的位置关系 ―点到直线的距离公式.............................................错误!未定义书签。

第四章 圆与方程......................................................错误!未定义书签。

4.1.1 圆的标准方程.......................................................................................................错误!未定义书签。4.1.2圆的一般方程........................................................................................................错误!未定义书签。4.2.1 直线与圆的位置关系.........................................................................................错误!未定义书签。4.2.2 圆与圆的位置关系.............................................................................................错误!未定义书签。4.2.3 直线与圆的方程的应用.....................................................................................错误!未定义书签。

I

http://hi.baidu.com/水煮木鱼石

第一章:空间几何体

1.1.1柱、锥、台、球的结构特征

一、教学目标 1.知识与技能

(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些请你下载完整版 …

木鱼石整理

QQ:66610032 基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7 练习1、2(1)(2)

课本P8习题1.1 第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本P8 练习题1.1 B组第1题 课外练习课本P8习题1.1 B组第2题

……..…….…….完整版下载地址… …….…….…….http://hi.baidu.com/水煮木鱼石

1.2.1 空间几何体的三视图(1课时)

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能(2)丰富学生的空间想象力 2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图 难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比 2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;……..…….…….完整版下载地址… …….…….…….http://hi.baidu.com/水煮木鱼石

……..…….…….完整版下载地址… …….…….…….本资料仅供网友交流学习使用,请您在下载后24小时内删除,不得用于商业用途,否

则追究您法律责任!

[木鱼石整理]

更多优秀高中数学教学资料免费共享„„

第五篇:山东省高中数学(新课标人教A版)必修三《1.2.3 循环语句》教案

1.2.3循环语句

整体设计

教学分析

通过前面的学习,学生学会了输入语句、输出语句、赋值语句和条件语句的基本用法,本节将介绍循环语句的用法.程序中的循环语句与程序框图中的循环结构存在一一对应关系,这种对应关系对于学生理解循环语句的结构,进一步理解算法中的循环结构都是很有帮助的.我们可以给出循环语句的一般格式,让学生自己画出相应的程序框图,也可以给出程序框图,让学生写出算法语句,提高学生的应用能力.三维目标

1.理解学习基本算法语句的意义.2.学会循环语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点

教学重点:循环语句的基本用法.教学难点:循环语句的写法.课时安排1课时

教学过程

导入新课

思路1(情境导入)

一位同学不小心违反了学校纪律,班主任令其写检查,他写完后交给班主任,班主任看后说:“认识不深刻,拿回去重写,直到认识深刻为止”.这位同学一想,这不是一个循环结构吗?可惜我还没学循环语句,不然可以写一个算法语句输入计算机了.同学们,今天我们开始学习循环语句.思路2(直接导入)

前面我们学习了程序框图的画法,为了让计算机能够理解算法步骤、程序框图,上一节我们学习了输入语句、输出语句、赋值语句和条件语句,今天我们开始学习循环语句.推进新课 新知探究 提出问题

(1)试用程序框图表示循环结构.(2)指出循环语句的格式及功能.(3)指出两种循环语句的相同点与不同点.(4)揭示程序中的循环语句与程序框图中的条件结构存在一一对应关系.讨论结果:(1)循环结构

循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示

2°直到型循环结构,如图(2)所示,(1)当型循环结构

(2)直到型循环结构

(2)循环语句

1°当型循环语句

当型(WHILE型)语句的一般格式为:

WHILE 条件

循环体

WEND

功能:计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体;然后返回到WHILE语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而是跳到WEND语句后,执行WEND后面的语句.因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”“先判断后循环”.2°直到型循环语句

直到型(UNTIL型)语句的一般格式为:

DO

循环体

LOOP UNTIL 条件

功能:计算机执行UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断“LOOP UNTIL”后面的条件是否成立,如果条件不成立,返回DO语句处重新执行循环体.这个过程反复执行,直到一次判断“LOOP UNTIL”后面的条件成立为止,这时不再返回执行循环体,而是跳出循环体执行“LOOP UNTIL条件”下面的语句.因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”“先循环后判断”.(3)相同点:都是反复执行循环体语句.不同点:当型循环语句是先判断后循环,直到型循环语句是先循环后判断.(4)下面为循环语句与程序框图中的条件结构的一一对应关系.1°直到型循环结构:

2°当型循环结构:

应用示例

思路1 例1 修改前面编写过的求函数y=x3+3x2-24x+30的值的程序,连续输入11个自变量的取值,输出相应的函数值.算法分析:与前面不同的是,本例要求连续输入11个自变量的取值.并输出相应的函数值,先写出解决本例的算法步骤: 第一步,输入自变量x的值.第二步,计算y=x3+3x2-24x+30.第三步,输出y.第四步,记录输入次数.第五步,判断输入的次数是否大于11.若是,则结束算法;否则,返回第一步.显然,可以用计数变量n(1≤n≤11)记录次数,通过循环结构来实现算法.程序框图如下图:

程序: n=1 DO

INPUT x

y=x^3+3*x^2-24*x+30

PRINT y

n=n+1 LOOP UNTIL n>11 END 例2 教材中的用“二分法”求方程x2-2=0(x>0)的近似解的程序框图(见教材图1.120)包含了顺序结构、条件结构和循环结构.下面,我们把这个程序框图转化为相应的程序.解:程序为: INPUT “a,b,d=”;a,b,d DO

m=(a+b)/2

g=a^2-2

f=m^2-2

IF g*f<0 THEN

b=m

ELSE

a=m

END IF LOOP UNTIL ABS(a-b)<d OR f=0 PRINT m END 点评:ABS()是一个函数,用来求某个数的绝对值,即ABS(x)=|x|.例3 设计一个计算1×3×5×7ׄ×99的算法,编写算法程序.解:算法如下: 第一步,s=1.第二步,i=3.第三步,s=s×i.第四步,i=i+2.第五步,如果i≤99,那么转到第三步.第六步,输出s.程序如下:(“WHILE型”循环语句)s=1 i=3 WHILE i<=99

s=s*i

i=i+2 WEND PRINT s END 点评:前面我们已经学过“求和”问题,这是一个“求积”问题,这两个问题都是典型的算法问题,注意它们的联系与区别.例4 编写一个程序,求1!+2!+„+10!的值(其中n!=1×2×3ׄ×n).分析:这个问题可以用“WHILE+ WHILE”循环嵌套语句格式来实现.程序结构要做到如下步骤: ①处理“n!”的值;(注:处理n!的值的变量是一个内循环变量)②累加“n!”的值.(注:累加n!的值的变量是一个外循环变量)

显然,通过10次循环可分别求出1!、2!、„、10!的值,并同时累加起来, 可求得S的值.而求T=n!,又可以用一个循环(内循环)来实现.解:程序为: s=0 i=1 WHILE i<=10

j=1

t=1

WHILE j<=i

t=t*j

j=j+1 WEND

s=s+t

i=i+1 WEND PRINT s END 思考:上面程序中哪个变量是内循环变量,哪个变量是外循环变量? 解答:内循环变量:j,t.外循环变量:s,i.上面的程序是一个的“WHILE+WHILE”型循环嵌套语句格式.这是一个比较好想的方法,但实际上对于求n!,我们也可以根据求出的(n-1)!乘上n即可得到,而无需重新从1再累乘到n.程序可改为: s=0 i=1 j=1 WHILE i<=10

j=j*i

s=s+j

i=i+1 WEND PRINT s END

显然第二个程序的效率要比第一个高得多.第一程序要进行1+2+„+10=55次循环,而第二程序进行10次循环.如题目中求的是1!+2!+„+1 000!,则两个程序的效率区别会更明显.点评:解决具体的构造循环语句的算法问题,要尽可能地少引入循环变量,否则较多的变量会使得设计程序比较麻烦,并且较多的变量会使得计算机占用大量的系统资源,致使系统缓慢.另外,也尽可能使得循环嵌套的层数少,否则也浪费计算机的系统资源.变式训练

某种蛋白质是由四种氨基酸组合而成.这四种氨基酸的相对分子质量分别是57,71,97,101.实验测定蛋白质的相对分子质量为800.问这种蛋白质的组成有几种可能?

分析:该问题即求如下不定方程的整数解:设四种氨基酸在蛋白质的组成中分别各有x,y,z,w个.则由题意可得57x+71y+97z+101w=800,(x,y,z,w是非负整数)

这里0≤x≤14,0≤y≤11,0≤z≤8,0≤w≤7,利用穷取法,考虑一切可能出现的情况.运用多层循环嵌套处理即可.解:编写程序如下: w=0 WHILE w<=7

z=0 WHILE z<=8

y=0 WHILE y<=11

x=0 WHILE x<=14

IF 57*x+71*y+97*z+101*w=800 THEN

PRINT x,y,z,w

END IF

x=x+1 WEND

y=y+1 WEND

z=z+1 WEND

w=w+1 WEND END 知能训练 设计算法求1111的值.要求画出程序框图,写出用基本语句12233499100编写的程序.解:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:

程序如下: s=0 i=1 Do s=s+1/(i*(i+1))i=i+1 LOOP UNTIL i>99 PRINT s END 拓展提升

青年歌手电视大赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分.试设计一个算法解决该问题,要求画出程序框图,写出程序(假定分数采用10分制,即每位选手的分数最高分为10分,最低分为0分).解:由于共有12位评委,所以每位选手会有12个分数,我们可以用循环语句来完成这12个分数的输入,同时设计累加变量求出这12个分数的和,本问题的关键在于从这12个输入分数中找出最大数与最小数,以便从总分中减去这两个数.由于每位选手的分数都介于0分和10分之间,我们可以先假设其中的最大数为0,最小数为10,然后每次输入一个评委的分数,就进行一次比较,若输入的数大于0,就将之代替最大数,若输入的数小于10,就用它代替最小数,依次下去,就能找出这12个数中的最大数与最小数,循环结束后,从总和中减去最大数与最小数,再除以10,就得到该选手最后的平均分.程序框图如右图:

程序如下:s=0 i=1 max=0 min=10 DO INPUT x s=s+x IF max<=x THEN max=x END IF IF min>=x THEN min=x END IF i=i+1 LOOP UNTIL i>12 s1=s-max-min a=s1/10 PRINT a

END 课堂小结

(1)学会两种循环语句的应用.(2)熟练应用两种循环语句编写计算机程序,巩固算法应用.作业

习题1.2A组3.设计感想

本节的导入符合学生心理要求,能够激发学生的学习兴趣.算法像一个故事,循环语句就是故事的高潮,它以前面的内容为基础,是前面内容的总结和发展.本节选用了大量的精彩例题为故事高潮的到来作好了铺垫,精彩的点评把本节推向了高潮,所以本节教案值得期待.

下载2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版)word格式文档
下载2018-2019年高中数学新课标人教B版《必修三》《第二章 统计》《2.1 随机抽样》综合测试试卷(范文模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐