第一篇:和倍问题
和倍问题
1、哥哥和弟弟共有48本书,弟弟给哥哥5本后,哥哥的书就是弟弟的3倍,哥哥、弟弟原来各有几本书?
2、甲乙两桶油共重150千克,从甲桶中取出20千克倒入乙桶,这时乙桶的油就是甲桶的2倍,甲乙两桶原来各有油多少千克?
3、甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?
4、书架上层有46本书,下层有22本书,要使上层的书是下层书的3倍,那么必须从下层拿几本书放到上层去?
5、甲乙两个粮仓共有粮食230吨,后来从甲仓运出50吨,乙仓运进20吨,这时乙仓的粮食是甲仓的3倍,甲乙两仓原来各有粮食多少吨?
6、两个数相除,商3余10,被除数、除数、商与余数的和是163,求被除数和除数分别是多少?
7、被除数、除数、商的和是735,已知商是7,求被除数和除数各是多少?
8、今年,小明和他爸爸的年龄和是46岁,3年前爸爸的年龄正好是小明的3倍,小明和他的爸爸今年各是多少岁?
第二篇:和倍问题
和倍问题
1、图书馆买回来60本文艺书和科普书,其中文艺书是科普书的3倍,文艺书有多少本?
2、一个果园种有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵数是龙眼的3倍,芒果的棵数是龙眼的2倍,这三种果树各有多少棵?
3、一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍,水池有16吨水,打开两管5小时能把水排完,甲管每小时排水多少吨?
4、某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米面的5倍,卖出的大米比玉米面多多少千克?
5、学校买回来96盒白粉笔和红粉笔,白粉笔的盒数是红粉笔的3倍,买回来的白粉笔有多少盒?
6、文具店卖出方格簿和练习簿1570本,卖出的练习簿的本数比方格簿的3倍多34本,卖出方格簿多少本?
7、一个长方形周长150cm,长是宽的1.5倍,求它的面积。
8、东村和西村相距24千米,甲骑自行车从东村到西村,乙从西村步行到东村,甲的速度
是乙的3倍,两人同时相向而行,1.5小时相遇,甲骑自行车每小时行多少千米?
9、体育室买来81个篮球、排球、和足球,足球的个数是篮球的6倍,排球个数是篮球的2
倍,排球比足球少了多少个?
10、水果店卖出864千克橙、柑和桔,卖出柑的千克数是橙的2倍,桔的千克数是柑的3倍,卖出多少千克柑?
11、在一片坡地上种了809棵松树和杉树,其中松树的棵数比杉树的3倍还要多5棵,种松树和杉树各多少棵?
12、建筑工地运进沙和碎石111吨,其中沙的吨数比碎石的5倍少3吨,运进沙和碎石各多少吨?
13、甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?
14、图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?
15、甲数和乙数的和是30甲数的3倍和乙数8倍的和是160,甲数、乙数两数各是多少?
16、甲站和乙站相距299千米,一辆客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?
第三篇:和倍问题教案
和倍问题
教学目标:
学会运用画图线的方法表示和倍关系中两个量,以更方便的找到解题的思路。
熟练掌握解答和倍问题的方法,理解和倍问题中各个量之间的关系。
教学重点:运用画图线的方法,准确分析各量之间的关系。教学难点:能够理解和倍应用题中各倍数和差倍数的量得关系。
一、引入课题。
二、教学过程:
学习例1:学校将360本图书分给二、三两个年级,已知三年级所 分得的本数是二年级的2倍,问二、三两年级各分得多少本 图书?
集体讨论:
二、三两个年级各占多少分,你能不能画出倍数图线? 分析与解答:设二年级的图书本数为1份,则三年级的图书为二年级的2倍,那么三年级和二年级图书本数的和相当于二年级图书本数的3倍.还可以理解为3份的数量是360本,求出1份的数量也就求出了二年级的图书本数,然后再求三年级的图书本数.用下图表示它们的关系:
解:二年级:360÷(2+1)=120(本)
三年级:120×2=240(本)或 360-120=240(本)
答:三年级有图书240本,二年级有图书120本。
这道应用题解答完了,怎样验算呢?
可把求出的三年级本数和二年级本数相加,看和是不是360本;再把三年级的本数除以二年级本数,看是不是等于2倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:120+40=160(本)
120÷40=3(倍)。
小结:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。解答和倍应用题,关键是找出两个数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。数量关系可以这样表示:
两数和 ÷倍数和= 小数(1倍数)小数 × 倍数 = 大数(几倍数)两数和-小数 = 大数
学习例2: 小红有圆珠笔芯20支,小青有圆珠笔芯25支,问小青 给小红多少支后,小红的圆珠笔芯是小青的2倍?
集体讨论:你能画出图线来表示题中小红和小青的倍数的关系吗?
分析与解答:解这题的关键是找出哪个量是变量,哪个量是不变量从已知条件中得出,不管小青给小红多少支笔芯,还是小红从小青得到多少支笔芯,笔的总和是不变的量.最后要求小红的笔芯是小青的笔芯的2倍,那么笔芯的总和相当于小红现有笔芯的3倍.依据解和倍问题的方法,先求出小红现有笔芯多少支,再与原有笔芯相比较,可以求出小青给小红多少支笔。(见上图)。解:①小青和小红一共拥有的笔芯总和:
20+25=45(支)
②小青给小红若干支笔芯后,小青和小红共有的倍数是: 2+1=3(倍)
③小红现有的笔芯数是:45÷3=15(支)④小青给小红笔芯数是:25-15=10(支)综合算式:
(20+25)÷(2+1)=15(支)25-15=10(支)
答:小青给小红10支笔芯后,小青的笔芯是小红的2倍。小结:要想顺利地解决和倍应用题,最好的办法就是:
(1)根据题目所给的已知条件和问题画出线段图;(2)进行认真仔细的分析; 这样数量关系就可以一目了然了。
学习例3: 甲、乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
分析与解答:把乙仓库存粮看作一份,甲仓库是乙仓库的2倍。由于甲库运出30吨,给乙库运进10吨,所以总量变了,首先要求出总量。(见下图)。
解:甲库与乙库存粮数:170-30+10=150(吨)
乙库存粮数150÷(2+1)=50(吨)50-10=40(吨)
甲库存粮数50×2+30=130(吨)答:甲库存粮数有130吨,乙库存粮数有40吨。
学习例4: 果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?
分析与解答:下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树
少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。
解:①梨树的棵数:
(552+20-12)÷(1+1+2)=560÷4=140(棵)
②桃树的棵数:140×2+12=292(棵)③苹果树的棵数: 140-20=120(棵)
答:桃树、梨树、苹果树分别是292棵、140棵和120棵。
三、巩固练习:
1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?
2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲
水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?
四、全课总结
今天这节课同学们有什么收获?在解决和倍应用题时关键是要做什么?(先要画出线段图,分析数量关系)
第四篇:和倍问题教案
和倍问题
教学目标:
学会运用画图线的方法表示和倍关系中两个量,以更方便的找到解题的思路。
熟练掌握解答和倍问题的方法,理解和倍问题中各个量之间的关系。教学重点:运用画图线的方法,准确分析各量之间的关系。教学难点:能够理解和倍应用题中各倍数和差倍数的量得关系。
教学过程:
1、认识倍数
出示:甲数是乙数的4倍
请学生说说想到了什么?这里谁自己可以算一份? 小组交流怎样用图示表示他们之间的数量关系。交流,展示成果,并说说自己是怎样想的。师小结:一般用线段图来帮助分析。乙数: 甲数:
2、应用倍数知识
出示例1:白兔和灰兔一共有32只,白兔是灰兔的3倍,白兔和灰兔各有多少只?
集体讨论:白兔和灰兔各有多少只,你能不能画出倍数图线?
分析:设灰兔为1份,则白兔只数是灰兔的3倍,那么白兔只数和灰兔和相当于灰兔的4倍.还可以理解为4份的数量是32只,求出1份的数量也就求出了灰兔只数,然后再求白兔只数.这道应用题解答完了,怎样验算呢?
可把求出的白兔只数和灰兔只数相加,看和是不是32只;再把白兔只数除以灰兔只数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:
小结:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。解答和倍应用题,关键是找出两个数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。
数量关系可以这样表示:
两数和 ÷倍数和= 小数(1倍数)小数 × 倍数 = 大数(几倍数)两数和-小数 = 大数
三、巩固练习:
1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?
2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲 水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?
今天这节课同学们有什么收获?在解决和倍应用题时关键是要做什么?(先要画出线段图,分析数量关系)
第五篇:和倍问题教案
教 学 设 计
【教学题目】——“和倍”问题 【教学目标】
知识与技能:学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知量的实际问题。
问题解决与数学思考:学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力;培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。
情感、态度与价值观:让学生体验到生活中处处是数学体验数学的应用价值和数学学习的乐趣。
【教学重点】明确数量关系列方程解决问题。
【教学难点】能理解把一倍量的未知数设为X,则用含有X的式子表示另一个未知数。【教学过程】
一、复习引入 1.用字母表示复习。
学校科技组有女同学X人,男同学是女同学的3倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。2.引入新课
二、探究新知
呈现问题情景:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍。
(1)这道题,告诉我们哪些已经条件?(2)你能提出哪些数学问题?
(3)能解决这个问题吗?请同学们独立解答。(4)汇报,说说你是怎么想的?(5)请同学们思考下面的问题:
①题中有几个未知数?
②怎样设未知数?为什么?
③问题中包含这样的等量关系吗?(6)汇报交流
(7)师小结:根据题中另一个条件找数量间的相等关系,然后列方程。
(8)解方程,并汇报。
(9)你是根据什么求出海洋面积的呢?(10)我们做的对吗?如何检验呢?
三、巩固拓展
练习十三相关习题(生独立列式解答并集体反馈。)
四、课堂总结
简述今天所学方程的解法。