第一篇:2018年牛津大学本科学术要求
www.xiexiebang.com
牛津大学(University of Oxford),简称“牛津”,位于英国牛津,是一所誉满全球的世界顶级研究型书院联邦制大学,与剑桥大学并称牛剑,与剑桥大学、伦敦大学学院、帝国理工学院、伦敦政治经济学院同属“G5超级精英大学”。立思辰广州留学360张素芬老师介绍说,牛津大学最早成立于1096年,为英语世界中最古老的大学,也是世界上现存第二古老的高等教育机构。
涌现出一批引领时代的科学巨匠,培养了大量开创纪元的艺术大师以及国家元首,包括了27位英国首相、64位诺贝尔奖得主以及数十位世界各国元首和政商界领袖。这些都为牛津大学奠定了世界近现代学术文化中心的地位。其在数学、物理、医学、法学、商学等多个领域拥有崇高的学术地位及广泛的影响力,被公认为是当今世界最顶尖的高等教育机构之一。
本科学术要求
国内高中生欲攻读牛津共有四种途径:
1.A-level课程:3门A-leve,分数要求分布在AAA-A*A*A之间,视课程不同而不同。
2.IB课程:要求总分38-40分以上,高水准课程(Higher Level)要求6-7分以上。
3.SAT/ACT+AP课程,共有多种组合方式可以申请:
*(1)SAT+SATⅡ:SAT总分2100以上,其中阅读+数学不低于1400以上,写作不低于700分;3门SATⅡ,单科700分以上,具体要求的科目与所申请项目相关。
www.xiexiebang.com 分以上的AP课程,具体要求的课程与所申请项目相关。
*(2)SAT+AP课程:SAT总分2100以上,其中阅读+数学不低于1400以上,写作不低于700分;3门5
*(3)ACT+AP课程:ACT总分32分以上;AP课程不低于5分,具体要求的课程与所申请项目相关。
4.国内先读大一,而后以高中成绩+高考成绩+大一成绩申请。
第二篇:2018年英国布莱顿大学本科学术要求
www.xiexiebang.com
布莱顿大学位于英国布莱顿。布莱顿是英国著名的度假圣地,被人们亲切地称为“海滨的伦敦”。绝妙的沙滩、芬芳四溢的美景、超一流的旅游服务设施,引得成千上万的游人纷至沓来。立思辰河北留学360郝晓静老师介绍说,海滨嬉戏之余,邱吉尔广场上最新的商业中心会引领您探寻时尚的前沿;步入布莱顿古老街巷,看似平凡的街道充满了各色奇特的 小店、酒馆、餐厅和咖啡屋以及不同类别的影剧院;在这里,无处不在的、趣味横生的游艺设施更是吸引了大量的游人驻足流连。当然,如果您是一个体育爱好者,骑马、高尔夫、网球、水上运动在布莱顿当地也是不错的 休闲选择。
本科学术要求
高中毕业,不能直接申请,需要取得国际考试(A-LEVEL或者IB)证书,或者经过一年的国际预科课程学习
第三篇:2018年牛津大学本科申请
www.xiexiebang.com
牛津大学(University of Oxford),简称“牛津”,位于英国牛津,是一所誉满全球的世界顶级研究型书院联邦制大学,与剑桥大学并称牛剑,与剑桥大学、伦敦大学学院、帝国理工学院、伦敦政治经济学院同属“G5超级精英大学”。立思辰广州留学360肖敏敏老师介绍说,牛津大学最早成立于1096年,为英语世界中最古老的大学,也是世界上现存第二古老的高等教育机构。
涌现出一批引领时代的科学巨匠,培养了大量开创纪元的艺术大师以及国家元首,包括了27位英国首相、64位诺贝尔奖得主以及数十位世界各国元首和政商界领袖。这些都为牛津大学奠定了世界近现代学术文化中心的地位。其在数学、物理、医学、法学、商学等多个领域拥有崇高的学术地位及广泛的影响力,被公认为是当今世界最顶尖的高等教育机构之一。
本科申请
英语要求
立思辰广州留学360肖敏敏老师介绍说,牛津大学申请时无需IELTS/TOEFL成绩,学生只需要在第二年7月31日前向学校出具合格的语言成绩便可以。牛津大学语言要求:IELTS总分7.0以上,单项不低于7.0分;TOEFL总分110以上,单项口语不低于25分,阅读与写作不低于24分,听力不低于22分。在英语国家或通过英语授课2年以上,或IB标准水准英语课程成绩达到5分以上,可以豁免语言成绩
学术要求
www.xiexiebang.com
国内高中生欲攻读牛津共有四种途径:
1.A-level课程:3门A-leve,分数要求分布在AAA-A*A*A之间,视课程不同而不同。
2.IB课程:要求总分38-40分以上,高水准课程(Higher Level)要求6-7分以上。
3.SAT/ACT+AP课程,共有多种组合方式可以申请:
*(1)SAT+SATⅡ:SAT总分2100以上,其中阅读+数学不低于1400以上,写作不低于700分;3门SATⅡ,单科700分以上,具体要求的科目与所申请项目相关。
*(2)SAT+AP课程:SAT总分2100以上,其中阅读+数学不低于1400以上,写作不低于700分;3门5分以上的AP课程,具体要求的课程与所申请项目相关。
*(3)ACT+AP课程:ACT总分32分以上;AP课程不低于5分,具体要求的课程与所申请项目相关。
4.国内先读大一,而后以高中成绩+高考成绩+大一成绩申请。
第四篇:牛津大学本科招生笔试试题(数学)
Mathematics Interview Questions
1.Differentiate xx
2.Integrate cos2(x)and cos3(x).3.What is the square root of i? 4.If I had a Differentiate xx
5.cube and six colours and painted each side a different colour, how many(different)ways could I paint the cube? What about if I had n colours instead of 6? 6.Prove that root 2 is irrational.7.Integrate ln x.8.Sketch the curve(y2-2)2+(x2-2)2=2.What does it look like? 9.3 girls and 4 boys were standing in a circle.What is the probability that two girls are together but one is not with them? 10.Prove that 1+1/2+1/3+...+1/1000<10 11.Is there such number N that 7 divided N2=3? 12.What is the integral of x2 cos3(x)? 13.How many squares can be made from a grid of ten by ten dots(ignore diagonal squares)? 14.Integrate tan x.15.Pascal's triangle(prove that every number in the triangle is the sum of the two above it)16.Integrate 1/(1-lnx)17.sketch xx
18.prove 4nR(x))2, where R(x)is x rounded up or down in the usual way.then sketch g(x)= f(1/x)34.(a+b)/2 is an integer, is the relationship transitive?(a+b)/3? 35.Differentiate 1/1+(1/1+(1/1+1/(1 + x))))36.Sketch graph of 1/x, 1/x2, 1/(1+x2)37.Integrate 1/(1+x2)38.Integrate ex x2 between limits of 1 and 0.Draw that graph.39.Integrate x-2 between limits of 1 and-1.Draw the graph.Why is it-2 and not infinity, as it appears to be on the graph? 40.Write down 3 digits, and then write the number again next to itself, eg: 145145.Why is it divisible by 13? 41.You are given a triangle with a fixed perimeter but you want to maximise the area.What shape will it be? Prove it.42.Next you are given a quadrilateral with fixed perimeter and you want to maximise the area.What shape will it be? Prove it.43.Integrate(1)/(x+x3),(1)/(1+x3),(1)/(1+xn)44.How many 0's are in 100!45.Prove that the angle at the centre of a circle is twice that at the circumference.46.How many ways are there in which you can colour three equal portions of a disc? 47.Integrate 1/(9 +x2)48.Draw y=ex, then draw y=kx, then draw a graph of the numbers of solutions of x against x for ex=kx, and then find the value of k where there is only 1 solution.49.Rubik's cube and held it by two diagonally opposite vertices and rotated it till it reached the same position, by how many degrees did it take a turn? 50.Solve ab=ba for all real a and b.51.There is a game with 2 players(A&B)who take turns to roll a die and have to roll a six to win.What is the probability of person A winning? 52.Sketch y=x3 and y=x5 on the same axis.53.What the 2 sides of a rectangle(a and b)would be to maximise the area if a+b=2C(where C is a constant).54.Can 1000003 be written as the sum of 2 square numbers? 55.Show that when you square an odd number, you always get one more than a multiple of 8.56.Prove that 1 + 1/2 + 1/3 + 1/4 +...equals infinity 57.Prove that for n E Z ,n>2, n(n+1)>(n+1)n 58.Prove that sqrt(3)is irrational 59.What are the possible unit digits for perfect squares? 60.What are the possible remainders when a cube is divided by 9? 61.Prove that 801,279,386,104 can't be written as the sum of 3 cubes 62.Sketch y=ln(x)/x and find the maximum.63.What's the probability of flipping n consecutive heads on a fair coin? What about an even number of consecutive heads? 64.Two trains starting 30km apart and travelling towards each other.They meet after 20 mins.If the faster train chases the slower train(starting 30km apart)they meet after 50mins.How fast are the trains moving? 65.A 10 digit number is made up of only 5s and 0s.It's also divisible by 9.How many possibilities are there for the number? 66.There is a set of numbers whose sum is equal to the sum of the elements squared.What's bigger: the sum of the cubes or the sum of the fourth powers? 67.Draw e(-x^2)68.Draw cos(x^2)
69.What are the last two digits of the number which is formed by multiplying all the odd numbers from 1 to 1000000? 70.Prove that 1!+ 2!+ 3!+...has no square values for n>3 71.How many zeros in 365!72.Integrate x sin2x 73.Draw ex , ln x, y=x what does show you.As x tends infinity, what does lnx/x tend to? 74.Define the term 'prime number' 75.Find method to find if a number is prime.76.Prove for a2 + b2 = c2 a and b can't both be odd.77.What are the conditions for which a cubic equation has two, one or no solutions? 78.What is the area between two circles, radius one, that go through each other's centres? 79.If every term in a sequence S is defined by the sum of every item before it, give a formula for the nth term 80.Is 0.9 recurring = 1? Why? Prove it 81.Why are there no Pythagorean triples in which both x and y are odd? 82.draw a graph of sinx, sin2x, sin3x 83.prove infinity of primes, prove infinity of primes of form 4n+1 84.differentiate cos3(x)85.Show(x-a)2-(x-b)2 = 0 has no real roots if a does not equal b in as many ways as you can.86.Hence show: i)(x-a)3 +(x-b)3 = 0 has 1 real root ii)(x-a)4 +(x-b)4 = 0 has no real roots iii)(x-a)4 +(x-b)4 =(b-a)4 has 2 real roots 87.Find the values of all the derivatives of e(-1/x^2)at x=0 88.Show that n5-n3 is divisible by 12 89.If I have a chance p of winning a point in tennis, what's the chance of winning a game 90.Explain what integration is.91.If n is a perfect square and its second last digit is 7, what are the possibilities for the last digit of n and can you show this will always be the case? 92.How many subsets can you form from a set of n numbers? 93.Prove that(a+b)/2 > sq.root of ab where a>0, b>0 and a does not equal b ie prove that arithmetic mean > geometric mean 94.What is 00(i.e is it 0 or1), and solve it by drawing xx 95.If f(x+y)=f(x)f(y)show that f(0)= 1, 96.Suggest prime factors of 612612503503 97.How many faces are there on an icosahedron 98.integrate 1/(1+sin x)99.What is the greatest value of n for which 20 factorial is divisible by 2n? 100.Prove that the product of four consecutive integers is divisible by 24.
第五篇:湖北大学本科毕业论文要求
湖北大学本科毕业论文格式要求
论文应使用A4纸打印,上下页边距均设置为2.25cm,左右页边距均设置为1.9cm,页眉页脚均设置为1.35cm.1.论文题目居中,使用黑体小二号字,题目不超过25个汉字。
2.摘要要精练,应是一篇独立、完整的短文,不超过300字。
“摘要”二字使用黑体五号字,摘要内容使用宋体五号字。
3.关键词一般列3~5个。
“关键词”三字使用黑体五号字,其内容使用宋体五号字。
4.目录应独立成页,包括各级标题与页码。
“目录”二字居中,使用黑体三号字,各级标题左对齐使用宋体五号字。
5.正文一般包括“前言、主体、结论”三部分,不少于8千字,不超过2万字。前言可书写选题目的、背景、意义、现状分析;正文应有明确观点;结论应归纳。
前言,首行缩进2个字符,使用宋体小四号字;
一级标题(1),段前分页,居中使用黑体三号字;
二级标题(1.1),左对齐,使用黑体小三号字;
三级标题(1.1.1),左对齐,使用黑体四号字;
四级标题(1.),首行缩进2个字符,使用黑体小四号字;
正文内容及结论内容,首行缩进2个字符,使用宋体小四号字。
6.致谢(可有可无)
“致谢”二字居中,段前分页,使用黑体三号字,其内容首行缩进2个字符,使用宋体小四号字。
7.参考文献,四字居中,段前分页,使用黑体三号字,其内容使用宋体五号字。顺序为:(1)学术刊物文献类。作者.文章名.学术刊物名.年,卷(期):引用部分起止页码(2)著作图书文献类。作者.书名.版次.出版者,出版年:引用部分起止页码(3)引用网上文献时,应录入网址。
8.附录,包括流程图、公式推导、图纸等。
“附录”二字居中,段前分页,使用黑体三号字,其内容首行缩进2个字符,使用宋体五号字。