轻钢结构设计总结(有用的着的下载)[五篇模版]

时间:2019-05-15 09:24:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《轻钢结构设计总结(有用的着的下载)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《轻钢结构设计总结(有用的着的下载)》。

第一篇:轻钢结构设计总结(有用的着的下载)

轻钢结构设计总结(有用的着的下载)

轻钢结构总结

第一章、轻钢结构的特点及分类

一、门式刚架特点(在设计时需注意的事项)

1、主要承重结构为单跨或多跨实腹式门式刚架;

2、屋盖采用压型钢板屋面和冷弯薄壁型钢檩条,有时采用轧制槽钢或工字钢檩条(现在很少采用)。

3、外墙面采用压型钢板屋面和冷弯薄壁型钢墙梁,在外墙板接近地面处,为防止其锈蚀,可从地面砌筑1米高度左右的墙体(此做法不一定经济,尤其在软土地区)。

4、屋面和墙体可采用轻质保温隔热层。

5、建筑物内一般无桥式吊车或有不超过20t的A1~A5工作级别的桥式吊车或是3t悬挂式吊车。

6、屋面水平支撑系统的交叉拉杆和柱间支撑可采用圆钢,但应带拉紧装置。

二、门式刚架的分类(简略)

1、按跨度数量分类:

单跨、双跨、多跨

第二章、轻型钢结构房屋材料选择 第一节、建筑常用钢种简述

土木工程常用金属材料主要是建筑钢材和铝合金。建筑钢材分为钢结构用钢和钢筋混凝土用钢。前者主要是型钢和钢板;后者主要是钢筋、钢丝、钢绞线等。建筑钢材的原料刚多为碳素刚和低合金钢。

1、碳素结构钢的牌号、表示方法

参考规范《碳素结构钢》GB/T 700,牌号由代表屈服点的字母、屈服点的数值、质量等级符号、脱氧方法四部分组成。

屈服点(共五种):195MPa、215MPa、235MPa、255MPa、275MPa。质量等级:A、B、C、D。(以硫、磷等杂质含量由高到底排列)

脱氧方法:F(沸腾钢)、b(半镇静钢)、Z(镇静钢)、TZ(特殊镇静钢)。其中b(半镇静钢)在新规范中已经取消。例如:Q235-A·F表示屈服点为235MPa的A级沸腾钢。

随着牌号的增大,其含碳量增加,强度提高,塑性和韧性下降,冷弯性能逐渐变差。同一牌号内的质量等级越高,钢材质量越好,例如Q235C级优于Q235A级。

2、优质碳素结构钢

(轻钢结构主要构件不采用此钢种,故略述)

优质碳素结构钢大部分为镇静钢,对有害杂质含量控制严格,质量稳定综合性能好,但成本较高。优质碳素钢分为普通含锰量(0.35~0.80%)和较高含锰量(0.70~1.20%)两大组。优质碳素结构钢共31个牌号,其表示方法:以平均含碳量(以0.01%为单位)、含锰量标注、脱氧程度代号组成。

3、低合金高强度结构钢牌号、表示方法

本钢种是在碳素钢基础上添加总量小于5%的一种或多种合金元素的钢材。合金元素有硅(Si)、锰(Mn)、钒(V)、铌(Nb)、铬(Cr)、镍(Ni)及稀有元素。低合金高强度结构钢均为镇静钢。

参考规范《低合金高强度结构钢》GB/T 1591。牌号由钢材屈服强度字母Q、屈服强度值、质量等级符号三部分组成。

屈服点(五个等级):Q295MPa、Q345MPa Q390MPa、Q420MPa、Q460MPa。质量等级:A、B、C、D、E。(以硫、磷等杂质含量由高到底排列)例如:Q345B表示屈服强度不小于345MPa,质量等级为B级的低合金高强度结构钢。

第二节、钢结构用钢

钢结构用钢主要是热轧成形的板材和型钢。轻型钢结构中主要采用薄壁型钢、圆钢和小角钢。钢材所用的母材主要是普通碳素结构钢和低合金高强度结构钢。

1、热轧型钢

钢结构常用的型钢截面:“工”、“H”、“T”、“[”、“∠”。由于H、T型钢具有多方面的优越性能,应用广泛,故简述之如下: 1.1 参考规范:《热轧H型钢和部分T型钢》GB/T11263-1998

1.2 H型钢分类:宽翼缘H型钢(HW)、中翼缘H型钢(HM)、窄翼缘H型钢(HN)。H型钢钢桩(HP)。

1.3 T型钢分类:宽翼缘T型钢(TW)、中翼缘H型钢(TM)、窄翼缘T 型钢(TN)。

1.4 H型钢和H型钢桩规格标记:

高度H×宽度B×腹板宽度t1×翼缘厚度t2表示。例:H 340×250×9×14 1.5 部分T型钢表示方法:

高度H×宽度B×腹板宽度t1×翼缘厚度t2表示。例:T248×199×9×14

2、冷弯薄壁型钢

分类:一是结构用冷弯空心型钢;二是通用冷弯开口型钢。后者作为轻型钢结构房屋檩条和墙梁的主要选材。

冷弯开口型钢按照截面形状分为八种:冷弯等边角钢、冷弯不等边角钢、冷弯等边槽钢、冷弯不等边槽钢、冷弯内卷边槽钢、冷弯外卷边槽钢、冷弯Z型钢、冷弯卷边Z型钢。

3、棒材、管材和板材

3.1棒材:六角钢、八角钢、扁钢、圆钢、方钢。

前两种作为螺栓的坯材;扁钢为扶梯、栅栏等房屋构件(规格:厚度×宽度);

3.2钢管:热轧无缝钢管、焊接钢管。

3.3板材:钢板、花纹钢板、建筑用压型钢板、彩色涂层钢板等。规格表示方法:宽度×厚度×长度(mm)表示方法不统一 具体参照《连续热镀锌钢板及钢带》GBT 2518-2004、《彩色涂层钢板及钢带》GBT 12754-2006。

第三节、轻型钢结构房屋选材

一、材料选择的一般规定

1、参考规范规程:

《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)《钢结构设计规范》GB50017-2003

2、材料选用一般规定

2.1用于承重的冷弯薄壁型钢、热轧型钢和钢板,应采用现行国家标准《碳素结构钢》(GB/T 700)规定的Q235钢和《低合金高强度结构钢》(GB/T 1591)规定的Q345钢。

2.2门式刚架、吊车梁和焊接檩条、墙梁等构件宜采用Q235B或Q345A及其以上等级的钢材。非焊接檩条和墙梁等构件可采用Q235A钢。2.3门式刚架轻型钢结构房屋的墙梁和檩条多采用冷弯薄壁型钢,为使构件具有合理的承载力,截面的几何尺寸应满足宽厚比等方面的要求。2.4承重结构采用的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有含碳量的合格保证。焊接承重构件以及非常重要的非焊接承重构件采用的钢材还应具有冷弯试验的合格保证。对于特殊环境和工作条件下的构件,如低温和承受动荷载,还应具有冲击韧性等方面的要求。具体可遵守《钢结构设计规范》执行。

第四章 结构设计基本原则、阶段和体系布置

第一节结构设计基本原则(略)

第二节结构设计阶段概述

结构设计一般分为三个阶段:一是初步设计;二是施工图设计;三是施工详图设计。

1、初步设计

在明确门式刚架这一基本结构形式下,进行结构平面布置,空间处理,节点连接构造的设计与处理。在结构平面布置中,主要确定柱距和跨度;在空间处理中,主要完成屋面檩条体系布置、屋面横向水平支撑、刚性系杆、墙骨架体系布置、柱间支撑等布置;节点设计和构件截面选择主要考率当地的制造水平和施工技术状况。

2、施工图设计

本阶段进行以下三个方面的工作:一是结构内力分析;二是构件截面校核和节点承载力的验算;三是施工图绘制。

2.1内力分析是在正确建立结构模型,如实输入荷载基础之上。因此,各构件的内力、各个节点受力定义要准确。2.2构件截面校核以下内容:强度、变形、整体稳定、局部稳定。必要时对受力集中处要进行验算(与普钢验算内容一致)。在钢结构中,稳定往往是决定性因素,而稳定性与长细比有密切联系。节点承载力校核是依据初步设计确定的节点构造进行承载力的验算。

2.3施工图是构件制作、安装的技术资料和依据。一般包括图纸目录、结构设计说明、结构平面布置图、结构立面图、结构剖面图、节点详图等内容。在结构设计总说明中应注明结构设计使用年限、钢材牌号、连接材料的型号和对钢材所要求的力学性能、化学成分及其他附属保证。此外,还须注明焊缝形式、焊缝的质量等级、端面刨平顶紧的部位及其对施工的要求。

3、施工详图绘制

施工详图主要是为了加工制造,而对结构图按照构件进行“拆”图,施工图一般由钢结构制造企业来完成,也可由设计单位提供。施工详图的绘制最主要任务是确保构件尺寸准确,为放样提供依据,同时还应注意构件拼接位置的确定。

第三节 结构体系布置

1、结构平面布置

1.1纵向温度区段不大于300m;横向温度区段不大于150m。柱距6m~9m,经济柱距7.5m。1.2刚架的选型

刚架的选型考虑跨度、数量、刚架截面形状、所确定的屋面、墙面材料。多跨刚架对地基沉降比较敏感,中柱宜设置成等截面柱。

1.3 刚架材料和截面的初步确定:

主刚架一般采用Q235、Q345(居多)。

斜梁截面高度:(1/20~1/55)lo;柱截面高度:(1/10~1/20)lo

截面高宽比h/b=2~5,柱取大,梁端宜取小。h、b均以10mm为模数递增(减)。翼缘t不小于6mm,且以2mm模数递增(减);腹板不小于4mm;当腹板厚大于6mm,以2mm模数递增(减)。将初步选定的材料规格记录下来,便于查询。

2、刚架的空间处理

2.1屋面横向水平支撑体系布置

屋面横向水平支撑一般布置于厂房两端,当两端布置不开时,可退后一个柱距。屋面横向水平支撑间距不大于60m。为保证水平力的传递,必须在屋脊处、刚架柱顶端各布置一道刚性系杆。交叉水平支撑间也必须布置刚性系杆。在同一坡度侧,刚性系杆和交叉支撑须保证在同一平面上。

屋盖水平支撑一般由交叉拉杆(带拉紧装置的圆钢)或压杆(角钢)构成,交叉杆与竖杆夹角为30°~60°。当交叉杆为压杆时,交叉点一定保证交叉于中点。

刚性系杆采用钢管,也可采用双角钢。刚性系杆中心线与刚架斜梁中心线对齐。2.2柱间支撑体系布置 柱间支撑一般设置于建筑物中部。当建筑物较长时,可设置两道,分别布置与1/3处。柱间支撑的间距: 无吊车梁:30m~50m

有吊车梁:不超过60m(主要是吊车梁对纵向力的传递起到有力的作用故)。柱间支撑一般设置成交叉型支撑,其杆件可拉可压。当建筑高度h小于9m,设置一层柱间支撑;当建筑高度大于9m且有吊车梁时,设置两层柱间支撑,并以吊车梁为水平压杆(可不设置水平压杆),在端部可不设置下层柱间支撑,以减少吊车梁的温度应力;当建筑高度h大于9m且没有吊车梁时,需设置成双层柱间支撑,两层柱间支撑之间须设置水平压杆(此杆必须为压杆)。

当建筑物高度较低,跨度较小时,柱间支撑可采用带张紧装置的圆钢做成交叉形状。

当建筑物高大时,柱间支撑宜采用钢管。

2.3隅撑

隅撑分两种,一种布置在屋面,另一种布置在外墙面。前者作用是保证刚架斜梁下翼缘的稳定性;后者是保证边刚架柱内翼缘的稳定性。

隅撑与檩条(或墙梁)的夹角不得小于35°,通常可选用45°。隅撑选用角钢,参考角钢∠40×4~∠50×4。隅撑与檩条(或墙梁)的连接采用螺栓连接,螺栓每端可选用一个M12,通常隔跨布置。在PKPM中提供三种连接方式,第三中方式使用须谨慎,必须保证隅撑与刚架斜梁下翼缘(刚架柱内翼缘)紧密连接。

2.4屋面檩条体系布置

2.4.1、檩条的形式及截面

檩条分为型钢檩条和组合式檩条。——型钢檩条简介:

冷弯薄壁型钢:檩条和墙梁最为常用冷弯薄壁型钢(C型、Z型),但其厚度不得小于2mm(考虑腐蚀所确定下限),亦不能太厚,便于加工。

普通型钢(不常用):常选择槽钢;

轧制工字钢:用于重荷载、跨度大的情况;但一般仅作为次梁;

角钢:一般很少使用。——组合式檩条简介:

此类檩条不常用,主要有实腹式、空腹式、格构式(跨度大于10m),一般用于特殊情况。2.4.2.檩条布置

檩条水平间距为1m~1.5m,通常选择1.5m。在天窗、气楼处须依据实际情况调整。

屋脊处檩条:若无天窗、气楼,则每侧各离屋脊处200mm~300mm,间距尽可能小。

为了便于固定纵向天沟,通常在刚架斜梁端部布置一道檩条,但要保证其稳定性(设置撑杆、斜拉杆)。

檩条跨度为6m~9m,当间距大于10m时,可考虑采用格构式、双檩条或是高频焊接H型钢等。2.4.3.檩托板:檩托板的高度通常选择为檩条高度的3/4,檩托板板厚通常为6mm,板宽通常选择220mm。檩条间隙10mm~20mm。檩条通常高于刚架斜梁5mm~10mm。檩托板通常与刚架斜梁角焊,焊脚尺寸6mm。檩条与檩托板采用螺栓连接,每端选用两个M12的即可。2.4.4.拉条、斜拉条、撑杆的设置

拉条:檩跨小于4m,可不设置;檩跨4m~6m,可于跨中设置一道;檩跨6m~9m,于1/3跨处设置两道。拉条通常采用圆钢,直径不小于10mm。可参考选择Φ22mm。

斜拉条、撑杆:布置在屋脊两侧,及屋面纵向两端,主要是为了避免因屋面板下滑,导致檩条双向受弯。屋脊两侧的斜拉条要与刚架斜梁连接,使之有可靠的传力点。斜拉条截面同拉条,撑杆为拉杆外套钢管,钢管规格可参考Φ32mm×4.0mm。

拉条、斜拉条、撑杆设置在檩条高度上部1/3范围内,当考虑风吸力的影响,可布置在下部1/3高度范围内。拉条、斜拉条、撑杆不能松弛,必须要有一定的预紧力。

2.5墙骨架体系布置

在轻钢房屋中,墙体为轻质材料,故需要设置墙骨架体系承重。如果墙体为自承重墙(如砌体墙),则可不必设置墙骨架。2.5.1.墙骨架系统分类(按位置分类)

侧墙骨架(纵向外墙骨架)、山墙骨架(横向外墙骨架)、挂墙骨架(高低跨处)、内隔墙骨架。主要介绍前两种,后两种略。

2.5.2侧墙骨架(一般不设置墙架柱):

当柱距不超过9m时,不需设置墙架柱,仅布置墙梁和墙拉条。墙梁选用冷弯薄壁型钢C型或Z型,通过节点板采用螺栓与钢架柱连接,节点板构造同屋面檩托板。拉条、斜拉条撑杆设置同屋面。如果墙梁仅外侧挂墙面板,拉条布置在墙梁高度靠内侧1/3高度范围,作为平面外侧向支撑,减小墙梁的计算跨度。上部斜拉条要与刚架柱连接。

2.5.3山墙骨架:

当刚架跨度大于9m时,需要设置抗风柱。抗风柱的柱脚构造如下: 2M20螺栓(按铰接设计)

钢板尺寸:(l+20mm~50mm)×(b+20mm~50mm)×20mm;板厚≥16mm;

b≥200mm。

抗风柱柱顶构造:有两种方式:一是弹簧板连接(弹簧板厚

6mm~10mm);二是螺栓连(螺栓孔为竖向长圆孔;螺栓不得拧紧,便于上下滑动)。

这两中构造处理均将抗风柱柱顶与边刚架梁连接处理成铰接。墙梁、拉条、斜拉条、撑杆设置同侧墙骨架。2.5.4门窗、雨棚构造

参考《压型钢板、夹芯板屋面及墙体建筑构造》01J925-1

3、节点设计

第五章 轻钢结构设计涉及的标准、规范、规程、图集

红色为结构部分;绿色为建筑部分

《建筑结构可靠度设计统一标准》GB50068-2001 《建筑结构荷载规范》GB50009-2001

《建筑地基基础设计规范》GB/T50007-2002 《建筑抗震设计规范》GB50011-2001 《钢结构设计规范》GB50017-2003

《门式刚架轻型房屋钢结构技术规程》CECS 102:2002 《冷弯薄壁型钢结构技术规范》GB50018-2002 《实腹式钢吊车梁》03SG502-

1、03SG502-2 《轻型屋面钢天窗》01SG516

《轻型屋面梯形钢屋架》01SG515 《钢天窗架建筑构造》00J623-1

《铝合金、彩钢、不锈钢夹芯板大门》03J611-4

《压型钢板、夹芯板屋面及墙体建筑构造》01J925-1

第二篇:结构设计总结

设计总结,希望对大家有帮助

从我的工作总结中节选。

工程项目的各个环节是相互依存的。

从事工程项目中任何一个环节的工作都需要对其他环节有所了解。对于设计环节的人员而言,这是形成良好的设计习惯所必备的:

从各个不同的角度去审视自己的设计--甚至超出工程范畴之外,包括前期市场调研和产品定位,包括后期制造和调试,包括回访,包括成本控制,也包括设计本身。

以上这些应该形成一套针对设计人员自身的逐步完善的设计准则:

要把握各种基本情况--包括加工装配调试过程、工作流程以及紧急状态等;

要尽可能多的掌握突发情况--老式卷眼打捆机在急停时极其危险的“甩带”就是由于缺乏对紧急状态下的过程控制造成的。一个设计要经过安全、功能、人机和成本等不同角度的考证以尽量减少在后期的负面影响或加大正面影响。

比如,设计阶段考虑欠充分会在调试阶段造成难点或者至少是不方便,这些难点的解决成本要远高于在设计时避免它们,而如果难点得不到解决流入下一环节则会造成更大的影响。

具体的实例是,对于一个一般的设备调试人员需要人工开孔上百个用来配管布线,这还不包括其他的工作比如焊接等。这是一项强度大、效率低的工作,而大部分工作内容只要在设计时输入就可以在加工阶段完成,人工开孔只用作临时的修改。结果就是在设计阶段节省了几个小时的时间,在后续环节却要多支出多几倍的时间,而且提高了劳动强度。

设计意图传递的过程中,在图纸语言表达清楚的前提下增加辅助理解的元素。比如“关键尺寸再现”在国标中的缺失,这种“再现”对于理解图纸有很大的帮助。

第三篇:结构设计总结[模版]

十年结构设计经验的总结

1.关于箱、筏基础底板挑板的阳角问题:

(1).阳角面积在整个基础底面积中所占比例极小,干脆砍了。可砍成直角或斜角。

(2).如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋,谁见过独立基础加辐射筋的?当然加了也无坏处。

(3).如果甲方及老板不是太可恶的话,可将悬挑板的单向板的分布钢筋改为直径12的,别小看这一改,一个工程省个3、2万不成问题。

2.关于箱、筏基础底板的挑板问题:

1).从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较节约。

(2).出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。

(3).能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜。

(4).窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑。

(5).当地下水位很高,出基础挑板,有利于解决抗浮问题。

(6).从建筑角度讲,取消挑板,可方便柔性防水做法。当为多层建筑时,结构也可谦让一下建筑。

3.关于箍筋在梁配筋中的比例问题(约10~20%): 例如一8米跨梁,截面为400X600,配筋:上6根25,截断1/3,下5根25,箍筋:8@100/200(4),1000范围内加密。纵筋总量:

3.85*9*8=281kg,箍筋:0.395*3.5*50=69,箍筋/纵筋=1/4,如果双肢箍仅为1/8,箍筋相对纵筋来讲所占比例较小,故不必在箍筋上抠门。且不说要强剪弱弯。已经是构造配箍除外。

4.关于梁、板的计算跨度: 一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,在应用日广的宽扁梁中是不合适的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。

5.纵筋搭接长度为若干倍钢筋直径d,一般情况下,d取钢筋直径的较小值,这是有个前提,即大直径钢筋强度并未充分利用。否则应取钢筋直径的较大值。如框架结构顶层的柱子纵筋有时比下层大,d应取较大的钢筋直径,甚至纵筋应向下延伸一层。其实,两根钢筋放一起,用铁丝捆一下,能起多大用,还消弱了钢筋与混凝土的握裹力。所以,钢筋如

有可能尽量采用机械连接或焊接。

6.钢筋锚固长度为若干倍钢筋直径d,这是在钢筋强度被充分利用的前提下的要求,在钢筋强度未被充分利用时,如梁上小挑沿纵筋,剪力墙的水平筋端部等,锚固长度可折减。如剪力墙的水平筋端部仅要求有10d的直钩即可。

7.柱子造价在框架结构中是很小的,而在抗震时起的作用是决定性的。经实验,考虑空间作用时,柱子纵筋加大至计算值的2.5倍左右才可保证塑性铰不出现在柱子上。可不按计算配筋,大幅度增加纵筋,同时增大箍筋。

8.抗震缝应加大,经统计,按规范要求设的防震缝在地震时有40%发生了碰撞。故应增大抗震缝间距。

9.锚固?搭接?:例如,中柱节点处,框架梁下纵筋锚入柱内LAE,其搭接长度:2*LAE-柱宽,如钢筋直径25,LAE=40D,柱宽500,2*25*40-500=1500,既其搭接长度,已经达到了1500,远大于1.2*LAE=1200。而柱变断面,如上下柱断面相差50,上柱锚入下柱40D,此处按锚固还时搭接?

10.关于回弹再压缩: 基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分当做安全储备,这也是计算沉降大于实际沉降的原因之一。

11.柱下条基一般认为在刚度较大,柱子轴力和跨度相差不大时,可按倒楼盖计算。实际大部分都可以按倒楼盖计算。即采用修正倒楼盖。先按平均反力计算连续梁,然后将求得的支座反力与柱子轴力相平衡,将差值的正值加到柱两边的1/3梁上,负值加在梁跨中1/3,相对来讲,跨中1/3的压应力较小。可能要修正多次,直到支座反力与柱子轴力接近平衡。

12.主梁有次梁处加附加筋:一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,象板上洞口附加筋。附加筋一般要有,但不应绝对。规范说的清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。话又说回来,也不差几根箍筋。但有时画图想偷懒时可用此与老总狡辩。

13.一般情况下,悬挑梁宜做成等截面,尤其出挑长度较短时。与挑板不同,挑梁的自重

十年结构设计经验的总结

1.关于箱、筏基础底板挑板的阳角问题:

(1).阳角面积在整个基础底面积中所占比例极小,干脆砍了。可砍成直角或斜角。

(2).如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋,谁见过独立基础

加辐射筋的?当然加了也无坏处。

(3).如果甲方及老板不是太可恶的话,可将悬挑板的单向板的分布钢筋改为直径12的,别小看这一改,一个工程省个3、2万不成问题。

2.关于箱、筏基础底板的挑板问题:

1).从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布

置时,不会因边跨钢筋而加大整个底板的通长筋,较节约。

(2).出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。

(3).能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜。

(4).窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙

体连通时,可灵活考虑。

(5).当地下水位很高,出基础挑板,有利于解决抗浮问题。

(6).从建筑角度讲,取消挑板,可方便柔性防水做法。当为多层建筑时,结构也可谦让一

下建筑。

3.关于箍筋在梁配筋中的比例问题(约10~20%): 例如一8米跨梁,截面为400X600,配筋:上6根25,截断1/3,下5根25,箍筋:8@100/200(4),1000范围内加密。纵筋总量:

3.85*9*8=281kg,箍筋:0.395*3.5*50=69,箍筋/纵筋=1/4,如果双肢箍仅为1/8,箍筋相对纵筋来讲所占比例较小,故不必在箍筋上抠门。且不说要

强剪弱弯。已经是构造配箍除外。

4.关于梁、板的计算跨度: 一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,在应用日广的宽扁梁中是不合适的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。

5.纵筋搭接长度为若干倍钢筋直径d,一般情况下,d取钢筋直径的较小值,这是有个前提,即大直径钢筋强度并未充分利用。否则应取钢筋直径的较大值。如框架结构顶层的柱子纵筋有时比下层大,d应取较大的钢筋直径,甚至纵筋应向下延伸一层。其实,两根钢筋放一起,用铁丝捆一下,能起多大用,还消弱了钢筋与混凝土的握裹力。所以,钢筋如

有可能尽量采用机械连接或焊接。

6.钢筋锚固长度为若干倍钢筋直径d,这是在钢筋强度被充分利用的前提下的要求,在钢筋强度未被充分利用时,如梁上小挑沿纵筋,剪力墙的水平筋端部等,锚固长度可折减。

如剪力墙的水平筋端部仅要求有10d的直钩即可。

7.柱子造价在框架结构中是很小的,而在抗震时起的作用是决定性的。经实验,考虑空间作用时,柱子纵筋加大至计算值的2.5倍左右才可保证塑性铰不出现在柱子上。可不按计

算配筋,大幅度增加纵筋,同时增大箍筋。

8.抗震缝应加大,经统计,按规范要求设的防震缝在地震时有40%发生了碰撞。故应增大

抗震缝间距。

9.锚固?搭接?:例如,中柱节点处,框架梁下纵筋锚入柱内LAE,其搭接长度:2*LAE-柱宽,如钢筋直径25,LAE=40D,柱宽500,2*25*40-500=1500,既其搭接长度,已经达到了1500,远大于1.2*LAE=1200。而柱变断面,如上下柱断面相差50,上柱锚入下柱40D,此处按锚固还时搭接?

10.关于回弹再压缩: 基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分

当做安全储备,这也是计算沉降大于实际沉降的原因之一。

11.柱下条基一般认为在刚度较大,柱子轴力和跨度相差不大时,可按倒楼盖计算。实际大部分都可以按倒楼盖计算。即采用修正倒楼盖。先按平均反力计算连续梁,然后将求得的支座反力与柱子轴力相平衡,将差值的正值加到柱两边的1/3梁上,负值加在梁跨中1/3,相对来讲,跨中1/3的压应力较小。可能要修正多次,直到支座反力与柱子轴力接

近平衡。

12.主梁有次梁处加附加筋:一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,象板上洞口附加筋。附加筋一般要有,但不应绝对。规范说的清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。话又说回来,也不差几根箍筋。但有时画图想偷懒时可用此与老总狡辩。

13.一般情况下,悬挑梁宜做成等截面,尤其出挑长度较短时。与挑板不同,挑梁的自重

占总荷载的比例很小,作成变截面不能有效减轻自重。变截面挑梁的箍筋,每个都不一样,加大施工难度。变截面梁的挠度也大于等截面梁。当然,大挑梁外露者除外。外露的大挑

梁,适当变截面感官效果好些。

14.现浇板一般应做成双向板。其一,双向板的支承边多,抗震的稳定性好,垮了两边还有两边。单向板垮一边板就下来了。二,双向板经济。从计算上讲,例如四边简支支承的双向板,其单向跨中弯距系数约1/27,两边简支的单向板跨中弯距系数为1/8,二者比为2*1/27 / 1/8,约为60%。从构造上,双向板的板厚为1/40~50,单向板为1/3~40,双向

板薄,再着,即使是单向板,其非受力边也得放构造筋。

15.梁垫:为了减小支座反力偏心对砖墙体产生的附加弯距,可做成内缺口梁垫。

16.一般认为,板的上筋直径为8以上时,可防止施工时踩弯,而现场经验看,只有螺纹

12以上的才能保证。

17.现浇阳台栏板,从施工条件来讲,当布单排筋时,板厚应大于80,双排筋时,应大于120。因振捣棒最小为30,布单排筋时,板厚如为60,双向钢筋直径如为8+6,则钢筋

两边仅剩23,无法振捣。

18.当某一房间采用双向井字次梁时,板应考虑整体弯距。即,井字次梁分隔成的4个角上的小板块,负筋应考虑按房间开间进深尺寸截断,而不是仅仅按本小板格截断。即次

梁仅认为是大板的加劲肋。

19.当建筑大多数房间较小,而仅一两处房间较大时,如按大房间确定基础板厚会造成浪费,而按小房间确定则造成配筋困难,当承载力能满足要求时,可在大房间中部垫聚苯卸

载,按小房间确定基础板厚。

20.挑梁端部的挠度并不完全取决于本身的变形,其支座内垮的影响很可能超过挑梁本身的变形。

TOP

第四篇:结构设计技术总结

结构设计技术总结

一、拿到作业图不要盲目建模计算。先进行全面分析,与建筑设 计人员进行勾通,充分了解工程的各种情况(功能、选型等)。

二、建模计算前的前处理要做好。比方荷载的计算要准确,不能估计。要完全根据建筑做法或使用要求来输入。

三、在进行结构建模的时候,要了解每个参数的意义,不要盲目修改参数,修改时要有依据。

四、在计算中,要充分考虑在满足技术条件下的经济性。不能随意加大配筋量或加大构件的截面。这一点要作为我们的设计理念之一来重视。

五、梁、柱、板等电算结束后要进行大量的调整和修改,这都要有依据可循(可根据验算简图等资料)。具体有以下集中修改或注意事项:

a、梁:

1、梁的标高(是否确定梁底标高及梁上翻等问题)

2、梁的支座负筋不能太疏,要人为加密。

3、梁的跨数要核对。

4、尽量减少钢筋的种类和级差(≤2级)

5、有雨蓬等外挑构件处的梁要加强(可以将此处的箍筋加密、设置抗扭钢筋等措施)

6、钢筋在梁中的放置必须满足净距要求,特别是梁上部钢筋的净距(≥1.5d或30mm)

7、碰到电算结果的井字梁(有主次关系)处,要分清主次关系,在主要梁支座处标出支座筋

8、搁在边梁上的连梁等,在靠边梁处的支座筋不宜过大,宜减小,从而减少对边梁的扭矩

9、有主次梁关系,从梁截面上也有区别,次梁适当放小。

b、柱:

1、满足轴压比要求(≤0.9)

2、大跨度的厂房等,柱子截面宜选用长方柱。

3、构造柱的设置(细查规范《建筑抗震设计规范》P72)

c、板:

1、负筋不宜选用过细的钢筋,可以用较大直径的钢筋代替,可避免施工时被踩下;较大直径 钢筋不宜过疏,否则受力不力或容易开裂。

2、在结构平面图中须注明标高及板剖面图。

3、屋面板的钢筋须全部拉通。

4、板配筋要表达清楚,不能让施工人员猜测。

5、在结构平面图中,注明雨蓬、阳台、檐口等位置及尺寸,并画出大样。d、基础:

1、不能将深基础与浅基础混用。

2、基础荷载计算时,千万别漏算荷载(包括底层墙体荷载重量等)

3、基础(包括地梁、承台等)的标高要满足上部管线的通过,一般其上预留300mm。

第五篇:结构设计原理 总结

结构:一般把构造物的承重骨架组成部分统称为结构

常用的结构一般可分为:混凝土结构 钢结构 圬工结构 木结构

钢筋混凝土结构:是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构 混凝土:是用水泥,砂子,石子三种材料经水拌合凝固硬化后制成的人工材料 钢筋混凝土的产生:将钢筋和混凝土结合在一起共同工作,混凝土承受压力,钢筋承受拉力,将可以充分发挥各自的优势。钢筋分类:按加工方式不同分为 热轧钢筋、冷拉钢筋、热处理钢筋、冷拔钢丝,冷加工方法有 冷轧、冷拉、冷拔,预应力钢筋分为 高强钢筋、钢绞线、高高强钢丝及钢丝束 徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。

徐舒:钢筋在一定拉应力值下,将其长度固定不变,则钢筋中的应力将随时间延长而降低 混凝土立方体抗压强度:以变长是150mm立方体标准试件中在20摄氏度正负2度,强度和温度95%以上潮湿空气中养护28d,依照标准制作方法和实验方法测得的抗压强度值。混凝土轴心抗压强度:按照立方体试件相同条件下制作和试验方法所得的棱柱体试件的抗压强度值 混凝土抗拉强度:用两端预埋钢筋的混凝土棱柱体做试件,试验时用试验机夹具夹紧两外伸的钢筋施加拉力,破坏在没有钢筋中部截面被拉断,其平均应力。混凝土劈裂抗拉强度:由立方体或圆柱体的劈裂试验测定的抗拉强度

设计:在预定的作用及材料性能条件下,确定构建按功能要求所需要的截面尺寸、配筋和构造要求目标可靠指标:用作公路桥梁结构设计依据的可靠指标

可靠性:结构在规定的时间(设计基准期)内,在规定的条件(结构设计时所确定的正常设计、正常施工和正常使用条件)下,完成预定功能的能力,安全性、适用性、耐久性称为结构的可靠性可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。设计基准期:进行结构可靠性分析时,考虑持久设计状况下各项变量与时间关系所采用的基准时间参数极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该结构的极限状态

结构抗力:结构构件承受内力和变形的能力。它是结构材料性能扣几何参数等的函数 作用:施加在结构上的集中力或分布力,或引起结构外加变形或约束变形的原因,它分为直接作用和间接作用作用标准值:结构或结构构件设计时,采用的各种作用的基本代表值 可变作用准永久值:在设计基准期间,可变作用超越的总时间约为设计基准期一半的作用值 可变作用频遇值:在设计基准期间,可变作用超越的总时间为规定的较小比率或超越次数为规定次数的作用值梁内钢筋组成:纵向受拉钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立钢筋和水平纵向钢筋绑扎钢筋骨架:将纵向钢筋与横向钢筋通过绑扎而成的空间钢筋骨架一般用于整体现浇

焊接钢筋骨架:先将纵向受拉钢筋(主钢筋)弯起钢筋或斜筋和架立钢筋焊接成平面骨架,然后用箍筋将数片焊接的平面骨架组成空间骨架。

塑性破坏(延性破坏):结构或构件在破坏前有明显变形或其他征兆 脆性破坏:结构或构件在破坏前无明显变形或其他征兆

配筋率:所有配置的钢筋截面面积与规定的混凝土截面面积的比值

腹筋:把箍筋和弯起(斜)钢筋统称为梁的腹筋

剪跨比:剪跨比是一个无量纲常数,用来表示,此处M和V分别为剪弯区段中某个竖直截面的弯矩和剪力,h0为截面有效高度。广义剪跨比:m=M/Vh0 狭义剪跨比:m=a/h0 配箍率:=Asv/bsv,Asv表示斜截面内配置在延梁长方向上一个箍筋间距sv范围内的箍筋各肢总截面积b表示截面宽度sv表示延梁长方向的箍筋的间距 剪压破坏:随着荷载的增大梁的剪弯区段内陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝,它出现后梁承受的荷载还能继续增加,而斜裂缝伸展至荷载垫板下直到斜裂缝顶端的混凝土在正应力剪应力及荷载引起的竖向局部正应力的共同作用下被压酥而破坏

斜截面投影长度:自纵向构件与斜裂缝低端而橡胶至斜裂缝顶端距离水平投影长度 充分利用点:在结构中钢筋的长度被充分利用的点

弯矩包络图:沿梁长度各截面上弯矩组合设计值Md的分布图,其纵坐标表示该截面上作用的最大设计弯矩

抵抗弯矩图:以各截面实际的纵向受拉钢筋所能承受的弯矩为纵坐标,以相应的截面位置为横坐标,所作出的弯矩图形。即表示各正截面所具有的抗弯承载能力。

钢筋混凝土构件抗扭性能的两个重要衡量指标:1构件的开裂扭矩2构件的破坏扭矩 轴心受压构件:当构件受到位于截面形心的轴向压力作用时的构件

纵向稳定系数 :考虑构件长细比增大的附加效应使构件承载力降低的计算系数。

长细比:杆件的计算长度与杆件截面的回转半径之比

偏心受压构件:当轴向压力N的作用线偏离受压构件的轴线时。

压弯构件:截面上同时承受轴心压力和弯矩的构件。

界限破坏:受拉钢筋达到屈服应变时,受压区混凝土也刚好达到极限压应变而压碎。

对称配筋:截面的两侧所用钢筋的等级和数量均相同的配筋。

受拉构件:当纵向拉力作用线与构件截面形心轴线重合时成为受拉构件

换算截面:将钢筋和混土两种材料组成的实际截面换算成为一种拉压性能相同的假想材料组成的匀质截面裂缝宽度的影响因素:1混凝土强度等级2钢筋保护层厚度3受拉钢筋应力4钢筋直径5受拉钢筋配筋率6钢筋外形7直接作用性质8构件受力性质

预拱度:施工时预设的反向挠度挠度:结构构件的轴线或中面由于弯曲引起垂直于轴线或中面方向的线位移抗弯刚度:构件截面抵抗弯曲变形的能力

混凝土结构耐久性:混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持安全、使用功能和外观要求的能力。影响混凝土结构耐久性的主要因素:1混凝土冻融破坏2混凝土的碱骨料反应3侵蚀性介质的腐蚀4机械磨损5混凝土的碳化6钢筋锈蚀

预应力混凝土结构:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的内力抵消到一个合适程度的混凝土。

预应力度:由预加应力大小确定的消压弯矩M0与外荷载产生的弯矩Ms的比值。

预应力损失:混凝土的收缩和徐变,使预应力混凝土构件缩短,因而将引起预应力钢筋中的预拉应力下降,成为预应力损失消压弯矩:也就是构件抗裂边缘预压应力抵消到0时的弯矩 先张法:先张法是先张拉钢筋,后浇筑构件混凝土的方法。先张法所用的预应力钢筋,一般可用高强钢丝、直径较小的钢铰线和小直径的冷拉钢筋

后张法:先浇筑混凝土后张拉钢筋的方法。张拉钢筋的同时,构件混凝土受到预压 A类部分预应力混凝土:允许出现拉应力且加以限制不允许开裂,拉而有限

B类部分预应力混凝土:允许出现裂缝,裂缝宽度不超过规定值,裂而有限 部分预应力混凝土:介于全预应力混凝土与普通钢筋混凝土之间的结构,根据要求施加适量的预应力,配置普通钢筋以保证承载力要求

无粘结预应力混凝土梁:配置主筋为无粘结预应力钢筋的后张法预应力混凝土梁

无粘结预应力钢筋:由单根或多跟刚强钢丝、钢绞线或钢筋,沿其全长涂有专用仿佛油脂涂料层和有外包层,使之与周围混凝土不建立粘结力,张拉时可沿纵向发生相对滑动

部分预应力混凝土受弯构件的设计内容:以确定所需的预应力钢筋、非预应力钢筋的面积及其布置为主要计算目标的截面设计,对初步设计的梁进行承载能力极限状态计算(截面复核)和正常使用极限状态计算(截面验算)

钢筋和混凝土两种有效结合原因:1混凝土和钢筋之间有着良好的粘结力,使两者能可靠地结合成一个整体,在和在作用下能够很好的共同变形,完成其结构功能2他们的温度线膨胀系数比较接近,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结3包围在钢筋外面的混凝土起着保护钢筋避免锈蚀的作用,保证了钢筋与混凝土的共同作用钢筋混凝土的优缺点:优点1在钢筋混凝土结构中,混凝土强度是随时间而不断增长的,同时钢筋被混凝土所包裹而不致锈蚀,所以钢筋混凝土结构的耐久性较好,其刚度较大,在使用荷载用下的变形较小2可以整体现浇也可以预制装配,并且可以根据需要浇制成各种构件形状和截面尺寸3钢筋混凝土结构所用材料中砂石所占的比例较大,砂石易就地取材,可以降低建筑成本。缺点:1自重大2抗裂性能差,带裂缝工作3施工受气候条件影响,建造期长4费较多的模具和木料5加固和改建较困难,隔热和隔声性能较差三个状况:1持久状况:桥涵建成后承受自重、车辆荷载等作用持续时间很长的状况。该状况是指桥梁的使用阶段。进行承载能力极限状态和正常使用极限状态的设计2短暂状况:桥涵施工过程中承受临时性(或荷载)的状况,该状况对应的是桥梁的施工阶段,一般只进行承载能力极限状态设计3偶然状况:在桥涵使用过程中偶然出现的状况。(可能遇到地震等作用的状况。只进行承载能力极限状态设计作用分类:1永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用(结构重力 土的重力 土侧压力 水的浮力 基础变位作用)2可变作用:在结构使用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用(汽车荷载 汽车冲击力 汽车离心力 汽车引起的土侧压力 人群荷载 汽车制动力 风力 流水压力 冰压力 温度作用 支座摩阻力)3偶然作用:在结构使用期间出现的概率小,一旦出现其值很大且持续时间很短的作用(地震作用 船舶或漂流物的撞击作用 汽车撞击作用)受弯正截面破坏形态:1适筋梁破坏(塑性破坏):a破坏特征:受拉区钢筋先达到屈服强度,后压区凝土被压碎而破坏b破坏性质:梁破坏前产生较大的挠度和塑性变形,有明显破坏预兆,属塑性破坏。c承载能力:取决于配筋率、钢筋的强度等级和混凝土的强度等级。2超筋梁破坏(脆性破坏)a破坏特征:破坏时压区混凝土被压碎,而拉区钢筋应力未达到屈服强度b破坏性质:裂缝比较密宽度较细,破坏前没有明显征兆c承载能力:取决于混凝土的抗压强度3少筋梁破坏(脆性):a破坏特征:拉区混凝土一开裂.受拉钢筋到屈服强度梁很快破坏b破坏性质:梁破坏前出现一条集中裂缝,宽度较大但很突然,属脆性破坏。c承载能力:取决于混凝土的抗拉强度单筋矩形截面四个基本假定:1平截面假定2受压区混凝土应力图形采用等效矩形,其压力强度取fcd 3不考虑截面受拉混凝土的抗拉强度4.受拉区钢筋应力取fsd斜截面破坏形态:1斜拉破坏(脆性破坏):a产生条件:一般发生在剪跨比较大(m >3)的无腹筋梁b破坏特征:当斜裂缝一出现,很快形成一条主要斜裂缝(临界斜裂缝),并迅速延伸至荷载作用点,使梁斜向被拉断成两部分。破坏面较整齐,无压碎痕迹,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破坏即为斜拉破坏。c抗剪能力:斜拉破坏主要是由于主拉应力超过混凝土的抗拉强度,因此梁的受剪承载力很低,破坏荷载等于或略高于主要斜缝出现的荷载。2 剪压破坏a产生条件:一般发生在剪跨比适中即1≤m≤3的无腹筋梁b破坏特征:梁在剪弯区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝延伸至荷载垫板下,直到斜裂缝顶端的混凝土在正应力和剪应力共同作用下被压碎而破坏,这种破坏称为剪压破坏。c抗剪能力:主要与混凝土强度有关,其受剪承载力比斜拉破坏高。3斜压破坏:a当剪跨比较小(m<1)b破坏特征:在加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝.梁腹被分割成若干个倾斜的小柱体。随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂缝,故称为斜压破坏。c抗剪能力:斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗压强度,受剪承载力比剪压破坏高。

矩形截面纯扭构件的破坏特征:1少筋破坏—一开裂,钢筋马上屈服,结构立即破坏2适筋破坏—纵筋、箍筋先屈服,混凝土受压面压碎3超筋破坏—纵筋、箍筋未屈服,混凝土受压面先压碎4部分超筋破坏—纵筋一部分钢筋先屈服,混凝土受压面被压碎变角度空间桁架模型基本假定:1混凝土只承受压力具有螺旋形裂缝2纵筋和箍筋只承受拉力3忽略核心混凝土和钢筋销栓作用斜弯曲破坏理论基本假定:1通过扭曲裂面的纵向钢筋、箍筋在构件破坏时均已达到其屈服强度2受压区高度近似地取为两倍的保护层厚度,假定受压区的合力近似地作用于受压区的形心3混凝土的抗扭能力忽略不计,扭矩全部由抗扭纵筋和箍筋承担4抗扭纵筋沿构件核心周边对称、均匀布置,抗扭箍筋沿构件轴线方向等距离布置,且均锚固可靠。弯剪扭构件的破坏类型 1弯型破坏 :弯矩作用比扭矩显著,构件破坏时体现为先是与螺旋形裂缝相交的纵筋和箍筋受拉达到屈服强度,最终截面上边缘的混凝土受压破坏 2扭型破坏:扭矩作用显著,顶部纵筋先于构件底部纵筋达到受拉屈服强度,破坏面始于构件顶面发展到两个侧面 3剪扭型破坏:剪力和扭矩都较大 ,破坏时与螺旋形裂缝相交的钢筋受拉并达到屈服强度,受压区靠近另一侧面 受拉破坏—大偏心受压破坏(塑性破坏)产生条件:相对偏心距较大,且受拉钢筋配置得不太多时。破坏特征:部分受拉、部分受压,受拉钢筋应力先达到屈服强度,随后混凝土被压碎,受压钢筋达屈服强度。构件的承载力取决于受拉钢筋的强度和数量受压破坏—小偏心受压破坏(脆性破坏)产生条件:1偏心距很小2偏心距较小,或偏心距较大而受拉钢筋较多3偏心距很小,但离纵向压力较远一侧钢筋数量少,而靠近纵向力N一侧钢筋较多时。破坏特征:一般是靠近纵向力一侧的混凝土首先达到极限压应变而压碎,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋不论受拉还是受压,一般达不到屈服强度。构件的承载力取决于受压区混凝土强度和受压钢筋强度受弯构件产生裂缝的原因:1由作用效应引起的裂缝,(弯矩剪力扭矩以及拉力等)主要通过设计计算进行验算和构造措施加以控制2由外加变形或约束变形引起的裂缝,如混凝土收缩、温度变化、基础不均匀沉降等外加变形或约束变形引起开裂,主要通过采用构造措施和施工工艺加以控制3 筋锈蚀裂缝:由于保护层混凝土碳化,冬季施工时掺氯盐过多导致钢筋锈蚀所至。计算裂缝宽度的三种理论:1粘结滑移理论:裂缝控制主要取决于钢筋和混凝土之间的粘结性能2无滑移理论:表面裂缝宽度是由钢筋至构件表面的应变梯度控制的,即裂缝宽度随着离钢筋距离的增大而增大,钢筋的混凝土保护层厚度是影响裂缝宽度的主要因素3综合理论:考虑了混凝土保护层厚度对裂缝宽度的影响,也考虑了钢筋和砼之间可能出现的滑移。受弯构件变形(挠度)演算的原因:挠度过大,损坏使用功能:如简支梁跨中挠度过大,将使梁端部转角大,引起行车对该处产生冲击,破坏伸缩缝和桥面;连续梁的挠度过大,将使桥面不平顺,行车时引起颠簸和冲击等问题。预应力混凝土结构优缺点:优点1提高了构件的抗裂度和刚度2节约材料,降低造价3结构质量安全可靠4增强结构耐久性5能促进桥梁新体系的发展 缺点1工艺较复杂,对质量要求高2需要有一定的专门设备3预应力反拱不易控制4设计要求高预应力混凝土结构的三种概念:1预加应力的目的是将混凝变变脆性为弹性材料2施加预应力的目的是使高强度钢筋和混凝土能够共同工作3预加应力的目的是实现荷载平衡钢筋预应力损失的估算:1预应力筋与管道壁间摩擦引起的应力损失2锚具变形、钢筋回缩和接缝压缩引起的应力损失3钢筋与台座间的温差引起的应力损失4混凝土弹性压缩引起的应力损失5钢筋松弛引起的应力损失6混凝土收缩和徐变引起的应力损失预拱度的设置:预应力混凝土受弯构件由预加应力产生的长期反拱值大于按荷载短期效应组合计算的长期挠度时,可不设预拱度;当预加应力的长期反拱小于按荷载短期组合计算的长期挠度时应设预拱度,预拱度值按该项荷载的挠度值与预加应力长期反拱值之差采用,即设置预拱度时,按最大的预拱值沿顺桥向做成平顺的曲线部分预应力钢筋的特点:1充分发挥预应力钢筋的作用,利用普通钢筋的作用,节省预应力钢筋与锚具2改善结构性能,允许在使用期间出现裂缝,扩大了应用范围;3设计人员可以根据结构使用要求来选择预应力度的高低 结构:一般把构造物的承重骨架组成部分统称为结构 常用的结构一般可分为:混凝土结构 钢结构 圬工结构 木结构

钢筋混凝土结构:是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构 混凝土:是用水泥,砂子,石子三种材料经水拌合凝固硬化后制成的人工材料 钢筋混凝土的产生:将钢筋和混凝土结合在一起共同工作,混凝土承受压力,钢筋承受拉力,将可以充分发挥各自的优势。钢筋分类:按加工方式不同分为 热轧钢筋、冷拉钢筋、热处理钢筋、冷拔钢丝,冷加工方法有 冷轧、冷拉、冷拔,预应力钢筋分为 高强钢筋、钢绞线、高高强钢丝及钢丝束 徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。

徐舒:钢筋在一定拉应力值下,将其长度固定不变,则钢筋中的应力将随时间延长而降低 混凝土立方体抗压强度:以变长是150mm立方体标准试件中在20摄氏度正负2度,强度和温度95%以上潮湿空气中养护28d,依照标准制作方法和实验方法测得的抗压强度值。混凝土轴心抗压强度:按照立方体试件相同条件下制作和试验方法所得的棱柱体试件的抗压强度值 混凝土抗拉强度:用两端预埋钢筋的混凝土棱柱体做试件,试验时用试验机夹具夹紧两外伸的钢筋施加拉力,破坏在没有钢筋中部截面被拉断,其平均应力。

混凝土劈裂抗拉强度:由立方体或圆柱体的劈裂试验测定的抗拉强度

设计:在预定的作用及材料性能条件下,确定构建按功能要求所需要的截面尺寸、配筋和构造要求目标可靠指标:用作公路桥梁结构设计依据的可靠指标

可靠性:结构在规定的时间(设计基准期)内,在规定的条件(结构设计时所确定的正常设计、正常施工和正常使用条件)下,完成预定功能的能力,安全性、适用性、耐久性称为结构的可靠性可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。设计基准期:进行结构可靠性分析时,考虑持久设计状况下各项变量与时间关系所采用的基准时间参数极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该结构的极限状态

结构抗力:结构构件承受内力和变形的能力。它是结构材料性能扣几何参数等的函数

作用:施加在结构上的集中力或分布力,或引起结构外加变形或约束变形的原因,它分为直接作用和间接作用作用标准值:结构或结构构件设计时,采用的各种作用的基本代表值 可变作用准永久值:在设计基准期间,可变作用超越的总时间约为设计基准期一半的作用值 可变作用频遇值:在设计基准期间,可变作用超越的总时间为规定的较小比率或超越次数为规定次数的作用值梁内钢筋组成:纵向受拉钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立钢筋和水平纵向钢筋绑扎钢筋骨架:将纵向钢筋与横向钢筋通过绑扎而成的空间钢筋骨架一般用于整体现浇

焊接钢筋骨架:先将纵向受拉钢筋(主钢筋)弯起钢筋或斜筋和架立钢筋焊接成平面骨架,然后用箍筋将数片焊接的平面骨架组成空间骨架。塑性破坏(延性破坏):结构或构件在破坏前有明显变形或其他征兆 脆性破坏:结构或构件在破坏前无明显变形或其他征兆

配筋率:所有配置的钢筋截面面积与规定的混凝土截面面积的比值 腹筋:把箍筋和弯起(斜)钢筋统称为梁的腹筋

剪跨比:剪跨比是一个无量纲常数,用来表示,此处M和V分别为剪弯区段中某个竖直截面的弯矩和剪力,h0为截面有效高度。广义剪跨比:m=M/Vh0 狭义剪跨比:m=a/h0 配箍率:=Asv/bsv,Asv表示斜截面内配置在延梁长方向上一个箍筋间距sv范围内的箍筋各肢总截面积b表示截面宽度sv表示延梁长方向的箍筋的间距

剪压破坏:随着荷载的增大梁的剪弯区段内陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝,它出现后梁承受的荷载还能继续增加,而斜裂缝伸展至荷载垫板下直到斜裂缝顶端的混凝土在正应力剪应力及荷载引起的竖向局部正应力的共同作用下被压酥而破坏 斜截面投影长度:自纵向构件与斜裂缝低端而橡胶至斜裂缝顶端距离水平投影长度 充分利用点:在结构中钢筋的长度被充分利用的点

弯矩包络图:沿梁长度各截面上弯矩组合设计值Md的分布图,其纵坐标表示该截面上作用的最大设计弯矩

抵抗弯矩图:以各截面实际的纵向受拉钢筋所能承受的弯矩为纵坐标,以相应的截面位置为横坐标,所作出的弯矩图形。即表示各正截面所具有的抗弯承载能力。

钢筋混凝土构件抗扭性能的两个重要衡量指标:1构件的开裂扭矩2构件的破坏扭矩 轴心受压构件:当构件受到位于截面形心的轴向压力作用时的构件

纵向稳定系数 :考虑构件长细比增大的附加效应使构件承载力降低的计算系数。

长细比:杆件的计算长度与杆件截面的回转半径之比

偏心受压构件:当轴向压力N的作用线偏离受压构件的轴线时。压弯构件:截面上同时承受轴心压力和弯矩的构件。

界限破坏:受拉钢筋达到屈服应变时,受压区混凝土也刚好达到极限压应变而压碎。

对称配筋:截面的两侧所用钢筋的等级和数量均相同的配筋。

受拉构件:当纵向拉力作用线与构件截面形心轴线重合时成为受拉构件 换算截面:将钢筋和混土两种材料组成的实际截面换算成为一种拉压性能相同的假想材料组成的匀质截面裂缝宽度的影响因素:1混凝土强度等级2钢筋保护层厚度3受拉钢筋应力4钢筋直径5受拉钢筋配筋率6钢筋外形7直接作用性质8构件受力性质 预拱度:施工时预设的反向挠度挠度:结构构件的轴线或中面由于弯曲引起垂直于轴线或中面方向的线位移抗弯刚度:构件截面抵抗弯曲变形的能力

混凝土结构耐久性:混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持安全、使用功能和外观要求的能力。影响混凝土结构耐久性的主要因素:1混凝土冻融破坏2混凝土的碱骨料反应3侵蚀性介质的腐蚀4机械磨损5混凝土的碳化6钢筋锈蚀 预应力混凝土结构:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的内力抵消到一个合适程度的混凝土。

预应力度:由预加应力大小确定的消压弯矩M0与外荷载产生的弯矩Ms的比值。预应力损失:混凝土的收缩和徐变,使预应力混凝土构件缩短,因而将引起预应力钢筋中的预拉应力下降,成为预应力损失消压弯矩:也就是构件抗裂边缘预压应力抵消到0时的弯矩 先张法:先张法是先张拉钢筋,后浇筑构件混凝土的方法。先张法所用的预应力钢筋,一般可用高强钢丝、直径较小的钢铰线和小直径的冷拉钢筋

后张法:先浇筑混凝土后张拉钢筋的方法。张拉钢筋的同时,构件混凝土受到预压 A类部分预应力混凝土:允许出现拉应力且加以限制不允许开裂,拉而有限

B类部分预应力混凝土:允许出现裂缝,裂缝宽度不超过规定值,裂而有限 部分预应力混凝土:介于全预应力混凝土与普通钢筋混凝土之间的结构,根据要求施加适量的预应力,配置普通钢筋以保证承载力要求

无粘结预应力混凝土梁:配置主筋为无粘结预应力钢筋的后张法预应力混凝土梁

无粘结预应力钢筋:由单根或多跟刚强钢丝、钢绞线或钢筋,沿其全长涂有专用仿佛油脂涂料层和有外包层,使之与周围混凝土不建立粘结力,张拉时可沿纵向发生相对滑动 部分预应力混凝土受弯构件的设计内容:以确定所需的预应力钢筋、非预应力钢筋的面积及其布置为主要计算目标的截面设计,对初步设计的梁进行承载能力极限状态计算(截面复核)和正常使用极限状态计算(截面验算)

钢筋和混凝土两种有效结合原因:1混凝土和钢筋之间有着良好的粘结力,使两者能可靠地结合成一个整体,在和在作用下能够很好的共同变形,完成其结构功能2他们的温度线膨胀系数比较接近,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结3包围在钢筋外面的混凝土起着保护钢筋避免锈蚀的作用,保证了钢筋与混凝土的共同作用钢筋混凝土的优缺点:优点1在钢筋混凝土结构中,混凝土强度是随时间而不断增长的,同时钢筋被混凝土所包裹而不致锈蚀,所以钢筋混凝土结构的耐久性较好,其刚度较大,在使用荷载用下的变形较小2可以整体现浇也可以预制装配,并且可以根据需要浇制成各种构件形状和截面尺寸3钢筋混凝土结构所用材料中砂石所占的比例较大,砂石易就地取材,可以降低建筑成本。缺点:1自重大2抗裂性能差,带裂缝工作3施工受气候条件影响,建造期长4费较多的模具和木料5加固和改建较困难,隔热和隔声性能较差三个状况:1持久状况:桥涵建成后承受自重、车辆荷载等作用持续时间很长的状况。该状况是指桥梁的使用阶段。进行承载能力极限状态和正常使用极限状态的设计2短暂状况:桥涵施工过程中承受临时性(或荷载)的状况,该状况对应的是桥梁的施工阶段,一般只进行承载能力极限状态设计3偶然状况:在桥涵使用过程中偶然出现的状况。(可能遇到地震等作用的状况。只进行承载能力极限状态设计作用分类:1永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用(结构重力 土的重力 土侧压力 水的浮力 基础变位作用)2可变作用:在结构使用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用(汽车荷载 汽车冲击力 汽车离心力 汽车引起的土侧压力 人群荷载 汽车制动力 风力 流水压力 冰压力 温度作用 支座摩阻力)3偶然作用:在结构使用期间出现的概率小,一旦出现其值很大且持续时间很短的作用(地震作用 船舶或漂流物的撞击作用 汽车撞击作用)受弯正截面破坏形态:1适筋梁破坏(塑性破坏):a破坏特征:受拉区钢筋先达到屈服强度,后压区凝土被压碎而破坏b破坏性质:梁破坏前产生较大的挠度和塑性变形,有明显破坏预兆,属塑性破坏。c承载能力:取决于配筋率、钢筋的强度等级和混凝土的强度等级。2超筋梁破坏(脆性破坏)a破坏特征:破坏时压区混凝土被压碎,而拉区钢筋应力未达到屈服强度b破坏性质:裂缝比较密宽度较细,破坏前没有明显征兆c承载能力:取决于混凝土的抗压强度3少筋梁破坏(脆性):a破坏特征:拉区混凝土一开裂.受拉钢筋到屈服强度梁很快破坏b破坏性质:梁破坏前出现一条集中裂缝,宽度较大但很突然,属脆性破坏。c承载能力:取决于混凝土的抗拉强度单筋矩形截面四个基本假定:1平截面假定2受压区混凝土应力图形采用等效矩形,其压力强度取fcd 3不考虑截面受拉混凝土的抗拉强度4.受拉区钢筋应力取fsd斜截面破坏形态:1斜拉破坏(脆性破坏):a产生条件:一般发生在剪跨比较大(m >3)的无腹筋梁b破坏特征:当斜裂缝一出现,很快形成一条主要斜裂缝(临界斜裂缝),并迅速延伸至荷载作用点,使梁斜向被拉断成两部分。破坏面较整齐,无压碎痕迹,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破坏即为斜拉破坏。c抗剪能力:斜拉破坏主要是由于主拉应力超过混凝土的抗拉强度,因此梁的受剪承载力很低,破坏荷载等于或略高于主要斜缝出现的荷载。2 剪压破坏a产生条件:一般发生在剪跨比适中即1≤m≤3的无腹筋梁b破坏特征:梁在剪弯区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝延伸至荷载垫板下,直到斜裂缝顶端的混凝土在正应力和剪应力共同作用下被压碎而破坏,这种破坏称为剪压破坏。c抗剪能力:主要与混凝土强度有关,其受剪承载力比斜拉破坏高。3斜压破坏:a当剪跨比较小(m<1)b破坏特征:在加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝.梁腹被分割成若干个倾斜的小柱体。随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂缝,故称为斜压破坏。c抗剪能力:斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗压强度,受剪承载力比剪压破坏高。

矩形截面纯扭构件的破坏特征:1少筋破坏—一开裂,钢筋马上屈服,结构立即破坏2适筋破坏—纵筋、箍筋先屈服,混凝土受压面压碎3超筋破坏—纵筋、箍筋未屈服,混凝土受压面先压碎4部分超筋破坏—纵筋一部分钢筋先屈服,混凝土受压面被压碎变角度空间桁架模型基本假定:1混凝土只承受压力具有螺旋形裂缝2纵筋和箍筋只承受拉力3忽略核心混凝土和钢筋销栓作用斜弯曲破坏理论基本假定:1通过扭曲裂面的纵向钢筋、箍筋在构件破坏时均已达到其屈服强度2受压区高度近似地取为两倍的保护层厚度,假定受压区的合力近似地作用于受压区的形心3混凝土的抗扭能力忽略不计,扭矩全部由抗扭纵筋和箍筋承担4抗扭纵筋沿构件核心周边对称、均匀布置,抗扭箍筋沿构件轴线方向等距离布置,且均锚固可靠。弯剪扭构件的破坏类型 1弯型破坏 :弯矩作用比扭矩显著,构件破坏时体现为先是与螺旋形裂缝相交的纵筋和箍筋受拉达到屈服强度,最终截面上边缘的混凝土受压破坏 2扭型破坏:扭矩作用显著,顶部纵筋先于构件底部纵筋达到受拉屈服强度,破坏面始于构件顶面发展到两个侧面 3剪扭型破坏:剪力和扭矩都较大 ,破坏时与螺旋形裂缝相交的钢筋受拉并达到屈服强度,受压区靠近另一侧面 受拉破坏—大偏心受压破坏(塑性破坏)产生条件:相对偏心距较大,且受拉钢筋配置得不太多时。破坏特征:部分受拉、部分受压,受拉钢筋应力先达到屈服强度,随后混凝土被压碎,受压钢筋达屈服强度。构件的承载力取决于受拉钢筋的强度和数量受压破坏—小偏心受压破坏(脆性破坏)产生条件:1偏心距很小2偏心距较小,或偏心距较大而受拉钢筋较多3偏心距很小,但离纵向压力较远一侧钢筋数量少,而靠近纵向力N一侧钢筋较多时。破坏特征:一般是靠近纵向力一侧的混凝土首先达到极限压应变而压碎,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋不论受拉还是受压,一般达不到屈服强度。构件的承载力取决于受压区混凝土强度和受压钢筋强度受弯构件产生裂缝的原因:1由作用效应引起的裂缝,(弯矩剪力扭矩以及拉力等)主要通过设计计算进行验算和构造措施加以控制2由外加变形或约束变形引起的裂缝,如混凝土收缩、温度变化、基础不均匀沉降等外加变形或约束变形引起开裂,主要通过采用构造措施和施工工艺加以控制3 筋锈蚀裂缝:由于保护层混凝土碳化,冬季施工时掺氯盐过多导致钢筋锈蚀所至。计算裂缝宽度的三种理论:1粘结滑移理论:裂缝控制主要取决于钢筋和混凝土之间的粘结性能2无滑移理论:表面裂缝宽度是由钢筋至构件表面的应变梯度控制的,即裂缝宽度随着离钢筋距离的增大而增大,钢筋的混凝土保护层厚度是影响裂缝宽度的主要因素3综合理论:考虑了混凝土保护层厚度对裂缝宽度的影响,也考虑了钢筋和砼之间可能出现的滑移。受弯构件变形(挠度)演算的原因:挠度过大,损坏使用功能:如简支梁跨中挠度过大,将使梁端部转角大,引起行车对该处产生冲击,破坏伸缩缝和桥面;连续梁的挠度过大,将使桥面不平顺,行车时引起颠簸和冲击等问题。预应力混凝土结构优缺点:优点1提高了构件的抗裂度和刚度2节约材料,降低造价3结构质量安全可靠4增强结构耐久性5能促进桥梁新体系的发展 缺点1工艺较复杂,对质量要求高2需要有一定的专门设备3预应力反拱不易控制4设计要求高预应力混凝土结构的三种概念:1预加应力的目的是将混凝变变脆性为弹性材料2施加预应力的目的是使高强度钢筋和混凝土能够共同工作3预加应力的目的是实现荷载平衡钢筋预应力损失的估算:1预应力筋与管道壁间摩擦引起的应力损失2锚具变形、钢筋回缩和接缝压缩引起的应力损失3钢筋与台座间的温差引起的应力损失4混凝土弹性压缩引起的应力损失5钢筋松弛引起的应力损失6混凝土收缩和徐变引起的应力损失预拱度的设置:预应力混凝土受弯构件由预加应力产生的长期反拱值大于按荷载短期效应组合计算的长期挠度时,可不设预拱度;当预加应力的长期反拱小于按荷载短期组合计算的长期挠度时应设预拱度,预拱度值按该项荷载的挠度值与预加应力长期反拱值之差采用,即设置预拱度时,按最大的预拱值沿顺桥向做成平顺的曲线部分预应力钢筋的特点:1充分发挥预应力钢筋的作用,利用普通钢筋的作用,节省预应力钢筋与锚具2改善结构性能,允许在使用期间出现裂缝,扩大了应用范围;3设计人员可以根据结构使用要求来选择预应力度的高低

下载轻钢结构设计总结(有用的着的下载)[五篇模版]word格式文档
下载轻钢结构设计总结(有用的着的下载)[五篇模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    结构设计原理总结

    名词解释: 1 结构的极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 2结构的可靠度:结构在规定......

    结构设计竞赛总结

    结构设计竞赛总结——感悟篇 “几个月的参赛准备,我们体会颇多,一直以为参加大赛是个简单的事情,看着那些捧着奖杯的获胜者,想想比赛也不过如此而已,但真正的经历了这个准备的过......

    结构设计大赛总结

    土木工程系结构设计大赛活动总结 一、活动情况介绍 土木工程系结构设计大赛自2010年起,已经成功举办了两届。首届结构设计大赛以桥梁设计为主要内容,第二届结构设计大赛以框架......

    建筑结构设计总结

    《建筑结构》课程设计总结 课程设计时间: 2009/2010年第1学期14周 课程设计班级:08级水工七班 课程设计对学生而言是其对所学课程内容掌握情况的一次自我验证,从而有着极其重要......

    砌体结构设计总结

    砌体结构设计总结 砌体结构设计应注意的问题 1. 砌体结构应注明施工质量控制等级。 2. 多层砌体结构,在抗震设防地区,楼板面有高差时,其高差不应超过一个梁高(当错层楼盖高差不......

    结构设计要点(自己总结)

    一、构造要求。 1、在总说明中增加工程概况的相关介绍 2、不要写“xxx梁平法施工图”,直接写为“xxx梁施工图”。 3、边缘构件中的箍筋应在旁边画出详图。 4、同一个专业的图......

    结构设计工作技术总结

    技术总结 单位:xxxxxxxxxxxxx 姓名:xxx 本人xxx,2007年毕业于福建水利电力职业技术学院,2011在福建工程学院函授本科毕业。2011年1月评为助理工程师。2007年在xxxxxxxxx任职至......

    混凝土结构设计期末考试总结

    1钢筋和混凝土为什么能共同工作:①混凝土结硬后与钢筋之间产生良好的粘结力,使二者可靠地结合为一个整体,在荷载作用下共同变形。②钢筋与混凝土温度线膨胀系数接近,温度变化不......