第一篇:抗震结构设计总结
1.地震按成因分为:构造地震、火山地震、陷落地震和诱发地震。
2.地震序列:在一定时间内相继发生在相邻地区的一系列大小地震。
3.地震序列可分为主震型、震群型和孤立型。
4.地震波分为体波和面波。体波中包括纵波和横波。面波分为R波和L波。
5.震级:一次地震本身强弱程度和大小的尺寸。
6.地震烈度:指地震时某一地区的地面和各类建筑物遭受到一次地震影响的强弱程度。
7.世界地震带:a环太平洋地震带;b欧亚地震带;c沿北冰洋、大西洋和印度洋中主要山脉的狭窄浅震活动带;d地震相当活跃的断裂谷。
8.我国地震带:a南北地震带;b东西地震带。
9.地震灾害:a地表破坏;b工程结构的破坏;c次生灾害造成的破坏。
10.抗震设防:对建筑物进行抗震设计并采取一定的抗震构造措施。抗震设防的依据是抗震设防烈度。
11.抗震设防目标:a当遭受低于本地区抗震设防烈度的多遇地震影响时,主体结构不受损坏或不需要修理可继续使用;b当遭受相当于本地区抗震设防烈度的设防地震影响时,可能发生损坏,但经一般性修理或不需修理可继续使用;c当遭受高于本地区抗震设防烈度的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。“小震不坏,中震可修,大震不倒”
12.场地:指工程群体所在地,具有相似的反应谱特征,其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。
13.场地选择:首选有利、一般地段,避让不利地段,严紧危险地段。
14.场地土:场地范围内的地基土。
15.场地土对建筑物震害的影响,主要与场地土的坚硬程度和土层的组成有关。
16.覆盖层厚度的定义方法:a(绝对的)从地面至基岩顶面的距离;b(相对的)两相邻土层波速比(Vs下/Vs上)大于某一定值的埋深为覆盖层厚度。
17.场地类别划分依据:土层等效剪切波速和场地覆盖层厚度。
18.场地土的液化:饱和的粉土或砂土,在地震时由于颗粒之间的孔隙水不可压缩而无法排出,使得空隙压力增大,颗粒局部或全部处于悬浮状态,土的抗剪强度接近于零,呈现出液化的现象。
19.液化的宏观标志:地表出现水喷冒砂现象。
20.影响土液化的因素:a土层的地质年代和组成;b土层的相对密度;c土层的埋深和地下水位的深度;d地震烈度和地震持续时间。
21.场地土发生液化的条件:a土质为疏松或稍密的粉砂、细砂或粉土;b土层属于地下水以下,呈饱和状态;c遇大、中震。
22.饱和土液化的判别:初步判别和标准贯入试验判别。
23.土层的相应标准贯入锤击数临界值Ncr越小,越不宜液化。
24.液化指数Ile来划分场地的液化等级。
24.哪些建筑可不进行地基抗震承载力验算:建造在天然地基上的砌体房屋、多层为框架房屋、底部框架砖房,地基主要受力层范围内不存在软弱黏性土层的一般单层厂房、单层空旷房屋和不超过8层且高度小于25m的民用框架及其基础荷载相当的多层框架厂房和公共建筑。
25.建筑结构抗震设计:a首先计算结构的地震作用;b再求出结构和构件的地震作用效应;c将地震作用效应与其他荷载效应进行组合,并验算结构和构件的抗震承载力及变形。
26.加速度反应谱:质点最大加速度反应Sa与体系自振周期T的一条关系曲线。
27.标准反应谱:由于地震的随机性,即使在同一地点同一烈度,每次地震的地面加速度记录也很不一致,因此需要大量的强震记录算出对应于每一条强震记录的反应谱曲线,然后统计出最具代表性的平均曲线。
28.反应谱的影响因素:a场地类型;b震中距远近。
29.设计反应谱:Sa/g与体系自振周期T之间的关系作为设计反应谱,并将Sa/g用α表示,称α为地震影响系数。
30.Tg-特征周期:是对应于反应谱峰值区拐点处的周期,可根据场地类别、地震震级和震中距确定。
31.主振型(振型):在结构振动过程中的任意时刻,这两个质点的位移比值始终保持不变。这种振动形式通常称为主振型,或简称振型。
32.底部剪力法适用条件:对于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。
33.规范规定,对于烈度为8度和9度的大跨度长悬臂结构、烟囱和类似的高耸结果以及9度时的高层建筑等,应考虑竖向地震作用。
34.结构抗震承载力验算:a水平地震作用;b竖向地震作用;c水平地震引起的扭转影响。
35.重力荷载代表值Ge,是永久荷载和有关可变荷载的组合值之和。
36.承载力抗震调整系数γRE作用:用以反映不同材料和受力状态的结构构件具有不同的抗震可靠指标。
37.结构的抗震变形验算:包括多遇地震作用下的变形验算(第一阶段)和罕遇地震作用下的变形验算(第二阶段)。
38.结构的薄弱层判别:楼层屈服强度系数ζy相对愈小,弹塑性位移则相对愈大,这一塑性变形集中的楼层为结构的薄弱层。
39.楼层屈服强度系数ζy:反映结构中楼层的承载力与该楼层所受弹性的地震剪力的相对关系。
40.建筑的平立面布置要求:《平面》:布置宜规则、对称,质量和刚度均匀变化,避免楼层错层;《竖向》:宜规则均匀,避免有过大的外挑和内收,结构的侧向刚度宜下大上小,柱间均匀变化,不应采用竖向布置严重不规则的结构。<原则>:平面对称,竖向均匀。41.结构选型的确定:应从建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,经技术、经济条件比较综合确定。42.好的结构型式具有的性能:a岩性系数高;b“强度/重力”比值大;c匀质性好;d正交各项同性;e构件的连接具有整体性、连续性和较好的延性。43.多道抗震防线的必要性:当第一道抗震防线被破坏后,第二道乃至第三道防线能立即接替,抵挡后续的冲击,减轻地震的破坏作用。44.第一道抗震防线的选择:优先选择不负担或少负担重力荷载的竖向支撑或填充墙,或者选用轴压比较小的抗震墙、实墙筒体之类构件。45.结构的抗震等级划分依据:根据设防烈度与结构类型和高度确定。46.框架柱设计遵循的原则:a强柱弱梁;b强剪弱弯;c控制柱轴压比;d柱内纵向钢筋布置;e加强柱端约束。47.楼层地震剪力在墙体中的分配:a首先要把剪力分配到同一楼层的各道墙上去,b进而再把每道墙上的地震剪力分配到同一道墙的某一墙段上。<根据楼盖的水平刚度和各墙体的侧移刚度分配> 48.多层砖房构造措施:构造柱和圈梁。49.厂房主体结构的震害:<横向地震作用下>:a柱头及其与屋架连接的破坏,b柱肩竖向拉裂,c上柱柱身变截面处开裂或折断,d下柱震害,e天窗架与屋架连接节点的破坏,f围护墙开裂外闪、倒塌。<纵向地震作用下>:a屋面板错动坠落,b天窗架倾倒,c屋架破坏,d支撑震害,e围护墙山墙、山尖外闪或局部塌落。50.厂房结构布置原则:平面布置宜简单、规则,各部分结构刚度、质量均匀对称,尽量避免体型曲折复杂、凹凸变化;竖向避免局部突出和设置高低跨。
第二篇:高层建筑抗震结构设计
《建筑抗震设计规范》适用于抗震设防烈度是6-9度的地区
某地区的抗震设防烈度为8度,则其多遇地震烈度为6.45度,罕遇地震烈度为9度
场地类别根据土层等效剪切波速 和场地覆盖层厚度划分为4类。;
试述纵波和横波的传播特点及对地面运动的影响?
抗震设防烈度概念,简述抗震设防烈度如何取值。
简述现行抗震规范计算地震作用所采用的三种计算方法及其适用范围。底部剪力法的适用条件及基本思路是什么?
为何抗震规范对各楼层水平地震剪力最小值作出规定?
当结构的层数较多时,如何考虑长周期结构高振型的影响?
什么是建筑抗震概念设计?包括哪些方面的内容?
抗震设计中为什么要限制各类结构体系的最大高度和高宽比?
轴压比概念,为什么要限制柱的轴压比?
简述框架节点抗震设计的基本原则。
简述“强柱弱梁”的概念以及实现“强柱弱梁”的主要措施。
多层砌体房屋中,为什么楼梯间不宜设置在房屋的尽端和转角处? 为什么要限制多层砌体房屋抗震横墙间距
为何要对排架结构横向自振周期进行调整?如何调整
工程结构抗震设防的三个水准是什么?
第三篇:结构设计总结[模版]
十年结构设计经验的总结
1.关于箱、筏基础底板挑板的阳角问题:
(1).阳角面积在整个基础底面积中所占比例极小,干脆砍了。可砍成直角或斜角。
(2).如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋,谁见过独立基础加辐射筋的?当然加了也无坏处。
(3).如果甲方及老板不是太可恶的话,可将悬挑板的单向板的分布钢筋改为直径12的,别小看这一改,一个工程省个3、2万不成问题。
2.关于箱、筏基础底板的挑板问题:
1).从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较节约。
(2).出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。
(3).能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜。
(4).窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑。
(5).当地下水位很高,出基础挑板,有利于解决抗浮问题。
(6).从建筑角度讲,取消挑板,可方便柔性防水做法。当为多层建筑时,结构也可谦让一下建筑。
3.关于箍筋在梁配筋中的比例问题(约10~20%): 例如一8米跨梁,截面为400X600,配筋:上6根25,截断1/3,下5根25,箍筋:8@100/200(4),1000范围内加密。纵筋总量:
3.85*9*8=281kg,箍筋:0.395*3.5*50=69,箍筋/纵筋=1/4,如果双肢箍仅为1/8,箍筋相对纵筋来讲所占比例较小,故不必在箍筋上抠门。且不说要强剪弱弯。已经是构造配箍除外。
4.关于梁、板的计算跨度: 一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,在应用日广的宽扁梁中是不合适的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。
5.纵筋搭接长度为若干倍钢筋直径d,一般情况下,d取钢筋直径的较小值,这是有个前提,即大直径钢筋强度并未充分利用。否则应取钢筋直径的较大值。如框架结构顶层的柱子纵筋有时比下层大,d应取较大的钢筋直径,甚至纵筋应向下延伸一层。其实,两根钢筋放一起,用铁丝捆一下,能起多大用,还消弱了钢筋与混凝土的握裹力。所以,钢筋如
有可能尽量采用机械连接或焊接。
6.钢筋锚固长度为若干倍钢筋直径d,这是在钢筋强度被充分利用的前提下的要求,在钢筋强度未被充分利用时,如梁上小挑沿纵筋,剪力墙的水平筋端部等,锚固长度可折减。如剪力墙的水平筋端部仅要求有10d的直钩即可。
7.柱子造价在框架结构中是很小的,而在抗震时起的作用是决定性的。经实验,考虑空间作用时,柱子纵筋加大至计算值的2.5倍左右才可保证塑性铰不出现在柱子上。可不按计算配筋,大幅度增加纵筋,同时增大箍筋。
8.抗震缝应加大,经统计,按规范要求设的防震缝在地震时有40%发生了碰撞。故应增大抗震缝间距。
9.锚固?搭接?:例如,中柱节点处,框架梁下纵筋锚入柱内LAE,其搭接长度:2*LAE-柱宽,如钢筋直径25,LAE=40D,柱宽500,2*25*40-500=1500,既其搭接长度,已经达到了1500,远大于1.2*LAE=1200。而柱变断面,如上下柱断面相差50,上柱锚入下柱40D,此处按锚固还时搭接?
10.关于回弹再压缩: 基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分当做安全储备,这也是计算沉降大于实际沉降的原因之一。
11.柱下条基一般认为在刚度较大,柱子轴力和跨度相差不大时,可按倒楼盖计算。实际大部分都可以按倒楼盖计算。即采用修正倒楼盖。先按平均反力计算连续梁,然后将求得的支座反力与柱子轴力相平衡,将差值的正值加到柱两边的1/3梁上,负值加在梁跨中1/3,相对来讲,跨中1/3的压应力较小。可能要修正多次,直到支座反力与柱子轴力接近平衡。
12.主梁有次梁处加附加筋:一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,象板上洞口附加筋。附加筋一般要有,但不应绝对。规范说的清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。话又说回来,也不差几根箍筋。但有时画图想偷懒时可用此与老总狡辩。
13.一般情况下,悬挑梁宜做成等截面,尤其出挑长度较短时。与挑板不同,挑梁的自重
十年结构设计经验的总结
1.关于箱、筏基础底板挑板的阳角问题:
(1).阳角面积在整个基础底面积中所占比例极小,干脆砍了。可砍成直角或斜角。
(2).如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋,谁见过独立基础
加辐射筋的?当然加了也无坏处。
(3).如果甲方及老板不是太可恶的话,可将悬挑板的单向板的分布钢筋改为直径12的,别小看这一改,一个工程省个3、2万不成问题。
2.关于箱、筏基础底板的挑板问题:
1).从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布
置时,不会因边跨钢筋而加大整个底板的通长筋,较节约。
(2).出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。
(3).能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜。
(4).窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙
体连通时,可灵活考虑。
(5).当地下水位很高,出基础挑板,有利于解决抗浮问题。
(6).从建筑角度讲,取消挑板,可方便柔性防水做法。当为多层建筑时,结构也可谦让一
下建筑。
3.关于箍筋在梁配筋中的比例问题(约10~20%): 例如一8米跨梁,截面为400X600,配筋:上6根25,截断1/3,下5根25,箍筋:8@100/200(4),1000范围内加密。纵筋总量:
3.85*9*8=281kg,箍筋:0.395*3.5*50=69,箍筋/纵筋=1/4,如果双肢箍仅为1/8,箍筋相对纵筋来讲所占比例较小,故不必在箍筋上抠门。且不说要
强剪弱弯。已经是构造配箍除外。
4.关于梁、板的计算跨度: 一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,在应用日广的宽扁梁中是不合适的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。
5.纵筋搭接长度为若干倍钢筋直径d,一般情况下,d取钢筋直径的较小值,这是有个前提,即大直径钢筋强度并未充分利用。否则应取钢筋直径的较大值。如框架结构顶层的柱子纵筋有时比下层大,d应取较大的钢筋直径,甚至纵筋应向下延伸一层。其实,两根钢筋放一起,用铁丝捆一下,能起多大用,还消弱了钢筋与混凝土的握裹力。所以,钢筋如
有可能尽量采用机械连接或焊接。
6.钢筋锚固长度为若干倍钢筋直径d,这是在钢筋强度被充分利用的前提下的要求,在钢筋强度未被充分利用时,如梁上小挑沿纵筋,剪力墙的水平筋端部等,锚固长度可折减。
如剪力墙的水平筋端部仅要求有10d的直钩即可。
7.柱子造价在框架结构中是很小的,而在抗震时起的作用是决定性的。经实验,考虑空间作用时,柱子纵筋加大至计算值的2.5倍左右才可保证塑性铰不出现在柱子上。可不按计
算配筋,大幅度增加纵筋,同时增大箍筋。
8.抗震缝应加大,经统计,按规范要求设的防震缝在地震时有40%发生了碰撞。故应增大
抗震缝间距。
9.锚固?搭接?:例如,中柱节点处,框架梁下纵筋锚入柱内LAE,其搭接长度:2*LAE-柱宽,如钢筋直径25,LAE=40D,柱宽500,2*25*40-500=1500,既其搭接长度,已经达到了1500,远大于1.2*LAE=1200。而柱变断面,如上下柱断面相差50,上柱锚入下柱40D,此处按锚固还时搭接?
10.关于回弹再压缩: 基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分
当做安全储备,这也是计算沉降大于实际沉降的原因之一。
11.柱下条基一般认为在刚度较大,柱子轴力和跨度相差不大时,可按倒楼盖计算。实际大部分都可以按倒楼盖计算。即采用修正倒楼盖。先按平均反力计算连续梁,然后将求得的支座反力与柱子轴力相平衡,将差值的正值加到柱两边的1/3梁上,负值加在梁跨中1/3,相对来讲,跨中1/3的压应力较小。可能要修正多次,直到支座反力与柱子轴力接
近平衡。
12.主梁有次梁处加附加筋:一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,象板上洞口附加筋。附加筋一般要有,但不应绝对。规范说的清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。话又说回来,也不差几根箍筋。但有时画图想偷懒时可用此与老总狡辩。
13.一般情况下,悬挑梁宜做成等截面,尤其出挑长度较短时。与挑板不同,挑梁的自重
占总荷载的比例很小,作成变截面不能有效减轻自重。变截面挑梁的箍筋,每个都不一样,加大施工难度。变截面梁的挠度也大于等截面梁。当然,大挑梁外露者除外。外露的大挑
梁,适当变截面感官效果好些。
14.现浇板一般应做成双向板。其一,双向板的支承边多,抗震的稳定性好,垮了两边还有两边。单向板垮一边板就下来了。二,双向板经济。从计算上讲,例如四边简支支承的双向板,其单向跨中弯距系数约1/27,两边简支的单向板跨中弯距系数为1/8,二者比为2*1/27 / 1/8,约为60%。从构造上,双向板的板厚为1/40~50,单向板为1/3~40,双向
板薄,再着,即使是单向板,其非受力边也得放构造筋。
15.梁垫:为了减小支座反力偏心对砖墙体产生的附加弯距,可做成内缺口梁垫。
16.一般认为,板的上筋直径为8以上时,可防止施工时踩弯,而现场经验看,只有螺纹
12以上的才能保证。
17.现浇阳台栏板,从施工条件来讲,当布单排筋时,板厚应大于80,双排筋时,应大于120。因振捣棒最小为30,布单排筋时,板厚如为60,双向钢筋直径如为8+6,则钢筋
两边仅剩23,无法振捣。
18.当某一房间采用双向井字次梁时,板应考虑整体弯距。即,井字次梁分隔成的4个角上的小板块,负筋应考虑按房间开间进深尺寸截断,而不是仅仅按本小板格截断。即次
梁仅认为是大板的加劲肋。
19.当建筑大多数房间较小,而仅一两处房间较大时,如按大房间确定基础板厚会造成浪费,而按小房间确定则造成配筋困难,当承载力能满足要求时,可在大房间中部垫聚苯卸
载,按小房间确定基础板厚。
20.挑梁端部的挠度并不完全取决于本身的变形,其支座内垮的影响很可能超过挑梁本身的变形。
TOP
第四篇:结构设计总结
设计总结,希望对大家有帮助
从我的工作总结中节选。
工程项目的各个环节是相互依存的。
从事工程项目中任何一个环节的工作都需要对其他环节有所了解。对于设计环节的人员而言,这是形成良好的设计习惯所必备的:
从各个不同的角度去审视自己的设计--甚至超出工程范畴之外,包括前期市场调研和产品定位,包括后期制造和调试,包括回访,包括成本控制,也包括设计本身。
以上这些应该形成一套针对设计人员自身的逐步完善的设计准则:
要把握各种基本情况--包括加工装配调试过程、工作流程以及紧急状态等;
要尽可能多的掌握突发情况--老式卷眼打捆机在急停时极其危险的“甩带”就是由于缺乏对紧急状态下的过程控制造成的。一个设计要经过安全、功能、人机和成本等不同角度的考证以尽量减少在后期的负面影响或加大正面影响。
比如,设计阶段考虑欠充分会在调试阶段造成难点或者至少是不方便,这些难点的解决成本要远高于在设计时避免它们,而如果难点得不到解决流入下一环节则会造成更大的影响。
具体的实例是,对于一个一般的设备调试人员需要人工开孔上百个用来配管布线,这还不包括其他的工作比如焊接等。这是一项强度大、效率低的工作,而大部分工作内容只要在设计时输入就可以在加工阶段完成,人工开孔只用作临时的修改。结果就是在设计阶段节省了几个小时的时间,在后续环节却要多支出多几倍的时间,而且提高了劳动强度。
设计意图传递的过程中,在图纸语言表达清楚的前提下增加辅助理解的元素。比如“关键尺寸再现”在国标中的缺失,这种“再现”对于理解图纸有很大的帮助。
第五篇:抗震个人总结
地震烈度:指某一个地区、地面及房屋建筑等结构遭受到一次地震影响的强烈程度。
抗震设防烈度:是按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
场地土的液化:地震引起的振动使得饱和砂土或粉土趋于密实,导致孔隙水压力急剧增加。急剧上升的孔隙水压力来不及消散,使有效应力减少直至消失时,砂土颗粒局部或全部处于悬浮状态。此时土体的抗剪强度等于零,形成有如“液体”的现象,即称为“液化”。地基土液化的影响因素:1土层的地质年代2土的组成和密实程度3液化土层的埋深4地下水位深度5 地震烈度和持续时间。
建筑抗震概念设计:是根据地震灾害和工程经验等形成的基本设计原则和设计思想,进行建筑和结构总体布置并确定细部构造的过程。
等效剪切波速:以剪切波从地面至计算深度各层土中传播的时间不变的原则,来定义的土层平均剪切波速。
地基土的覆盖厚度:指地面至坚硬土顶面的距离。
地基土的承载能力:在变形容许和维系稳定的前提下,地基单位面积上承受荷载的最大(极限)能力。重力荷载代表值:G=m·g,应取结构和构件自重标准值和各可变荷载组合值之和。建筑场地类型根据等效剪切波波速和场地覆盖层厚度,分为Ⅰ~Ⅳ四种类别。什么情况下考虑竖向地震作用?
高层建筑,高耸结构及大跨结构。
三水准设防的内容:小震不坏、中震可修、大震不倒。
二阶段设计的内容:第一阶段设计为承载力验算,取第一水准的地震动参数计算结构的弹性地震作用标准值和相应的地震作用效应。第二阶段设计为弹塑性变形验算。
规范中计算地震作用力的三种方法及各自的适用范围:①部剪力法,适应高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构及近似于单质点体系的结构;②振型分解反应谱法,适用于其他一般建筑结构;③时程分析法,适用于特别不规范的(结构)建筑、甲类建筑和一些高层建筑。地震系数ka:表示地面运动加速度的最大值与重力加速度的比值。
动力系数:单质点弹性体系质点最大加速度与地面运动加速度最大值的比值,反应的是结构将地面运动加速度最大值放大的倍数。
水平地震影响系数:是以重力加速度g为单位的单质点弹性体系的质点运动最大加速度,是一个无量纲的系数。三者关系:与之间仅差一个系数ka。
鞭梢效应:采用底部剪力法时,突出屋面的屋顶间、女儿墙、烟囱等,由于刚度的突变和质量的突变,高振型影响加大。处理方法:其地震作用的效应宜乘以增大系数3,此增大部分不应往下传递,但与该突出部分相连的构件应予计入。
框架结构抗震设计遵循三条原则:“强柱弱梁”、“强剪弱弯”、“强节点弱构件”。强柱弱梁《规范》规定,一二三级框架的梁柱节点处,除框架顶层和柱轴压比小于0.15者外,柱端组合的弯矩设计值应符合下式要求:MCCMb,一级框架结构及9度时尚应符合MC1.2Mbua;还规定:一二三级框架结构的底层,柱下端截面组合的弯矩设计值,应分别乘以增大系数1.5,1.25和1.15。底层柱的纵向钢筋宜按上下端的不利情况配置。“强剪弱弯”,框架柱的措施:一二三级的框架柱,柱端截面组合的剪力设计值应按下式调整:Vvc(M合剪力设计值。
在什么情况下结构会产生扭转振动?如何采取措施避免或降低扭转振动?
答:体型复杂的结构,质量和刚度分布明显不均匀、不对称的结构,在地震作用下会产生扭转,主要原因是结构质量中心和刚度中心不重合
措施:建筑平面布置应简单规整;质量中心和刚度中心应尽量一致;对复杂体型的建筑物应予以处理 震级:衡量一次地震释放能量大小的尺度,一般采用里氏震级。地震烈度是指某一个地区、地面及房屋建筑等工程结构遭受到一次地震影响的强烈程度。我国根据房屋建筑震害指数、地面破坏程度及地面运动加速度指标将地震烈度分为12度。
bcMc)/Hn。“强节点弱构件”措施:增大节点核心区的组
t底部剪力法,适于质量和刚度沿高度分布比较均匀、高度不超过40m、以剪切变形为主的结构。对于自振周期比较长的结构,《规范》采用了调整地震作用分布的办法,适当加大顶层水平地震作用的比例。结构布置不合理造成的震害:1结构平面不对称造成的震害(结构平面不对称会使结构的质量中心与刚度中心不重合,导致结构在水平地震作用下产生扭转和局部应力集中,若不采取相应的加强措施,则会造成严重的震害)2竖向刚度突变造成的震害(结构刚度沿竖向分布突然变化时,在刚度突变处形成地震中的薄弱部位,产生较大的应力集中或塑性变形集中)3防震缝宽度不足产生的震害(房屋互相碰撞而引起损坏)
简述确定水平地震作用的振型分解反应谱法的主要步骤(1)计算多自由度结构的自振周期及相应振型;
(2)求出对应于每一振型的最大地震作用(同一振型中各质点地震作用将同时达到最大值);(3)求出每一振型相应的地震作用效应;
(4)将这些效应进行组合,以求得结构的地震作用效应。什么是剪压比,为什么要限制剪压比?
答:剪压比是截面内平均剪应力与混凝土抗压强度设计值之比。
剪压比过大,混凝土会过早发生斜压破坏,箍筋不能充分发挥作用,它对构件的变形能力也有显著影响,因此应限制梁端截面的剪压比。
抗震设计时,为什么要对框架梁柱端进行箍筋加密?
答: 梁柱端箍筋加密:加强对混凝土的约束,提高梁柱端塑性铰的变形能力,提高构件的延性和抗震性能,同时避免纵筋的受压屈曲。简述框架节点抗震设计的基本原则
(1)节点的承载力不应低于其连接构件的承载力;(2)多遇地震时节点应在弹性范围内工作;(3)罕遇地震时节点承载力的降低不得危及竖向荷载的传递;(4)梁柱纵筋在节点区内应有可靠的锚固;(5)节点配筋不应使施工过分困难。