第一篇:2018秋八年级数学上册3.4《一元一次不等式组》教案浙教版
《一元一次不等式组》
教学目标
(-)知识目标
1.进一步巩固解一元一次不等式组的过程. 2.总结解一元一次不等式组的步骤及情形.(二)能力目标
通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.(三)情感目标
1.加强运算的熟练性与准确性. 2.培养思维的全面性. 教学重点
巩固解一元一次不等式组. 教学难点
讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点. 教学方法
自主与讨论相结合的方法,即让学生自己解不等式组,然后讨论解中出现的所有情况. 教学过程
(一)[师]上节课我们已经学习了如何解由两个一元一次不等式组成的不等式组的解法,本节课我们将继续加强解法的熟练性和准确性,还要全面地对不等式组的解集的所有情况进一步的探讨和总结.[师]在“拉练”之前,我们先热身,回忆一下求一元一次不等式的解集和一元一次不等式组的解集的步骤.
[生]解一元一次不等式的步骤为:去分母,去括号,移项、合并同类项,系数化成1.要注意的是在去分母和系数化成1这两步中不等号方向是否改变.
解一元一次不等式组的步骤为:分别求出两个一元一次不等式的解集,在数轴上确定它们的公共部分,从而得出不等式组的解集.
[师]好.下面我们开始“拉练”,时间9~12分钟.先做完的同学可以自动在黑板上展示你的作品.
解下列不等式组
x15x23(x1)3x2x113x111(1)2(2)(3)1(4)3x17xx54x12x627x89x2 1
解:解不等式(1),得x>1,解不等式(2),得x>-4.
在同一条数轴上表示不等式(1)、(2)的解集如图:
所以,原不等式组的解是x>1
在同一条数轴上表示不等式(1)、(2)的解集.如图:
所以,原不等式组的解是x<
43.解不等式(2),得x≤4.
在同一条数轴上表示不等式(1)、(2)的解集,如图:
[解]解不等式(1),得x>4,解不等式(2),得x<3.
在同一条数轴上表示不等式(1)、(2)的解集如图:
所以,原不等式组的解集为无解.
[师]下面大家认真观察一下这四组解,你发现了什么?我们从每个不等式的解集,到这个不等式组的解集,认真观察,互相交流,找出规律.
引导学生用语言简单表述为:同大取大;同小取小;大于小数小于大数取中间;大于大数小于小数无解.
可以概括为口决,即按照:“大大取大,小小取小,大小小大中间找,小小大大找不到”的规律确定几个不等式解集的公共部分.小结:一元一次不等式组中各个不等式解集的公共部分叫不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.确定几个不等式解集的公共部分,一般借助于数轴,既直观,又不易漏解;还可以利用口决的方法,即按照:“大大取大,小小取小,大小小大中间找,小小大大找不到”的规律,同时必须会用数轴表示解集.
(二)鼓励学生讲解教师提供的例题.例1求x36的正整数解.
2x110分析:求正整数解先求出此不等式组的解集. 解:
解不等式①得x>3 解不等式②得x<11. 2在同一条数轴上表示 ①②的解集.
所以这个不等式组的解集为3<x<其中的正整数x=4或5. 例2不等式组解: 2xa0的解为x<4.求a的取值范围.
3x25x6 3
解不等式①得:x<a. 解不等式②得:x<4. 因为此不等式组的解集为x<4. 所以a≥4.
三、补充练习作业P106习题.
第二篇:浙教版八年级上册数学《第3章 一元一次不等式3.4 一元一次不等式组》教案
第3章
一元一次不等式
3.4
一元一次等式组
1.理解一元一次不等式组及其解的意义,加强运算的熟练性和准确性,培养思维的全面性.2.初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法.3.培养学生独立思考的能力和合作交流意识.正确解一元一次不等式组.正确解一元一次不等式组.解下列不等式,并把解集在数轴上表示出来:
【教学说明】复习一元一次不等式的解法.既复习了旧知识,又为新课作了铺垫.这几个练习由浅入深,也可充分调动各层次学生的学习积极性.探究:一元一次不等式有关概念.对比方程组的概念,你能将上述你解的不等式进行组合吗?你能将它们的的解集表示在同一条数轴上吗?你能给你所组成的形如“方程组”的式子取个名字吗?试试看.【归纳结论】(1)一元一次不等式组的概念:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.(2)一元一次不等式组的解集的概念:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.(3)解不等式组:求不等式组解集的过程,叫做解不等式组.探究2:解不等式组.由①得,x<4;
由②得,x≥3.故此不等式组的解集为:3≤x<4,在数轴上表示为:
例1.若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集为()
A.x≤2
B.x>1
C.1≤x<2
D.1<x≤2
答案:D
【教学说明】加强学生对新知识的巩固.教师可在学生遇到困难时从旁指导.本节课应掌握:
先在小组内交流,收获感想后以小组为单位派代表进行总结,教师作以补充.
第三篇:八年级数学《一元一次不等式与一元一次不等式组》教案
一元一次不等式与一元一次不等式组
【典型例题】
一.一元一次不等式的解法 1.不等式的性质:
(1)不等式两边加上(或减去)同一个数或同一个整式,不等号的方向不变。
(2)不等式两边同乘以(除以)一个正数,不等号的方向不变。不等式两边同乘以(除以)一个负数,不等号的方向改变。2.解一元一次不等式的基本步骤:
(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)系数化为1。
例1.填空:
1)若ab,则cacb;((2)若2x3,则x;32b,则;ab 2cab(4)若ab,则11333)若(2 分析:熟练掌握不等式的性质可解此题。
解:(1)是在a<b两边同时加上c,故应填“<”。
(2)是在2x>-3两边同除以2,故应填“>”。acab2(3)题中隐含条件c0,在两边乘以c,用不等式性质可知应填22cc“”。(4)先在a<b两边乘以“-3”,不等号方向改变,再加“-1”,不等号方向不变,所以填“>”。例2.根据条件,回答问题。
(1)不等式10的非负整数解有哪些?(2)关于x的方程x+3m-1=2x-3的解为小于2的非负数,求m的取值范围。
(3)|3m+2|>3m+2,求m的取值范围。
(4)如果(1-m)x>1-m的解集为x<1,求m的取值范围。
分析:(1)中可先找解集,再找非负整数解。
(2)先解方程,再找范围。
(3)根据绝对值的意义可以求解。
(4)由不等式的性质可以求解。2x32x3 又 因为x为非负数,故x0,1,2,3,4,5。(2)因为x3m12x3,所以x3m22 由 题知03m22得:m03(3)因为3mm232,得:3m202 故m(4)因为1mx1m中解集为x1,所以1m0,m1
解:(1)因为10,所以2x30,x5
3x143x11x
1解:由题意可知:
436 去 分母:33x1421x 去 括号:9x342x2 移项,合并,系数化为1:x 例3.x 取何值,代数式的值不大于的值?1x13631133x11x1 所 以当x时,代数式的值不大于的值11436
知关于x的方程2xa15x3a2的解是非负数,求a的范围。例4.已
分析:先解方程,用a表示x,然后得到一个关于a的不等式,求出a的范围。关于x的方程:2xa15x3a
2解:解 2a1 32题意知:a10 由
故a
23x2yk的解xy,求k的取值范围。
例5.若方程组2x3y4 得:x
分析:此题是含有参数k的关于x、y的二元一次方程组,可先解出含k的x、y,然后据题意求得k的范围。
3k18x3x2yk1
3解:解 方程组,得:2x3y44k24y263k84k24 由 题意可知:13264 k 小结:如果一个方程(组)中含有字母参数知道方程(组)解的范围,可先解方程(组),将问题转化为不等式来求解。
二.一元一次不等式组
1.关于不等式组的解集:
如何找两个不等式的公共部分,口诀如下:
(1)同大取大,(2)同小取小,(3)大小小大中间找,(4)小小大大解无了(无解)。
不等式组 数轴表示 解集 xaxb ab xb a b xaxb(ab)xaxb(ab)xaxb(ab)a b xa a b axb a b 无解
例6.解下列不等式组,并在数轴上表示解集:
112x213x1x213(1);(2)22x2x190.5x1x6.5222231)解不等式1得:x4 解:(8不等式2得:x
解7 故表示解集为:
-4 0 7
解集为4x
887
(2)解不等式1:x
解不等式2:x
1故表示解集在数轴上:
0 1 5
这个不等式组无解
例7.解不等式26
12x 13
分析:这 个不等式是将不等式2,1连在一起,可用不等式性质求解,也可将其变为不等式组求解。
解法一:
12x12x3312x213 把 原不等式写成不等式组12x1237不等式1得:x
解2不等式得2:x1 解
7其解集为:1x 故
2解法二:
12x 1知:612x33时减1:72x2 同
7时除以2:1x
同2 由2
2x2131不等式组的非负整数解。例8.求 3x2x8244不等式得1:x
4解:解
解不等式2得:x
299299 故原不等式组中解集为4x
故其中非负整数解有:0、1、2、3。
xm 例9.已 知不等式组解集为x1,求m的取值范围。3x1的143x11得:x解:解不等式4xm 而 的解集为x1x1 故 而m1
x+y=k+1 的解同号,求k的取值范围。xyk31xyk1x2k
解:先 解方程组得:xy3k1y1k2k02k0 根 据题意,得:(1),(2)1k01k0 例10.关于x、y的方程组 解 不等式组(1)得:0k1 解不等式组(2):无解
故 而k的取值范围应该是0k1
例11.已 知1,化简2x3x10
分析:可先解不等式,然后根据不等式解集的范围化简。2x112x13x56342x112x13x5 634 得 :124x228x49x1
5解:由1 3x9 x3
2x31x023xx10163x 故
三.关于不等式组的一些实际问题
例12.某宾馆底层客房比二楼少5间,某旅行团有48人,若全安排在底层,每间住4人,房间不够,每间住5人,有房间没有住满5人,又若全安排在二楼,每间住3人,房间不够,每间住4人,又有房间未住满4人,求底层有多少间客房?
解:设底层有客房x间,则二层有客房(x+5)间,由题意知:
48481x 5 435845x4x23 解1得:9x12,x10,11 解 2得:,7x11x8,9,10 故x=10(间)
答:底层有客房10间。
例13.2003年某厂制订下某种产品的生产计划,如下数据供参考:
(1)生产此产品现有工人为400人
(2)每个工人的年工时约计为2200小时
(3)预测2004年的销售量在10万到17万箱之间
(4)每箱用工4小时,用料10千克
(5)目前存料1000吨,2003年还需用料1400吨,到2004年底可补充料2000吨
据此确定2004年可能生产的产量,并据此产量确定工人数。
解:设2004年该工厂计划产量x箱,用工人y人,据题意知:
4x220040010x1000140020001000 100000x170000 解 之得:100000x160000 由 2200y1600004得:y29
1答:2004年的年产量最多为16万箱,生产工人数为291人。
本课小结:
(1)在解一元一次不等式(组)时要注意两边同乘(除)负数时,不等号要改变方向;
(2)含有参数的问题中,注意据题意列出含有参数的不等式;
(3)在解决实际问题时,注意把握题目中的信息,列出不等式,并解出不等式,而且注意题目中各量的实际意义。
【模拟试题】
一.解不等式(组)。
x32x1x1 432112xx1x1 2. 2253x21x1 3. 3.x12x25.7052x83x 4.4x53x2
92x65x 1.二.解下列各题。
51时,y的取值范围是多少? xy1,当x143x3x24 2.已知不等式组2xa的解集是1,求a。x2x13 1.对于二元一次方程x2y3m 3.已知方程组的解满足xy0,求m的取值范围。
2xy3m2
三.解应用题。
植树活动中,某单位的职工分成两个小组植树,两组植树总和相同,且每组植树均多于100棵而少于200棵,第一组有一人植6棵,其他每人植13棵,第二组有一人植了5棵,其他每人植了10棵,问该单位共多少人?
【试题答案】
一.解不等式(组)。1.解:3x3421x126x x7 2.解:5x12x14x1
x1 3.解:由<1>得:x98
由<2>得:x3
故此不等式组无解 4.由<1>得:x
3由<2>得:x3
由<3>得:x1
故此不等式组解集为3x1 二.解下列各题。
1.解:54x1124y3y1得:x15
由于x1得:124y151
得:y34
2.由<1>得:x1
由<2>得:xa3
而其解集为:1x
2故而a32
a1 3.<1>+<2>得:3x3y52m
xy52m3
而xy0得:52m30
m52
三.解应用题。
解:设第一组有x人,第二组有y人,xy,据题意可知:613x151011 y100613x12002 100510y12003 由<1>得:x10y2134
由<2>得:82123x1513,x91,0……15 将x、y代入<4>式可知:y符合题意 18,x14 x(人)y32 由<3>得:1 0y20,y111,2……20 答:该单位共有32人。12 9
第四篇:一元一次不等式组教案
一元一次不等式组教案
教学目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式的必要性;
3、逐步熟悉数形结合的思想方法,感受类比和化归思想。
4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。
5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点:
重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程:
呈现目标
目标一:创设情景,引出新知
(教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
(教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨
数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1
2x+3≥x+11 -1<2-x
目标三:归纳总结
反馈矫正 解下列不等式组(1)
3x-15>0 7x-2<8x(2)
3x-1 ≤x-2-3x+4>x-2
(3)
5x-4≤2x+5 7+2x≤6+3x
(4)
1-2x>4-x 3x-4>3
归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4
x>4
x<4
x>4 X<2
x>2
x>2
x<2 X<2
x>4
2<x<4
无解
教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高
知识拓展 《完全解读》第230页
已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。
探究合作
小组学习:各学习小组围绕目标
一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚;
教师引导:(1)什么是不等式组?
(2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的?
展示点评
分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。
教师点评:教师推荐解不等式组口决。
巩固提高
教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。
第五篇:一元一次不等式组教后反思
一元一次不等式组教后反思
赵双艳
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。