第一篇:高中数学必修三特级教师视频
下载后 按键 CTRL+鼠标左击打开 必修3 1.1.1.1算法的概念--必修3 2.1.1.2程序框图与算法的基本逻辑结构-必修3 3.1.2基本算法语句-必修3 4.1.3.1算法案例-辗转相除法与更相减损术-必修3 5.1.3.2算法案例--秦九韶算法--必修3 6.1.3.3算法案例--进位制-必修3 7.2.1.1简单随机抽样-必修3 8.2.1.2系统抽样-必修3 9.2.1.3分层抽样-必修3 10.2.2.1用样本的频率分布估计总体分布-必修3 11.2.2.2用样本的数字特征估计总体的数字特征-必修3 12.2.3变量间的相关关系-必修3 13.3.1.1随机事件及其概率 14.3.1.2《概率的意义》课堂实录 15.3.1.3 概率的基本性质-必修3 16.3.1.12随机事件的概率-必修3 17.3.2 古典概型-必修3 3.3几何概型-必修3 必修四
1.1.1.1任意角-必修4 2.1.1.2弧度制-必修4 3.1.2.1任意角的三角函数(1)-必修4 4.1.2.1任意角的三角函数(2)-必修4 5.1.2.2同角三角函数的基本关系-必修4 6.1.3.1三角函数的诱导公式-必修4 7.1.3.2三角函数的诱导公式(2)-必修4 8.1.4.1正弦函数余弦函数的图像-必修4 9.1.4.2.1正弦函数的性质-必修4 10.1.4.2.2余弦函数的性质-必修4 11.1.4.3正切函数的图像和性质-必修4 12.1.5.1函数y=Asin(ωx+φ)的图像-必修4 13.1.6.1三角函数模型的简单应用(1)-必修4 14.1.6.2三角函数模型的简单应用(2)-必修4 15.2.1平面向量的实际背景及基本概-必修4 16.2.2.1向量的加法及其几何意-必修4 17.2.2.2向量的减法及其几何意义-必修4 18.2.2.3向量数乘运算及其几何意义-必修4 19.2.3.1平面向量的基本定理-必修4 20.2.3.2平面向量的正交分解及坐标表示-必修4 21.2.3.3平面向量的坐标运算-必修4 22.2.3.4平面向量共线的坐标表-必修4 23.2.4.1平面向量数量积的物理背景及其含义-必修4 24.2.4.2平面向量数量积的坐标表示、模、夹角-必修4 25.3.1.1两角差的余弦公式-必修4 26.两角和差的三角函数-必修4 27.3.1两角和与差的正弦、余弦和正切公式-必修4 28.
3.2简单的三角恒等变换-必修4
学科空间站 www.xiexiebang.com 海量视频
第二篇:高中数学必修三知识点供借鉴
高中数学必修三知识点供借鉴
高中数学必修三知识点
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{x
x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x
x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x
x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
数学知识点顺口溜
排列与组合分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它。
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家。
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小。
概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争。
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真。
数学思维方法
比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
第三篇:高中数学必修5高中数学必修5《1.2应用举例(三)》教案
1.2解三角形应用举例 第三课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题
2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。
3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。
二、教学重点、难点
重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系 难点:灵活运用正弦定理和余弦定理解关于角度的问题
三、教学过程 Ⅰ.课题导入 [创设情境] 提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。Ⅱ.讲授新课 [范例讲解] 例
1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)
学生看图思考并讲述解题思路
分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。
解:在ABC中,ABC=180-75+ 32=137,根据余弦定理,AC=AB2BC22ABBCcosABC =67.5254.02267.554.0cos137 ≈113.15 54.0sin137根据正弦定理,BC = AC sinCAB = BCsinABC = ≈0.3255,113.15ACsinCABsinABC
所以 CAB =19.0, 75-CAB =56.0
答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile 例
2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进103m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在ACD中,AC=BC=30,AD=DC=103,ADC =180-4,103=sin230。因为 sin4=2sin2cos2 sin(1804)cos2= 3,得 2=30 =15,在RtADE中,AE=ADsin60=15 2答:所求角为15,建筑物高度为15m 解法二:(设方程来求解)设DE= x,AE=h 在 RtACE中,(103+ x)2 + h2=302 在 RtADE中,x2+h2=(103)
2两式相减,得x=53,h=15 在 RtACE中,tan2=
h103x=32=30,=15
答:所求角为15,建筑物高度为15m 解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得
BAC=,CAD=2,AC = BC =30m , AD = CD =103m 在RtACE中,sin2=
x4------① 在RtADE中,sin4=,----② 301033,2=30,=15,AE=ADsin60=15 2 ②① 得 cos2=答:所求角为15,建筑物高度为15m 例
3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
师:你能根据题意画出方位图?教师启发学生做图建立数学模型
分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。
解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9, ACB=75+45=120
(14x)2= 92+(10x)2-2910xcos120 39化简得32x2-30x-27=0,即x=,或x=-(舍去)
216所以BC = 10x =15,AB =14x =21, BCsin12015353又因为sinBAC === AB21421,BAC =3813,或BAC =14147(钝角不合题意,舍去)3813+45=8313
答:巡逻艇应该沿北偏东8313方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅲ.课堂练习
课本第16页练习Ⅳ.课时小结
解三角形的应用题时,通常会遇到两种情况:
(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。
(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。
Ⅴ.课后作业
《习案》作业六
第四篇:高中数学必修1教学大纲
高中数学必修1 教学大纲
1.集合
(约4课时)(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2.函数概念与基本初等函数I
(约32课时)(1)函数①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。③了解简单的分段函数,并能简单应用。④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。③知道指数函数与对数函数互为反函数(a>0,a≠1)。(4)幂函数通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
(5)函数与方程①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
第五篇:高中数学必修一 2
高中数学必修一《函数的单调性》的教与学研究
1、此节课的教学流程是从学生的实际生活和所学知识出发,引导学生通过自主探究、合作讨论等方式,探究函数的单调性的概念。在此基础上通过具体的函数图像结合函数的单调性的定义,解决简单函数单调性的问题,在教学中不断渗透数形结合的思想方法,培养学生观察、归纳、抽象类比的能力和语言表达的能力,通过对函数单调性的证明,提高数学的论证推理能力。
2、函数的单调性的概念是本节课教学的重点,教学难点是函数单调性概念的知识形成及利用函数图形、单调性的定义判断和证明函数的单调性。为实现教学目标,突出重点和难点的突破,教学中采用在概念的探索阶段,让学生经历从直观到抽象,特殊到一般,感性到理性的认识,完成对函数单调性定义的认识;在应用阶段通过对证明的分析,帮助学生掌握并证明函数单调性的方法和步骤,渗透算法思想。
3、本节课由于是函数单调性第一课时,教学中采用启发、引导,学生自主探究学习的教学方法。通过创设情境引导学生探究,师生交流,最终形成概念、方法,过程中借助于多媒体的几何画板来辅助教学,提高学生对所学习概念的理解和认识。
4、在学法上,让学生从问题中质疑、尝试、归纳总结、运用,培养学生发现问题,研究问题、解决问题的能力。让学生利用图形直观启迪思维并通过正反例的构造,来完成从感性到理性认识的一个飞跃。学生举出反例后的兴奋,增强了学生学习数学的自信心和兴趣,同时更加促进学生学习数学的主动性。在小结的环节中,从探究过程,证明方法与步骤,数学思想方法几个方面,学生亲自来总结。通过他们的主动参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再深化。
5、通过对本节课的教学设计,使我认识到数学教学中,能钻研教学大纲,深入挖掘教材,结合学生的实际,设计贴合教学实际的教学设计,必将达到事半功倍的效果。通过对本节课的教学,可以预见学生仍然对函数的单调性的证明与判断仍是一个难点,对于单调性的证明过程中,究竟要变形到什么样的程度,学生很难把握。另外学生主动参与学习数学的积极性也有待于进一步提高。
教学反思:
在本节课的教学中,通过大量的典型图形的分析,使学生在直观感知和自然描述的阶段能够很自然地接受“任意性”和“两个值”。在整个设计过程中,对于典型例题的选取及变数训练中,对单调性的概念进行了分层次的理解和应用。也就是说针对学生的不同情况设定例题、习题等。
当然学生在学习过程中容易出现的问题就是单调性的证明过程中,究竟要变形到什么样的程度,以及在写单调区间的时候用逗号还是用并,符合并集为什么是错误的等等。