第一篇:对几何画板在辅助中学数学教学的一点认识
对“几何画板”辅助中学数学教学的一点认识
随着科学技术的迅猛发展和广泛普及,新一轮教学改革已经全面展开,信息技术不断地深入应用,催化了课堂教学模式的变革。CAI教学在激发学生学习兴趣、解决教学中的重点难点问题,创设适于学生学习探索的教学情境和针对学生的学习需求进行个别化学习和辅导方面都有着良好的应用。数学是各门学科中最基础、最抽象的学科之一,为了提高教学质量,更有必要使用计算机辅助教学,而“几何画板”就是其中非常实用的专业软件之一。在数学课堂教学中,使用多媒体技术辅助教学,将极大地丰富课堂教学的表现手法和表现方式, 它正迅速而深远的影响着教育教学。使用多媒体课件对于激发学生学习数学的兴趣,以及创新能力的培养提高发挥巨大的作用,应为它能够使抽象的数学问题具体化,枯燥的数学问题趣味化,静止的数学问题动态化,复杂的数学问题简单化。
一、“几何画板”的应用可提高学生学习数学的兴趣
数学软件“几何画板”的深人开发和广泛使用,使这种课型越来越受到教师和学生的欢迎.例如, 在学习“探索勾股定理”时,让学生利用“几何画板”作一个动态变化的直角三角形,通过度量各边长度的平方值并进行比较,学生对直角三角形三边关系产生很感性的认识;通过观察,学生发现任何一个直角三角形的两直角边的平方和等于斜边的平方,从而加深了对勾股定理的认识、理解和应用.这种让学生动手操作、观察、探究的教学效果远比传统教学来得高效,很受学生的欢迎。
二、利用《几何画板》能提高教学效果
几何画板这个教学软件,为数学教学提供了及其方便的手段。它能使静态的几何图形产生动态的效果,可以揭示图形内在的联系,创造切身的情境使学生感受抽象概念的形成过程,把抽象进而形象,帮助学生理解教学内容,提高教学效果。在数学教学活动,我经常使用《几何画板》,用几何画板教师可以演示传统的课件,还能让学生亲自动手,自己探索信息技术和数学知识的整合,长期坚持下来不仅提高了效率,也增强了学生学习效果。教育信息化是社会信息化的重要方向,技术发展的趋势是不言而喻的。计算机为数学教学和数学学习提供了广阔的空间。《几何画板》作为一个教师提高教学效果的工具、学生自主学习的平台,必将为改善中学数学教学效率和学生的自主学习、探究学习提供一个广阔的空
间,成为培养学生创新思想的实践园地。
三、教学中“几何画板”的应用体会
1、运用“几何画板”辅助教学,可减少任课老师的讲解和板书的任务量,而且对教师的讲解能起到生动而有效的辅助作用,但是教师的讲解要适时地与演示紧密结合,应抓住教学内容的重点、难点、要点,抓住教学内容的脉络进行教学。在教学中使用课件之前,应告诉学生到哪一步应该观察什么,要明确目标,集中精力。先看什么,后看什么,怎样演示,是否重复,都要十分讲究,缜密考虑,做到要适时,适度。
2、要善于利用“几何画板”的鲜活的界面和动态的环境,启发学生的思维,从运动中找出不变的数学规律,激活并开发学生学习的内部动因,培养分析问题、解决问题的能力,培养学生探求新知识的欲望,从而以最佳的精神状态投入到学习过程中,以轻松快乐的心情取得更好的成绩,教师教书育人的任务达到事半功倍的效果。“几何画板”允许运用超链接功能,能将Office等软件结合起来并用,做到图文声情并茂。但是,简介与演示各有各的优点,只能相互补充,不能相互代替,更不能相互排斥,两者结合,相辅相成,才能产生最佳教学效果。
3、应尽量博采众长,多制作,多收集教学课件,创建自己的数学课件。首先,应掌握这个软件的基本操作,这是很容易就能掌握的;其次,要善于运用操作按钮,从制作及运用中可以体现出“几何画板”的另一特点:它主要强调对于数学模型的认识,在“几何画板”环境中如何体现这种“数形结合”思想。课件的制作要简洁、美观、清楚、新颖,具有创意,能激发学生的欣赏和学习兴趣。
总之“几何画板”是实现教师教学设计的辅助教学工具之一,只是辅助作用。在教学活动中, ,恰当地运用现代信息技术手段能使课堂教学生动、具体、形象、直观,能激发起学生学习求知的欲望,理清概念,捋顺数理关系, 深刻理解学科中的规律和复杂的逻辑关系。培养学生良好的学习方法和自学能力,培养学生的散发思维和创造能力。
第二篇:几何画板辅助教学之我见
几何画板辅助教学之我见
最初认识“几何画板”,我认为它只是一个数学教学辅助软件,只是替代了直尺、圆规的一个画图工具而已。但在自己的教学和制作课件过程中,认识到了它的强大功能以及特有的随机计算能力和交互能力,使我为它的魅力所折服。《几何画板》提供了一个全新的学习数学的学习环境,学生在感性认识的基础上,调动了学习的主动性、提高了动手能力,培养了学习的探索与创造的能力。利用《几何画板》可让学生参与教学过程,实现了对知识意义的主动建构,较深刻地理解了所学的内容,有效地化解了难点。
“几何画板”的特点一:简明。它的制作工具少,制作过程简单,学习掌握容易。“几何画板”能利用有限的工具实现无限的组合和变化,将制作人想要反映的问题表现出来。学习掌握它较为容易,不需要花很多的精力和时间来学习软件本身,而强调软件对学科知识的推动和理解。不能否认目前也有许多优秀的课件制作工具软件,但这些软件往往较难掌握,或者制作过程与学科本身知识相差很远,只是对某一问题的模拟再现。“几何画板”制作过程较为简单,对问题的反映是在对学科知识理解基础上,甚至是利用学科知识本身来解决问题,因而使用“几何画板”制作出的课件更符合学科知识本身的要求。
“几何画板”特点二:朴素。它的界面清爽干净,仅一块白板而已,制作出的课件也没有过多华丽的装饰,只是体现出制作者想要表达的主题。也正是因为它的朴素,从而使它对问题的反映显得直接而清楚,使课件本身对问题的阐述、剖析及对难点的突破显得有效而又有针对性,使课件的作用发挥到了极限。这正是一个好的教学辅助软件所必备的条件——针对性。
“几何画板”的特点三:短小。(1)投入人力少,在使用“几何画板”制作课件时,一个教师花十几分钟,最多一、二个小时就能制作出一个好的课件,教师只要利用一些零星时间就能开发制作课件;(2)投入财力少,“几何画板”对计算机的要求不高,目前一般学校的条件都能满足;(3)占用空间小,一个用“几何画板”制作的课件只不过几KB而已,大的也不过几十KB,而其它软件制作的课件往往上百KB,甚至上几MB,这也使“几何画板”制作的课件便于携带和交流,也使制作过程变得随机性,上课也变得简单,不再需要拿硬盘或刻录光盘来上课。
“几何画板”的特点四:精悍。(1)由于它和学科知识联系紧密,故对学科知识的反映准确,使课件对问题的突破更为直接有效。(2)由于它的强大计算功能,使有些数值的变化不再是原来的一些特殊值,而是变成连续值,使问题变得清楚。例如讲“正、余弦函数”这一节时,在这一课件设计思想里,我抛弃了原来上课时取特殊值作波形图的方法,而是通过学生自己观察课件演示,得出结论,让学生真正掌握波形图形成的原理。(3)“几何画板”有很强的交互性。由于在制作中利用学科知识,使课件中包含若干个变量,在“几何画板”制作的课件里,这几个变量是可随机变化的,这样在利用课件上课时,通过演示课件,控制变量的变化,使学生更好地理解问题中各个数量的关系。例如在讲“三角形内角和”这一节时,以往是教师画出一个三角形后,量出度数,得出结论。但我用“几何画板”制作的课件里,利用课件的动态特点,先引导学生观察三角形中每一个角的大小发生变化时,但内角和仍保持180度不变,给学生一个理性认识,并且避免了手工作图引起的误差,使整个教学过程变得简单有序。
利用《几何画板》的辅助教学,有利于学生素质的提高。把《几何画板》引入中学数学教学,学生主动参与讨论,做“数学试验”,参与教学实践活动,他们不再是知识的被动接受者,而是知识的主动探索者,问题的研究者,《几何画板》的运用使抽象、枯燥的数学概念变得直观、形象,使学生从害怕、厌恶数学变为对数学的喜爱,有效地激发他们的学习兴趣,增强他们学好数学的信心,调动了学习的积极性,特别是需要反复认识的概念,反复学习的内容,少数学生课堂上弄不清楚的,可以把软件拷贝回家,再反复观察、反复认识、反复学习,给学习困难的学生提供了再学习的机会,把电脑辅助教学“辅”到了不同层次的学生身上。
总之,“几何画板”使我们的教学变得形象、直观、灵活、有效。
第三篇:《几何画板》在中学数学教学中的辅助教学作用
《几何画板》在中学数学教学中的辅助教学作用
吴江市松陵高级中学金 晔215200
【摘 要】传统的粉笔、黑板教学,在讲解诸如函数图像问题时,感觉枯燥乏味,学生的参与性也比较差。笔者在高三教学复习中,通过教学实践,应用几何画板,将函数图像这一内容的复习围绕着几何画板的应用进行了全新的设计。
【关键词】几何画板 函数 图像 变换 参数
几何画板是一款优秀的软件,笔者第一次接触几何画板是在编排练习时,当时只是将几何画板当作作图工具加以应用。随着与几何画板接触时间的增多,渐渐的被它更多的功能吸引,通过学习与研究,更是为它“小个子,大作用”的优点发出赞叹!
传统的粉笔、黑板教学,在讲解诸如函数图像问题时,感觉枯燥乏味,学生的参与性也比较差。笔者在高三教学复习中,通过教学实践,应用几何画板,将函数图像这一内容的复习围绕着几何画板的应用进行了全新的设计。使学生在教学过程中能够参与思考,设计问题,如同参与游戏之间,老师通过画板演示,解决问题。
一、简单的函数作图
上课开始,笔者带着学生回忆一下我们高中阶段学习了哪些函数与函数图像,学生开始议论„„片刻后,笔者告诉学生,现在要用画板在电脑上画出函数的图像,征求大家希望最先看到哪个函数的图像。如此一来,绝大部分学生就会积极参与其中,就相当于学生自己提出问题。片刻后,笔者选择了对数函数“y=lgx”,在几何画板上做出了它的图像,边作边说明几何画板上的“log”符号就是特指以“10”为底的对数,图像画好后,学生觉得很“好玩”,紧接着笔者为学生设计了一个“小问题”,就是如果底数是“2”的对数函数“y=log2x”与函数“y=lgx”的图像在(1,0)点的右侧谁更靠近x轴。大部分同学都能回忆起来,然后笔者要通过电子作图请学生观察,但是
1作图时遇到一个问题,就是画板里只有以“10”为底的对数,如何画底数是“2”的对数函数。学生陷入思考,提“换底公式”片刻后提问,生甲:
lgx
“log2x=lg2”从而笔者做出图像,学生观察后会有一种实验成功的喜悦。
二、函数的平移、伸缩变化
初试牛刀后,笔者提出了“函数图像的平移”这一问题,并接着画了如“y=lg(x-1)”,“y=lgx+2”等简单的函数图像,让同学们直观的理解“左加右减”和“上加下减”的含义。
接着,笔者设计了一个含有参数的函数“y=lg(x-a)”,接着告诉学生要通过a的变化来观察。这个问题对没有接触过几何画板学生来说,虽说是无从想象的,但也正因为此,学生的求知欲被调动起来了。笔者通过做出x轴上的动点,并标出横坐标,在属性中将该点的标签记为a,作为一个动参数,然后再作出函数“y=lg(x-a)”的图像,再通过拖动动点a,让学生观察动点a对函数图像变化所起的作用。(如图一、二)以此方法,再作函数“y=lg的图像,以a、b接着以同样的方法,作出了函数“y=Asinωx”的图像,并提问参数“A”,“ω”对函数图像产生的作用。这时,学生的思维达到了高潮,积极参与讨论的热情也极为高涨。笔者请生乙回答了如下的问题: “A=2”、“A=0.5”、“ω=2”、“ω=0.5”分别是对函数“y=sinx”的图像作了怎样的伸缩变换得来的。然后变化参数“A”,“ω”,通过图像变化的情况让学生自己总结出了规律。(如图三~六)
苏教版《数学1》(必修)81页的“探究”有这样一个问题,“当0 x与y=logax的图像,再变换参数a,再将单位长度放大,让学生观察出函数y=ax与y=logax的图像的交点个数,学生会惊喜的发现,当a由大于1的数接近1时,图像从没有交点到两个交点,当a刚小于1时,图像确实只有一个交点,但随着a继续接近0时,此时,为了使得学生观察得仔细,笔者通过改变单位长度放大了图像。(如图七~十) 图八 笔者进一步为学生指出函数y=ax与函数y=logax互为反函数,通过交点的情况,也也可以看出函数与其反函数图像的交点未必都在直线y=x上。 又如2007年高考湖南卷(文)第21题,题设条件中提到切线l在切点A处穿过函数y=f(x)的图像(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),这也是学生容易在认识上出现的一个误区,误认为函数图在切点附近的图像都在切线的同一侧,笔者就利用这道高考题中的函数与相应切线,通过几何画板作图,(如图十一)清晰的反映了问题所在。使学生从感性上有一个正确认识,从而在解题中不会因为原有的错误认识而使解题遇到困难。 笔者认为,这样的教学设计能够使学生通过认识、实践的不断变化中,打破思维定势,自己发掘问题,解决问题,在不断的探索中,引发创新思路。老师在教学中,应该在汲取传统教学精华的同时,不断学习、探索,将多媒体技术应用于数学教学中,使得数学变得更直观、更有趣。在课堂教学中,通过多媒体的辅助教学,使学生真正参与课堂设计,让学生在课堂上接触的数学不再是枯燥的、抽象的学科,而是生动的、形象的视觉感受! 【参考文献】 1、江苏教育出版社《普通高中课程标准实验教科书(必修)数学1》 2、人民邮电出版社《几何画板数学课件制作范例教程》屈清明季久峰 等编著 3、《取之规律 用之创造——几何画板教学方法研讨》作者:陈 光 利用几何画板辅助教学的体会 长沙市十二中学 王幼珍 近年来,不少教师,特别是年轻教师,利用《几何画板》辅助教学作了许多有益的探索与实践,受到了较好的教学效果,本文谈谈笔者的体会。 1、《几何画板》具有学习容易,操作简单,功能强大的特点 作为教师,如果已经有了操作WINDOWS的基础,要掌握《几何画板》的基本功能是不难的,只要认真阅读它的《参考书册》就可以了,若能经过三、四天的培训,就可以比较熟练地掌握它,还可以象圆规、三角板一样,十分方便地使用它,并可以“完美地”实现自己的“创意”,《几何画板》。不同于其他的计算机绘图软件,他所作出的图形、图象都是动态的,而且注重数学表达的准确性,最突出的优点就是使图形、图象在变动的状态下,保持不变的几何关系,线段的中点永远是中点,平行的直线永远是保持平行。这样就可以帮助学生从动态中去观察、探索和发现对象之间的数学关系与空间关系。它是培养跨世纪创新人才不可多得的辅助教学的软件,是中学数学教师理想的CAI工具之一。 2、利用《几何画板》是提高知识的形成过程,培养学生的探索发现能力 2.1 《几何画板》提供了测量和计算功能,能够对作出的对象进行度量,如线段的长度、弧长、角度、面积等,还能对测量的值进行计算,并把结果动态地显示在屏幕上,用鼠标拖动任意一个对象,使其变动时,显示出这些几何对象大小的量也随之改变,对学生发现问题,讨论问题提供了很好的园地。例如:传统的教学方法是把三角形内角和定理告诉学生,然后再加以证明。利用《几何画板》我们可以在屏幕上展示,无论拖动三角形的一个顶点怎么移动,虽然这个三角形的三个内角的大小动态地改变着,但是显示三内角和的数值不变,并且可以以表格形式展示在屏幕上(如下表)。46.5 81.5 105.1 123.2 46.2 19.2 25.3 34.4 87.3 79.3 49.6 22.4 180.0 180.0 180.0 180.0 A B C A+B+C 学生经过直观地观察,探索归纳出三角形内角和的性质,然后再引导学生证明。又如在学习相交弦定理时,任意改变圆内相交弦AB、CD的交点P的位置时,屏幕上显示AP•PB、CP•PD的数值总保持相等,准确地表达了定理。如果把这点拖到圆外,又可以表现为割线定理。 2.2 利用《几何画板》可让学生参入教学过程,实现了对知识意义的主动建构,较深刻地理解了所学的内容,有效地化解了难点。如在平行线分线段成比例定理的推出是个难点,教材是通过平行线等分线段的定理举例,说明它的正确性,学生没有足够的体验,很难达到对定理的理解,如利用《几何画板》做好课件,在网络教室中,让学生在电脑上亲自去度量线段的长,计算线段的比,然后验证线段的比是否相等,这样做,教学中发现了“定理”。另外,通过平行移动图中线段的位置,学生很容易“发现”该定理的两个推论,即它的两个变示图形。 a A D A a D A b B E b B E B c C F c c C F C F 图1 图2 图3 这样的课件设计,突出了学生的主体地位和探索观察的实验意识,从一般到特殊,从形象到抽象,学生经过这样一番试验、观察、猜想、证实之后,再引导学生给出证明,这样较难讲清的问题,就在学生的试验中解决了。 3、利用《几何画板》的辅助教学,有利于学生素质的提高 把《几何画板》引入中学数学教学,学生主动参与讨论,做“数学试验”,参与教学实践活动,他们不再是知识的被动接受者,而是知识的主动探索者,问题的研究者,《几何画板》的运用使抽象、枯燥的数学概念变得直观、形象,使学生从害怕、厌恶数学变为对数学的喜爱,有效地激发他们的学习兴趣,增强他们学好数学的信心,调动了学习的积极性,特别是需要反复认识的概念,反复学习的内容,少数学生课堂上弄不清楚的,可以把软件拷贝回家,再反复观察、反复认识、反复学习,给学习困难的学生提供了再学习的机会,把电脑辅助教学“辅”到了不同层次的学生身上。 实践证明,《几何画板》给数学教学带来了新型的教学模式,对于数学教学有着十分重要的意义。 《几何画板》在中学数学教学中的应用及其作用 内容摘要: 近年来,如何利用多媒体技术开发课件辅助课堂教学已成为热门话题,数学作为一门独立的自然科学,有它自身的特点、体系和规律。本文结合作者的实践经验,就如何在中学数学教学中应用《几何画板》及其在教学活动中的重要作用等几方面做了系统的阐述和说明。 一、引言 1. 新数学课程标准对在数学教学中应用现代信息技术的要求; 2. 《几何画板》软件简介; 二、问题的提出 三、可行性研究 四、在数学教学中的应用 1. 绘制精确的几何图形; 2. 研究函数的图像及性质; 3. 探寻点的轨迹; 4.讨论方程或不等式的解(集); 五、在数学教学中的作用 1.有利于设置良好的教学情境; 2. 有利于体现数形结合的思想; 3. 有利于培养学生的创新意识; 4. 有利于发展学生的思维能力; 六、应注意的问题 七、结束语 一、引言 我国新数学课程标准指出:“数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。” 《几何画板》(原名:The Geometer’s Sketchpad)是由美国Key Curriculum Press公司研制并出版的几何软件。它是一个适用于数学教学的软件平台,为教师和学生提供了一个探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画和跟踪轨迹等方式,能显示或构造出较为复杂的图形。 二、问题的提出 数学是研究空间形式和数量关系的科学,在传统的认识中,数学学习只不过是一支笔一张纸的纯理论性学习,既枯燥又乏味,从而使人们逐渐对其产生了厌恶的心理,尤其是在中学数学中,有相当一部分的知识是比较抽象难懂的,如不等式解的讨论、三角函数的图像和性质、圆锥曲线方程等等,于是在一些学校中产生了数学课教师难教学生难学的现象。然而,近年来,随着计算机和网络技术的飞速发展,现代信息技术渐渐地走进了课堂,并越来越多地影响着教师的教学和学生的学习活动。根据数学这门学科的特点,《几何画板》也正在渐渐地被越来越多的人所认识和应用。 三、可行性研究 1.《几何画板》软件对硬件配置要求比较低,即使是在老式的386机器上也可以运行;该软件体积比较小,最新的4.04版也只不过四、五兆大小,并且不需要其他软件的支持就可以独立运行。这样即使计算机配置不是很好的学校也可以正常地使用它来进行教学; 2.《几何画板》操作简单,功能强大。要想学会《几何画板》,并不需要太多的计算机知识,只要具备简单的运用鼠标和键盘的技能就可以了,这样就可以使教师不用再去花费更多的时间来学习课件的制作与运用,并且制作出来的课件非常形象直观,有利于数学课堂教学。另外,课件的修改也非常方便,甚至可以在课堂上直接地对课件进行制作与修改; 四、在数学教学中的应用 1. 绘制精确的几何图形 规范准确的几何图形往往能给人以美的享受。作为一名数学教育工作者,我们应该充分认识这一点,并要善于运用这个特点来辅助我们的教学。《几何画板》这个软件则正好给我们提供了这样的一个平台,它不仅可以准确地绘制出任意的几何图形,而且还可以在运动的过程中动态地保持元素之间的几何关系。图1 例如初中的“勾股定理”是几何中一个非常重要的定理,在数学的发展史上有着非常重要的地位。在常规的教学中,往往是先由教师给出定理,再证明定理,最后举例应用。这样处理教材的内容往往使勾股定理失去了它应有的魅力,难以激发学生学习数学的热情和兴趣。如果在教学中能把《几何画板》引入课堂,并制作成相应的课件(如图1),利用它的拖拉、测算等功能,可以任意地拖动A、B、C三点以改变该直角三角形的大小,让同学观察相应地正方形面积的变化有何特点,并试着用自己的语言进行归纳总结,进而提出勾股定理,有条件的话,可以让学生自己动手亲自实验;在同学观察实验的基础上,教师再利用构造图形的方法对该定理给予证明。这样能把勾股定理的精华之处一步一步地展现的学生的面前,让他们感受其中的规律,体会其中的艰苦,尝试成功后的喜悦,从而培养他们学习几何的兴趣。 2.研究函数的图像及性质 函数的图像和性质在中学数学里既是重点又是难点。如果在教学中能充分地利用《几何画板》来将抽象的内容具体化、形象化,那么对于学生的学习无疑是很有帮助的。图2 例如在高中一年级的三角函数这一部分内容当中,为了更好地研究函数 的图像和性质,理解、和 的物理意义,可以借助《几何画板》来做演示(如图2),我们可以动态地调整 的大小,使学生能很容易地观察出它只影响曲线的振幅,而对曲线的周期和初相都没有影响,类似地我们再调整 和 的大小,以了解它们的作用。 这样,就会使整个内容变得非常形象直观,易于接受,比过去直接用理论来说明或简单地在黑板上画几个草图来讲解的效果要好得多。在学习其他的函数图像和性质时也可以采取类似的方法,从而会使数学的课堂也变得丰富多彩起来。3. 探寻点的轨迹 点的轨迹的问题,一直以来都是学生们比较难以理解和掌握的问题,大多数学生只能在头脑中简单地想象或手工地画出其草图,而这样又不能保证所画图像的精确性,尤其是对初学者来说,更难以形成自己的知识,达到熟练应用的程度。如果应用《几何画板》,就可以动态地描绘出轨迹的形成过程,使学生能够更容易地抓住其本质进行学习。图3 例如,在学习椭圆这一部分内容时,可以利用《几何画板》来演示椭圆的形成过程(如图3)。在教学过程中,我们不妨在课堂上一步一步地直接给出该课件的制作过程。通过对这个过程的了解,学生可以非常容易地知道点C就是到定点F1、F2等于定长的点。当点P在圆上不停地运动的时候,点C的轨迹则正好就是椭圆。于是椭圆的形成过程就完全地展现在学生的面前,这对于他们的形象记忆是很有好处的。当然,为了更好地说明问题,我们还可以测算出F1C、F2C以及二者的长度之和,这样可以使学生非常方便地观察出动点C在运动过程中其他的量与量之间的关系,从而对椭圆的形成过程有进一步的认识。 图4 在《几何画板》中,椭圆的作法还有很多种,我们可以鼓励学生在课下自己动手,试着用其他的方法作出椭圆,以达到举一反三的目的,这样在接下来学习双曲线这一部内容的时候,就可以让同学们自己动手来探索问题了。不仅是圆锥曲线这一部分的内容可以用《几何画板》来辅助教学,其它很多有关点的轨迹的问题都可以有它来帮忙。比如,有这样一道有趣的题:△ABC的边BC固定,点A在定圆上运动,判断它的外心轨迹的形状。对于这个题目来说,很难直接地判断出轨迹的形状,究竟是圆、椭圆、直线还是其他什么形状呢?如果我们借助《几何画板》来研究这个问题,则可以很容易地看出,在一般情况下轨迹的形状是(如图4)线段,如果再深入地研究,可以发现:当把点B拖入圆内时,外心O的轨迹是直线;当把点B、C都拖入圆内时,外心O的轨迹是两条射线。后来还发现即使点B、C在圆上,外心的轨迹也可能是射线,等等。这样通过对《几何画板》的运用,使这个问题得到了很好的解决,比单纯地口述或简单地画草图要直观得多,容易理解得多。 4.讨论方程或不等式的解(集) “方程”、“函数”和“不等式”之间存在着一定的相互依存关系。在学习的过程中,我们往往要利用这种关系,将某些方程或不等式的问题转化为函数的问题,并最终图像化。通过函数图像中存在的交点及交点的变化情况,揭示问题的内在本质和参数的几何意义,从而使问题简化。《几何画板》在这方面也给我们提供了一个很好的平台,可以很方便地从图形的变化中,让学生进行感知,去寻求对策,进而运用合理的数学运算、推理等方法使问题得到彻底解决。例如:讨论方程(为参数)的根的情况,并求出其根。将方程转化为: 将方程重组: 建立函数: 和 图5 然后,我们构建函数的图像,利用函数 这一动直线的移动变化观察出函数 在 这一区间的交点的个数(如图5),得到原方程的根的存在情况。这样在这个演示实验的帮助下,使学生能获得更加深刻的认识。 类似地,对于下面这个问题也可以这样处理:方程 有两个根,其中一个根在(0,1)之间,另一个根在(2,3)之间,求 取值范围。 我们可以将拆成两个函数: 和 再分别进行讨论。另一方面,也可以让直线不动,而让抛物线运动,即设函数,讨论其与 轴的交点,从而从多个角度来提示问题的本质特征,使学生对这个知识点的理解能上升到一个新的高度。 五、在数学教学中的作用 “现代技术的使用将会深刻地影响数学教学内容、方法和目标的改变。”在中学数学教学中应用《几何画板》的作用主要体现在以下几个方面: 1. 有利于设置良好的教学情境 由瑞士心理学家皮亚杰提出的建构主义认为:世界是客观存在的,由于每个人的知识、经验和信念的不同,每个人都有自己对世界独特的理解。知识并非是主体对客观现实的、被动的、镜面式的反映,而是一个主动的建构过程。建构主义要求学生在情景交互中直接获得知识,并建立和构造了自己的知识库。可见,在教学中创设一个良好的教学情境是相当重要的,数学教学也是如此。《几何画板》正好提供了一个“数学实验”的环境,使学生由过去枯燥乏味的“听数学”转变为真正的“做数学”,从而实现由“要我学”到“我要学”的过渡。借助于《几何画板》,我们不但可以把很多数学概念的形成过程充分地“暴露”出来,随时看到各种情形下的数量关系的变化,而且还可以把“形”和“数”的潜在关系及其变化动态的显现在屏幕上,甚至可以根据需要对这个过程进行控制,学生也通过观察的过程、制作的过程、比较的过程,产生他的经验体系,形成他的认知结构,从而更好地完成整个认知过程。 例如,在教学椭圆、双曲线等内容的时候,我们就可以借助《几何画板》这个工具将原本抽象难懂的内容形象化,创造一个愉快的学习氛围,使学生真正主动地参与到教学活动中来。它不同于其它绘图软件只要绘出图像就可以了,也不像一般地教学辅助软件给出公式就可以自动地绘出图像,而是要求学生领会“圆锥曲线”的精髓,紧扣定义,巧妙构思,建立数学模型,从而真正地做到了动手与动脑相结合,寓趣味性、技巧性、知识性于一体。2. 有利于体现数形结合的思想 华罗庚曾经说过:“数缺形时少直观,形缺数时难入微。”这句话不但深刻地揭示了数学中数与形之间的依存关系,而且还体现了辩证唯物主义的思想。把数形结合的思想贯彻于数学学习过程的始终是学好数学的关键之一。《几何画板》能够简单快捷地画出各种几何图形,而且其中的测算功能迅速地测量出图形的长度、角度、面积等,并能进行各种复杂的计算。利用图形的运动和显示出来的数据,则能充分有效地把图形与数值结合起来,体现了《几何画板》在数形结合上的优势,这是以往其它任何教学方式所无法达到的境地。图6 图7 图8 例如:在极坐标方程(和 为非零常数)中,我们知道,当 为奇数时,曲线是 叶玫瑰线(如图6);当 是偶数时,曲线是2 叶玫瑰线(如图7)。那么当 既不是奇数又不是偶数(如 =4.5)时又是什么样的呢?这就很难说了,但如果我们利用《几何画板》就可以既容易又直观地做出它的曲线(如图8)。当 =4.5时,是“重瓣的玫瑰”呀,数学的美感就会立刻展现在我们的眼前,而且我们还可以进一步地做出当 为其他一些特殊值时的曲线,使数与形充分地结合在一起。 3.有利于培养学生的创新意识 创新是一个民族生存、发展与进步的灵魂,是民族兴旺的动力。它以发掘人的创新潜能,弘扬人的主体精神,促进人的个性和谐发展为宗旨,而培养学生的创新意识是数学教学中的一个重要目的和一条基本原则。《几何画板》给学生提供了一个动态研究问题的工具,使他们有了创新的机会。图11 图10 图9 例如有这样一道轨迹问题:如图9,B是半径为r的定圆A内的一定点,M是圆 A上的一动点,过线段BM的中点E作BM的垂线与半径AM的交点为P,求P的轨迹。点P的轨迹显然是一个椭圆,这是因为|PA|+|PB|=|PA|+|PM|=r(|AB| 4.有利于发展学生的思维能力 思维能力是能力结构的核心。利用《几何画板》的动态图形功能,可以即刻改变问题的条件,观察结论所发生的变化,从而启发学生思维,培养思维能力。 例如:P是△ABC内部任意一点,直线AP、BP、CP分别与BC、CA、AB交于D、E、F,EF交AD于H,试证:。(《数学通报》“数学问题”栏目的第1167题) 在证明完这道题之后,我们试着将P点拖到△ABC的外部再进行观察。学生显然会发现屏幕上显示的 与 的值仍然相等(如图12)。这也就是说,题设中的条件“P是△ABC内部的任意一点”不是必要条件。接下来我们就可以进一步引导学生思考:结论成立的充要条件是什么呢?这时可以让学生自由的讨论,再进行最后的总结。这样就无形当中锻炼了学生的思维能力。可能一直到最后,学生也不一定能得出正确的结论,这时,我们可以适当的提示:把点P拖动到使AP平行于BC的位置时,再观察屏幕。这时 的数值不见了,这是因为点D在这时是不存在的;再将点P拖动到点A的上方,会发现 与 的值并不相等,此时结论也不成立……最后,我们再引导学生归纳总结出问题的结果:过点A作直线BC的平行线AM,只要点P不在直线AM的上方(否则H、P、D三点不都在点A的同旁),也不在直线AB、AC、AM上,点P在其他任何位置结论都成立。象这样应用启发式和讨论式的教学,能激发学生独立思考和创新意识,使他们的思维能力得到发展。 六、应注意的问题 《几何画板》引入课堂无论是对于教师的教学还是对学生的学习都是非常有帮助的,但在应用的过程当中也应注意几个问题:首先,多媒体技术在教学中的应用应该是以教学的需要为基准,它是为教学服务的,在教学中起着辅助的作用,不应以多媒体的应用为主体而忽略了知识的传授,更应注意避免多媒体在教学中所起的负面影响。作为现代教育技术引入课堂的《几何画板》也应如此,只有恰当的应用才能收到良好的效果;其次,《几何画板》确实为教学提供了很大的方便,但我们在应用的时候,要充分地用它来引导学生的学习,让它帮助学生思考,而不是代替学生思考,作为教师要给予恰当的提示,通过计算机演示实验帮助学生完成思考过程,形成对知识的理解,而不是利用计算机直接地给出结论,否则会使学生养成过分依赖的习惯,挫伤学生的创造意识和实践能力。 七、结束语 总之,《几何画板》在数学课堂教学中的广泛应用和推广,不仅带来了教学内容、教学方法、教学模式的深刻变革,而且使学生接受知识的被动地位得以改变,真正实现课堂教学中学生的主体地位和教师的主导地位,对提高学生数学素质和教师的教学能力有着重要作用,同时也对我国的素质教育起着重要的推进作用,为国家建设培养大量高素质的综合型人才。第四篇:利用几何画板辅助教学的体会
第五篇:《几何画板》在中学数学教学中的应用及其作用