第一篇:数学建模思想在小学数学教学中如何渗透
数学建模思想在小学数学教学中如何渗透
一、数学教学渗透数学建模思想的可操作性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进入和发展。”
二、数学建模的形成
1、创设相应情境,感受数学建模
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。
2、主动探索,建构数学模型
任何规律、知识的发现和形成,只有经历探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的、更一般的情景,学生在主动探索尝试过程中,进行了再创造学习,学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。
3、解决问题,应用数学模型
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
总之,通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。
第二篇:数学建模思想在小学数学教学中如何渗透
数学建模思想在小学数学教学中如何渗透
一、数学模型的概念
数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。
二、小学数学教学渗透数学建模思想的可行性 数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。
三、小学生如何形成自己的数学建模
一、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。
二、参与探究,主动建构数学模型
数学家华罗庚通过多年的学习、研究经历总结出:对书
本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、法才能沉积、凝聚,1、动手验证
教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。
2、反馈交流
3、归纳总结。
教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的.三、解决问题,拓展应用数学模型
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。
数学建模思想在小学数学教学中如何渗透
(2012年-2013年第二学期)
苏元俊
第三篇:模型思想在小学数学教学中渗透
《数学课程标准》中关于课程内容中阐述“在教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。”在基本理念的第二条中阐述“数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象。”
在数学教学中应当引导学生感悟建模过程,发展“模型思想”。在小学,进行数学建模教学具有鲜明的阶段性、初始性特征,即要从学生熟悉的生活和已有的经验出发,引导他们经历将实际问题初步抽象成数学模型并进行解释与运用的过程,进而对数学和数学学习获得更加深刻的理解。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中。
关键词:模型;数学建模;建模教学;小学数学教学《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。”
一、在创设情境时,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感
知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。
二、在探究知识的过程中,体验模型思想。
善于引导学生自主探索、合作交流,对学习过程、学习材料、主动归纳。力求建构出人人都能理解的数学模型。
例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方 法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样 学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。
三、新知识的结论,就是建立数学模型。
加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长 与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现 实问题。
在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。
例如:我在教学“平行四边形面积的计算”时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。
1.让学生充分参与与操作活动
数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个“做数学”的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。
2.让学生积极参与交流活动
四、解释与应用中体验模型思想的实用性。
如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:
1.汽车3小时行驶了270千米,5小时可行驶多少千米?
2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?
学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通 过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的 过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养
第四篇:浅析数学思想在小学数学教学中的渗透
浅析数学思想在小学数学教学中的渗透
摘 要:数学思想对于数学学科的教学实践活动有着重要的影响,对于学生综合能力的培养和提升也起着重要作用,在教学过程中渗透数学思想应该落实到数学教学的各个阶段。随着素质教育理念在基础教育阶段的深入落实,数学思想在小学数学教学中的渗透问题日渐被广大一线教师关注和探索。
关键词:数学思想;小学数学;教学;渗透
对于小学生来说,数学知识是抽象的,逻辑性比较强,学起来可能不是很容易。新课标的提出,要求在小学数学教学中渗透数学思想,帮助学生从数学的角度去解决数学问题,并能合理地运用数学思维去解决其他学习和生活中的问题。通过对小学生数学思维的培养,来锻炼学生的逻辑思维能力和空间想象力,帮助学生全面发展。
一、数学思想的简述
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。简单来说,就是从数学的角度去思考问题。对于一些特定的符号会引发一定的数学思维。比如,哪里有等式,哪里就有方程;问题中参量多,需要设未知数解决;把空间问题转化为坐标问题等。在小学数学教学过程中,适当地渗透数学思想,可以有效地将问题简化,增加学生的学习乐趣和学习的积极性。老师在讲课过程中,需要结合学生的特质,教导学生从数学的角度去思考问题,提高学生的思维能力和分析能力,促进学生的全面发展。
二、数学思想对小学数学教学的作用
数学思想来源于数学,同时也作用于数学,是人们在数学学习和积累过程中形成的一种对数学的认识,对数学知识的感觉,就像语文、英语阅读中的语感一样。数学思维不是只有数学家们才有的思维模式,而是每一个学习数学的学生都能具备的素质。数学思维,对数学的学习有启发和促进作用,在小学教学中适当地渗透数学思维,可有效地提高学生的学习效率。
此外,数学思维的培养还能使小学生产生对数学学习的兴趣,能让他们主动地去学习知识。而在传统教学中,一味地给学生灌输知识的方法,不仅让数学学习变得枯燥乏味,还极大地打击了学生学习数学知识的积极性,不利于学生的学习和发展。
对数学思维进行合理的运用,不仅能增添数学学习的趣味性,还能有效地加强学生对知识的掌握能力。而且,从数学的角度去理解数学概念和数学的理论知识也比较容易,能让学生的学习更高效,更有意义。
三、将数学思想渗透于小学数学教学的策略
1.学会问题的转化
问题转化法是小学数学教学中常用的方法,通过转化的方法把一个比较难的问题转化为简单的问题进行讨论、解决,或者把一些难懂的知识点转化为实际问题,帮助学生进行理解记忆。比如,在对有关分数的知识进行教学时,学生总是弄不懂分母和分子的位置,不理解分数的意义。老师在教学中就可以用实际的问题,帮助学生进行理解。“假如,我们班有一个同学过生日,他收到一个很大很大的生日蛋糕,要与我们进行分享,那么这个蛋糕应该平均分成多少份呢?”学生会根据班级人数说出相应份数,假设算上老师一共30人,“那我们把这个蛋糕分成三十份,分母就是这个总的份数30,现在每个同学分到一分,这个‘1’就是分数中的分子,因此我们每个人都得到了1/30的蛋糕。”这样的一个转化,就把分?档挠泄馗拍钚蜗蟮刈?化为蛋糕问题,以后学生在做题时就会想到分蛋糕的故事,然后对比着进行答题,有效地提高了学生对问题的理解能力。
2.将问题进行分类
在学习过程中,把知识进行整理分类,不但能增强学生对每个知识点的理解,还能整体把握,以一个新的高度去思考问题,把问题简化。同时,将问题分类,进行对比记忆,可以使知识点更清晰,不容易弄混,在做题时思路就会更明确。例如,对小学阶段的应用题进行分类,就可分为盈亏问题、行船问题、列车问题、鸡兔同笼问题、牛吃草问题等几大类,分别掌握每一类题型的特点,对做题方法进行整理,可以有效地缩短做题时间,提高学习效率。
3.从问题的答案中总结知识
学习的过程就是不断积累的过程,数学思维就是要学生从不断的解决问题中积累做题方法,根据题型的类比,去解决一系列的数学问题。比如,鸡兔同笼问题,在做题过程中发现,虽然都是一类题但也有所区别,在设未知数时可以根据不同的提问方式设兔为x只,或者鸡为x只,如果设对了,所列出的方程也会比较简单,解决起来也会更容易。
4.巧用极限思维
虽然极限的知识是到高中才具体讲解的,但在小学阶段就可对有关知识进行渗透。启发学生用极限的思维去思考问题,不仅能看到问题的动态特点,还能使学生对问题的理解认识更深刻。同时让学生对数学思维有一个更好的认识。比如,在学习分数比较大小时,运用极限思维,假如分子不变,让分母无限地增大,在分母增大过程中,分数值就会越来越小。
数学知识是深奥的,同样也是有趣的。在数学教学中,引导学生巧用数学思维,帮助学生更好地认识问题的本质,解决问题。
总之,在小学数学教学中要通过不断学习、钻研教材、备好课;积极研讨与实践、上好课;精心设计作业、恰当点评;指导和组织学生课外活动等环节,不失时机地渗透数学思想方法,逐步培养学生的数学兴趣和素养,让学生学会用数学的眼光看世界,用数学思想方法解决处理实际问题;让学生形成科学的思维方式和思维习惯,参与社会实践;让学生今后科学地、有效地、正确地从事各种工作,服务于人民,服务于社会,服务于人类,受益终生。
参考文献
[1]刘艳平.浅析高中数学教学中对学生数学思维能力的培养[J].中国校外教育,2015(21).[2]熊华.加强数学思想渗透,发展数学思维能力[J].课程?教材?教法,2011(9):61-66.[3]韩增侠.刍议数学思想在小学数学教学中的渗透[J].教育现代化,2016,27.[4]周志美.浅析数学思想在小学数学教学中的应用[J].教育观察(下半月),2016,11.
第五篇:数学建模思想在小学数学教学中实现的方法初探
数学建模思想在小学数学教学中实现的方法初探
【摘 要】本文初步探索了数学建模思想在小学数学教学中实现的方法,并以一个实际问题的解决为例,阐述了如何运用较合理教学法培养小学生的数学建模能力,并给出了“五步教学法”的概念。
【关键词】小学数学;数学建模;方法;五步教学法
自新的课程改革实施以来,小学数学新课程标准在第二学段(4~6年级)“数与代数”部分,逐渐用“解决问题”取代了“解应用题”,并叙述为:教学时,应通过解决实际问题进一步培养学生的数感,应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。然而,在教学实践中,提升学生的解决问题的能力却是困扰教师的一个难题,具体表现在:一方面,学生对运用文字表述出来的问题,理解较困难。另一方面,学生思维的系统性没有建立起来,不知从何处入手。因此,在引导学生解决实际问题时,对学生渗透数学建模思想,分步指导,使学生自主实践探索、团结合作研究、“课标”的目的才会实现。
下面主要介绍如何运用“五步教学法”培养小学生的数学建模能力。
所谓“五步教学法”是指:
一、读懂实际问题;
二、建起数学模型;
三、解出数学模型;
四、返回实际问题。
五、自己总结收获。
下面通过解决一道五年级数学题,简要介绍运用“五步教学法”培养小学生的数学建模能力的教学实践过程。
问题:有一块平行四边形的麦田。底是250m,高是84 m,共收小麦14.7吨。这块麦田有多少公顷?平均每公顷收小麦多少吨?
一、读懂实际问题,提高学生数学阅读的能力
对于一个五年级的小学生而言,看到这个题目,虽然仅有四十个汉字和三个数字,但在阅读过程中,读到最后,很可能把前面刚读过的词语全部忘记了,因此,要引导学生进行“数学地阅读”,使其快速、准确掌握实际问题。那么如何进行数学阅读呢?就是引导学生凭借已有的知识经验和生活积累,调动潜在的思维灵性,通过阅读数学题目中的文字信息,用数学的方法和观点来认知、理解、汲取知识并从中提练出已知的数量关系。
在阅读例题时,抓住重要的数字间关系,忽略次要的文字叙述:
1、平行四边形:底是250m,高是84 m;
2、共收小麦:14.7吨。
如此,实际问题的叙述就被提练成三个数字关系,既读懂了题目,又抽象出了数量关系。反复练习后,学生的数学阅读能力会明显提高。
二、建起数学模型,提高学生解决问题的能力
建起数学模型的过程,就是用恰当的数学语言表达已知的数量关系和待解决问题中的数与量,经过合理的分析,按题中所提供的逻辑关系和数量关系,列出正确的数学表达式。
第一问:平行四边形的面积S=h,其中a=250m,h=84m,如图2。
第二问:平均每公顷收小麦多少吨数=14.7吨÷公顷数
通过提练、分析,并尽量用数学语言表达数量关系,使学生逐步提高解决问题的能力。
三、解出数学模型,提高学生数学计算的能力
解数学模型就是解纯数学问题,即“解题”。通过简单地运算,得到:
(1)平行四边形的面积:。
利用1公顷=10000m2,可将21000(m2)化为公顷,公顷数为:21000÷10000=2.1(公顷)。
图2
(2)平均每公顷收获小麦的吨数=14.7÷2.1=7(吨/公顷)。
在解题过程中,用到“代入变量的值”,“乘法”、“除法”运算,进一步熟练了平行四边形面积的计算公式及公顷与平方米的换算关系,提高了学生的计算能力。
四、返回实际问题,提高学生数学应用的能力
对小学生进行数学建模教学的主要目的,虽然不是要他们解决生产、生活中的实际问题,但培养他们的数学应用意识和数学建模思想,才能为中学的学习和未来的工作奠定坚实的基础。因此,将纯数学计算的结果返回到实际问题中,会有效提升小学生数学应用能力。如(1)中的结果21000(m2)是麦田的面积;2.1公顷也是麦田的面积,只是用公顷做单位进行的另一种表示方法;(2)中的结果7(吨/公顷)是指每公顷收获小麦的吨数。
由此建议学生协助家长计算种植玉米、大豆等作物的土地面积,到秋收后,再计算出每公顷或每亩收获粮食的吨数。激发小学生对数学学习兴趣的同时,更有利于提高学生的数学应用能力。
五、自己总结收获,提高学生主动学习的能力
通过学生个体总结,多数学生都会总结出:
1、当提到麦田时,会联想到田野里的麦田,增强了学生的想象力;
2、更加熟悉了“米(m)、吨、公顷”等概念;
3、进一步熟练了平行四边形的面积公式及应用;
4、加强了对整数、小数和数的运算的感知;
5、会联想到,可用类似方法大致计算出自家地块的面积,到秋收后还可以计算出亩产量。
反复应用“五步教学法”,学生的数学阅读的能力、解决问题的能力、数学计算的能力、数学应用的能力、自主学习能力会得到有效培养,创新意识会显著提高。
参考文献:
[1]赵冬玲,王福胜,唐雪冰.培养初中学生的数学建模能力.读写算,2013(2):111.[2]卢江,杨刚.数学,(五年级,上册).北京:人民教育出版社,2009(3).作者简介:
王化晶:1967年11月,黑龙江省海林市三道河子镇,兴家小学校,小学一级教师。
王福胜:1966年12月,黑龙江职业学院第二校区(双城市),教授。