数学思想在因式分解教学中的渗透与应用5篇

时间:2019-05-15 03:26:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学思想在因式分解教学中的渗透与应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学思想在因式分解教学中的渗透与应用》。

第一篇:数学思想在因式分解教学中的渗透与应用

数学思想在因式分解教学中的渗透与应用

肃州区红山中学

李德涛

一、类比思想的渗透与应用

在因式分解的教学中,引导学生将因式分解与因数分解进行类比能收到很好的效果。

(1)从学习目的性上类比。小学里学习分数时,为了约分和通分的需要,必须把一个数分解分解因数。类似的,代数式学完了整式就开始学习分式。为了约分和通分,也必须学会把一个多项式分解因式,这样类比能引起学生自觉的求知欲。

(2)从形式上类比。把整数15因数分解是3×5.类似的整式p2-q2因式分解为p+q和p-q乘积的结果,因而多项式p2-q2因式分解为(p+q)(p-q),p+q、p-q都是多项式,这样类比使学生领会了因式分解的意义,也指明了因式分解地方法。

(3)从结果上类比。把一个整数分解因数冪的形式如:12=22×3.类似地把一个多项式分解因式,要分解到每一个因式都不能分解为止。

二、换元思想的渗透与应用

(1)在进行运用公式法分解因式教学时,应紧紧抓住“替换”(或“代替”)两个字,渗透换元思想,让学生理解公式中字母即可用具体的数替换,也可以用单项式、多项式甚至更复杂的代数式替换。

如:4x2-9y2=(2x)2-(3y)2=(2x+3y)(2x-3y)

a2 - b2 =(a +b)(a + b)(2)将多项式中的某一项代数式用辅助元代替,可使生疏的形式变为熟悉的式子,便于问题的解决。如把式子(z2+z)(z2+z+4)因式分解,设z2+z=y,则原多项式可以变为y(y+4),从而转化为关于y的因式分解。

(3)要将一个多项式分解因式,可以假定这个多项式已经分解成了几个因式之积,用字母代替因式的各项系数,将这些假定的因式相乘,与多项式比较得出相应的系数。如:7x2-11x-6,因为二次三项式系数7=7×1,故可设定它的两个一次因式为7x+a和x+b,由(7x+a)(x+b)=7x2+(a+7b)x+ab,与原多项式比较可知,7x+a=-1,ab=-6,从而求得a=3,b=-2,即7x2-11x-6=(7x+3)(x-2)。

三、分类思想的渗透与应用

崽分组分解法的教学中,如何分组是学生不容易掌握的难点,教师应引导学生从实际出发,选取恰当的标准,把它的各项不重复不遗漏的划分为若干类,通

过讨论寻找正确的分组方法。(1)以次数分类进行分组。

例如:把2a2-5ab-3b2+a+11b-6因式分解。则2a2-5ab-3b2+a+11b-6=(2a2-5ab-3b2)+a+11b)-6=(2a+b)(a-3b)+(a+11b)-6=(2a+b-3)a-3b+2)(2)以某字母为主元分类分组。如上例中可以以a为主元分类分组。即2a2-5ab-3b2+a+11b-6=2a2+(1-5b)a+(-3ab2+11b-6)= 2a2+(1-5b)a-3b+2)(2a+b-3)(3)以项数分类进行分组。

例如,要分解的多项式有四项,可考虑“三一”分组或“两两”分组。“三一”分组是指第①、②、③、④项按①、②③④;②、①③④;③、①②④;④、①②③进行分组。“两两”分组是指将多项式的四项按①②、③④;①③、②④;①④、②③进行分组。这样既不重复又不遗漏地进行分类讨论,从而找到合适的分组方法。

四、方程思想的渗透与应用

要将一个二次三项式分解因式,可以首先令这个一元二次三项式等于零,得到一个一元二次方程,求出方程的两根,再将多项式分解因式。特别是在实数范围内对二次三项式的因式分解用这种方法尤为方便。

若方程ax2+bx+c=0(a=0)根为x1x2,则ax2+bx+c=a(x-x1)(x-x2).例如分解因式6x2+13x+6,只要令6x2+13x+6=0得根为x1=2/3,x2=3/2,则6x2+13x+6=6(x-2/3)(x-3/2)=(3x-2)(2x-3).五、转化思想的渗透与应用

例如,a2b+b2c+c2a-ab2-bc2-ca2,可将多项式转化为关于a的二次三项式(b-c)a2+(c2-b2)a+(b2c-bc2),再提公因式(b-c)和分组分解法即可达到分解的目的。又如因式分解x3-3x+2,通过将多项式的某一项(或几项)拆成两项(或几项),或者给多项式添项、减项,转化为利用分组法进行因式分解,也能化难为易。即x3-3x+2=x3-x-2x+2=(x3-x)-2(x-1)=x(x+1)(x-1)-2(x-1)=(x-1)(x2+x-2)=(x-1)2(x+2)总之,在数学教学教学中注意渗透和运用数学方法,有利于培养和发展学生思维的条理性、缜密性、灵活性,从而可大大提高学生解决数学问题的能力。

第二篇:模型思想在小学数学教学中渗透

《数学课程标准》中关于课程内容中阐述“在教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。”在基本理念的第二条中阐述“数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象。”

在数学教学中应当引导学生感悟建模过程,发展“模型思想”。在小学,进行数学建模教学具有鲜明的阶段性、初始性特征,即要从学生熟悉的生活和已有的经验出发,引导他们经历将实际问题初步抽象成数学模型并进行解释与运用的过程,进而对数学和数学学习获得更加深刻的理解。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中。

关键词:模型;数学建模;建模教学;小学数学教学《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。”

一、在创设情境时,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感

知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。

二、在探究知识的过程中,体验模型思想。

善于引导学生自主探索、合作交流,对学习过程、学习材料、主动归纳。力求建构出人人都能理解的数学模型。

例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方 法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样 学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。

三、新知识的结论,就是建立数学模型。

加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长 与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现 实问题。

在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。

例如:我在教学“平行四边形面积的计算”时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。

1.让学生充分参与与操作活动

数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个“做数学”的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。

2.让学生积极参与交流活动

四、解释与应用中体验模型思想的实用性。

如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:

1.汽车3小时行驶了270千米,5小时可行驶多少千米?

2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?

学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通 过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的 过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养

第三篇:数学建模思想在小学数学教学中如何渗透

数学建模思想在小学数学教学中如何渗透

一、数学模型的概念

数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。

二、小学数学教学渗透数学建模思想的可行性 数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。

三、小学生如何形成自己的数学建模

一、创设情境,感知数学建模思想。

数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。

二、参与探究,主动建构数学模型

数学家华罗庚通过多年的学习、研究经历总结出:对书

本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、法才能沉积、凝聚,1、动手验证

教师给学生提供多个圆柱、长方体、正方体和圆锥空盒(其中圆柱和圆锥有等底等高关系的、有不等底不等高关系的,圆锥与其他形体没有等底或等高关系)、沙子等学具,学生分小组动手实验。

2、反馈交流

3、归纳总结。

教师提供丰富的实验材料,学生需要从中挑选出解决问题必须的材料进行研究。学生的问题不是一步到位的,通过不断地猜测、验证、修订实验方案,再猜测、再验证这样的过程,逐步过渡到复杂的.三、解决问题,拓展应用数学模型

综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。

数学建模思想在小学数学教学中如何渗透

(2012年-2013年第二学期)

苏元俊

第四篇:浅析数学思想在小学数学教学中的渗透

浅析数学思想在小学数学教学中的渗透

摘 要:数学思想对于数学学科的教学实践活动有着重要的影响,对于学生综合能力的培养和提升也起着重要作用,在教学过程中渗透数学思想应该落实到数学教学的各个阶段。随着素质教育理念在基础教育阶段的深入落实,数学思想在小学数学教学中的渗透问题日渐被广大一线教师关注和探索。

关键词:数学思想;小学数学;教学;渗透

对于小学生来说,数学知识是抽象的,逻辑性比较强,学起来可能不是很容易。新课标的提出,要求在小学数学教学中渗透数学思想,帮助学生从数学的角度去解决数学问题,并能合理地运用数学思维去解决其他学习和生活中的问题。通过对小学生数学思维的培养,来锻炼学生的逻辑思维能力和空间想象力,帮助学生全面发展。

一、数学思想的简述

数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。简单来说,就是从数学的角度去思考问题。对于一些特定的符号会引发一定的数学思维。比如,哪里有等式,哪里就有方程;问题中参量多,需要设未知数解决;把空间问题转化为坐标问题等。在小学数学教学过程中,适当地渗透数学思想,可以有效地将问题简化,增加学生的学习乐趣和学习的积极性。老师在讲课过程中,需要结合学生的特质,教导学生从数学的角度去思考问题,提高学生的思维能力和分析能力,促进学生的全面发展。

二、数学思想对小学数学教学的作用

数学思想来源于数学,同时也作用于数学,是人们在数学学习和积累过程中形成的一种对数学的认识,对数学知识的感觉,就像语文、英语阅读中的语感一样。数学思维不是只有数学家们才有的思维模式,而是每一个学习数学的学生都能具备的素质。数学思维,对数学的学习有启发和促进作用,在小学教学中适当地渗透数学思维,可有效地提高学生的学习效率。

此外,数学思维的培养还能使小学生产生对数学学习的兴趣,能让他们主动地去学习知识。而在传统教学中,一味地给学生灌输知识的方法,不仅让数学学习变得枯燥乏味,还极大地打击了学生学习数学知识的积极性,不利于学生的学习和发展。

对数学思维进行合理的运用,不仅能增添数学学习的趣味性,还能有效地加强学生对知识的掌握能力。而且,从数学的角度去理解数学概念和数学的理论知识也比较容易,能让学生的学习更高效,更有意义。

三、将数学思想渗透于小学数学教学的策略

1.学会问题的转化

问题转化法是小学数学教学中常用的方法,通过转化的方法把一个比较难的问题转化为简单的问题进行讨论、解决,或者把一些难懂的知识点转化为实际问题,帮助学生进行理解记忆。比如,在对有关分数的知识进行教学时,学生总是弄不懂分母和分子的位置,不理解分数的意义。老师在教学中就可以用实际的问题,帮助学生进行理解。“假如,我们班有一个同学过生日,他收到一个很大很大的生日蛋糕,要与我们进行分享,那么这个蛋糕应该平均分成多少份呢?”学生会根据班级人数说出相应份数,假设算上老师一共30人,“那我们把这个蛋糕分成三十份,分母就是这个总的份数30,现在每个同学分到一分,这个‘1’就是分数中的分子,因此我们每个人都得到了1/30的蛋糕。”这样的一个转化,就把分?档挠泄馗拍钚蜗蟮刈?化为蛋糕问题,以后学生在做题时就会想到分蛋糕的故事,然后对比着进行答题,有效地提高了学生对问题的理解能力。

2.将问题进行分类

在学习过程中,把知识进行整理分类,不但能增强学生对每个知识点的理解,还能整体把握,以一个新的高度去思考问题,把问题简化。同时,将问题分类,进行对比记忆,可以使知识点更清晰,不容易弄混,在做题时思路就会更明确。例如,对小学阶段的应用题进行分类,就可分为盈亏问题、行船问题、列车问题、鸡兔同笼问题、牛吃草问题等几大类,分别掌握每一类题型的特点,对做题方法进行整理,可以有效地缩短做题时间,提高学习效率。

3.从问题的答案中总结知识

学习的过程就是不断积累的过程,数学思维就是要学生从不断的解决问题中积累做题方法,根据题型的类比,去解决一系列的数学问题。比如,鸡兔同笼问题,在做题过程中发现,虽然都是一类题但也有所区别,在设未知数时可以根据不同的提问方式设兔为x只,或者鸡为x只,如果设对了,所列出的方程也会比较简单,解决起来也会更容易。

4.巧用极限思维

虽然极限的知识是到高中才具体讲解的,但在小学阶段就可对有关知识进行渗透。启发学生用极限的思维去思考问题,不仅能看到问题的动态特点,还能使学生对问题的理解认识更深刻。同时让学生对数学思维有一个更好的认识。比如,在学习分数比较大小时,运用极限思维,假如分子不变,让分母无限地增大,在分母增大过程中,分数值就会越来越小。

数学知识是深奥的,同样也是有趣的。在数学教学中,引导学生巧用数学思维,帮助学生更好地认识问题的本质,解决问题。

总之,在小学数学教学中要通过不断学习、钻研教材、备好课;积极研讨与实践、上好课;精心设计作业、恰当点评;指导和组织学生课外活动等环节,不失时机地渗透数学思想方法,逐步培养学生的数学兴趣和素养,让学生学会用数学的眼光看世界,用数学思想方法解决处理实际问题;让学生形成科学的思维方式和思维习惯,参与社会实践;让学生今后科学地、有效地、正确地从事各种工作,服务于人民,服务于社会,服务于人类,受益终生。

参考文献

[1]刘艳平.浅析高中数学教学中对学生数学思维能力的培养[J].中国校外教育,2015(21).[2]熊华.加强数学思想渗透,发展数学思维能力[J].课程?教材?教法,2011(9):61-66.[3]韩增侠.刍议数学思想在小学数学教学中的渗透[J].教育现代化,2016,27.[4]周志美.浅析数学思想在小学数学教学中的应用[J].教育观察(下半月),2016,11.

第五篇:浅谈数形结合思想在小学数学教学中的渗透与应用

浅谈数形结合思想

在小学数学教学中的渗透与应用

数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。

一、数形结合是一种数学思考方法

数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。

1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材 和较容易理解的内容可先数后形,通过数来揭示形。

2.就学生的 年龄特 征而言。中低段学 生是 以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,揭示出面积变化 的规律,在教学分数应用题时,让学生通过准确的线段图,很快找出单位“l”,量和量所对应的分率,确定解题的方法,从而提高学生的逻辑思维能力和解决数学问题的能力。如:《点阵中的规律》从数一形一数的应用;平时教学《三角形内角和》时,既用图形演示三个内角拼成一个平角,又用量角器量出三个角的度数计算出三个内角的和为 180。注重学生用数来表示形,用数来具体量化形,从而解决形 的问题。教师在数学教学中,多注重转化的思想,如:《组合图形面积》充分利用分割、添补、割补等方法,将组合 图形转化为已学的图形来计算面积 ;又如平行四边形转化为三角形,圆转化为近似的长方形等,让学生在转化中培养用数来表示形,用形来揭示数的能力。

二、在数学教学中渗透数形结合的思想

现行教材和《课标》,注重了知识、能力、数学活动经验、数学教学思想的培养,而数学思想的核心是数学本质,要揭示数学本质,主要应 阐述知识 之间的内在联系、规律的发现过程、数学思想方法的渗透、理性知识的应用等有理有据地发现规律,并应用发现的规律解决实际问题。

在数学教学中,教师要注重教材,钻研教材要有深度,教材中有 内涵 的内容就应充分发掘出来,没有的就要进行创设,要在教学中时时渗透数形结合的思想,更重要 的是教师在教学设计、教学方法、教学手段中要有渗透数形结合思想的意识。教师充分利用教材中的主题图,让学生通过“形”找出解决问题的“数”。在平时的教学工作中,引导学生主动而有效利用课本中的主题图或其他图形,从图中读懂重要信息,并整理信息,提出问题、分析问题、解决问题。在课堂教学中,要给学生更大的空间.多发现学生的闪光点,让学生养成自主探索、自我评价、合作交流的学习习惯,增强对数形结合思维模式的认知,体会图形教学对数学知识形成的意义,注意加强数形结合思想的渗透,关注学生数形结合思维能力的提高,从而培养 图形 与空间观 念的认知能力。

三、注重对学生数形结合学习方式的应用指导

在课堂教学中,数与形的结合是教师和学生学习数学的一种思想方法,两者不能截然分开,两种都是符号,要做到数中有形,形中有数,让学生寓知识于活动之中,以形思数,帮助记忆;数形对照,加深理解;数形联系,以利解题;以形载数,以数量形;数形互释,图文并茂。把数形结合作为培养学生形象思维能力和逻辑思维能力的终结目标。在知识的形成过程中,突 出形象的感觉、形象的储存、形象的判断、形象的创造和形象的描述,重视有效的动手操作和情境 的创设,让学生动手、动跟、动口,多种感官参加学习,使操作、观察等有机结合,激发学生多向思维。

教师应充分利用学生形象思维的特点大量地用“形”解释、演示、帮助理解抽象的“数”。如在应用题教学中特别重视发挥线段图的作用。数学教学中的实物、示意图、线段图、平面图、立体图等是用形来表示数量关系,用形 来表示数,它既能舍去应用题的具体情节,又能形象地揭示出条件与条件、条件与问题之间的关系,把数转化为形,明确显示出已知与未知 的内在联系,激发学生 的再造性想象,激活学生的解题思路。在教学中,可经常进行一些根据线段图列出算式,根据算式画线段图,根据线段图编应用题,根据应用题画线段图等训练,让学生在潜移默化中悟出画图的方法,感受到数与形结合的优点,养成根据 题意画 图帮助理解题意,激发学生数形结合的学习兴趣,为学生长远学习奠定好的学习方法,从而提高学生的数形转化能力,实现形象思维和抽象思维的互助互补,相辅相成。

四、让学生养成数形结合的良好习惯

我们在学习简单的应用题、认识整数、分数、小数的意义以及加、减、乘、除的意义及计算时,在解决分数应用题时,就要求学生画出线段图来。在学习了平面图形、立体图形以及它们的周长、面积、表面积、体积发生变化时,都

要求学生画出图形,用“形”来理解它们的变化,从而再用数来表示,达到用“形”来理解“数”,用“数”来表示“形”。经过长期的训练,让学生有很好的数形结合的好习惯,提高学生的数学思维能力和转化能力,达到数形统一。

数学家华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休”。通过这次测试、调查和论坛交流,让一线教师对数形结合思想有了新的认识和重视,在平时的教学中,重视在教学设计、教学方法、教学手段等多方面加以培养和训练,使学生逐渐养成数形结合的习惯,才能真正提高学生的数学分析思维能力和解决数学问题的能力,不断提高学生的逻辑思维能力和形象思维能力。

下载数学思想在因式分解教学中的渗透与应用5篇word格式文档
下载数学思想在因式分解教学中的渗透与应用5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐