第一篇:分类讨论思想在初中数学中的几点应用
龙源期刊网 http://.cn
分类讨论思想在初中数学中的几点应用 作者:杨欣
来源:《中学教学参考·理科版》2013年第06期
分类讨论是一种重要的数学思想方法,同时也是一种解题策略.数学中有许多问题由于已知条件笼统,所以需要对可能的情形进行分类讨论,因此,我们在思考问题的解法时,需要认真审题,全面考虑,分类要做到不重不漏,从而获得完整的答案.以下是分类讨论思想在初中数学中的几点应用,一、在实数中的应用
【例6】 若直线y=kx+6与两坐标轴所围成的三角形的面积是24,求常数k的值.分析:与坐标轴的围法分两种情形:所围三角形在第一象限或在第二象限.解:如图2,图像与纵坐标交于点(0,6).设与横坐标交于(a,0).(1)若与坐标轴围成的三角形在第一象限,则有12a×6=24,得a=8.将(8,0)代入一次函数y=kx+6,此时k的值为-34.(2)若与坐标轴围成的三角形在第二象限,同理可得k的值为34.综上,k的值为-34或34.(责任编辑 金 铃)
第二篇:分类讨论思想在解数学题中的应用
数学解题中的思考
------分类讨论思想的应用
【摘要】解数学问题往往可以有众多的思想方法,如转化化归,数形结合,分类讨论,数学建模等等,而在这些思想方法中分类讨论是一种重要的数学思想,学习数学的过程经常会遇到分类问题,如数的分类,图形的分类,代数式的分类等等,在研究数学问题中常常需要通过分类讨论解决问题,本文从渗透在教材中的分类思想出发,结合例题阐述了分类讨论的思想,分类的原则,分类讨论的应用,从而体现分类讨论思想在初中数学解题中的作用和地位。
【关键词】分类讨论的思想分类的原则分类讨论的应用
数学课程标准明确提出数学思想方法是数学基础知识的重要组成部分,数学教学中如何挖掘课本中所蕴含的数学思想方法,如何有效的进行数学思想方法教学,如何培养和发展学生的数学思想已经成为数学教育工作者普遍关注和潜心探索的一项重要课题。在新课程中,分类思想在教材中的体现是丰富多彩的,在整个初中阶段很多问题都用了分类的思想,将不同的事物分为不同的种类,寻找它们各自的共同点及内在的规律性。
一. 分类讨论的思想
所谓分类讨论就是分别归类再进行讨论的意思,数学中的分类过程就是对事物共性的抽象过程,解题时要使学生体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程如何认识事物的属性,如何区分不同事物的不同属性,通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想,它体现了化整为零,化零为整与归类整理的思想,它:揭示着数学事物之间的内在规律,学会分类有助于学生总结归纳所学的知识,使所学的知识条理化,提高思维的概括性,从而提高分析问题和解决问题的能力。
我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。我们平时在解决问题时还经常碰到这样的情况,当问题解答到某一步骤后,需要按一定的标准来分为若干个子问题进行讨论,这样常常可以使问题化繁为简,更清楚地暴露事物的属性。
案例1:某服装厂生产一种西装和领带。西装每套定价200元,领带每条定价40元,厂方在开展促销活动期间向顾客提供两种优惠方案。方案一:买一套西装送一条领带,方案二:西装领带均按定价打9折(两种优惠方案不可同时采用)某店老板要去厂里购买20套西装和若干条领带(超过20条)请帮店老板选择一种较省钱的购买方案?
分析:因为已知条件中未明确购买领带的数量,因而较省钱的购买方案也是不确定的,而是由不同的领带购买数量决定的解:设店老板需购买领带x条
方案一购买需要付款200×20+(x-20)×40=40x+3200(元)
方案二购买需要付款(200×20+40x)×0.9=36x+3600(元)
假设 y=(40x+3200)-(36x+3600)= 4x-400(元)
(1)当y<0时,即20<x<100,方案一比方案二省钱
(2)当y=0时,即x=100,方案一和方案二同样省钱
(3)当y>0时,即x>100,方案二比方案一省钱
答:当购买领带超过20条而不到100条时,方案一省钱,当购买领带等于100条时,两种方案一样省钱,当购买领带超过100条时,方案二省钱
二. 分类的原则
分类讨论必须遵循一定的原则进行,在初中阶段我们经常用到以下几个原则
1.同一性原则
分类应该按照同一标准进行,即每次分类不能同时使用几个不同的分类依据,否则会出现重复的现象,例如有些同学认为三角形可以分为等腰三角形,等边三角形,锐角三角形,钝角三角形,直角三角形,这样的分类是错误的,不但以边来分类而且以角来分类,等腰三角形可以是锐角三角形,钝角三角形或直角三角形,这样的分类犯了标准不同的错误
2.互斥性原则
分类后的每一个子类应该具备互不相容的原则,即不能出现有一项既属于这一类又属于那一类。例如学校举行运动会,规定每个学生只能参加一项比赛,初一六班的6名同学报名参加100和200米的赛跑,其中有4人参加100米比赛,3人参加200米比赛,那么就有1人既参加100米又参加200米比赛,这道题目分类的互斥性原则
3.完整性原则
分类后的每一个子类合并起来应该等于总类,否则会出现遗漏的现象。例如某人把实数分为正实数和负实数,这样的分类是不完整的,因为零也是实数,但是零既不是正实数也不是负实数。
4.多层性原则
分类后的子类还可以继续再进一步分类,直到不能再分为止。例如实数可以分为有理数和无理数,有理数可以分为整数和分数,整数可以分为正整数,零和负整数
三. 分类讨论的应用
我们用分类讨论的思想解决问题的一般步骤是:
(1)先明确需讨论的事物及讨论事物的取值范围
(2)正确选择分类的标准,进行合理的分类
(3)逐类讨论解决
(4)归纳并作出结论
下面浅谈一下分类讨论在初中阶段的一些简单的应用:
1.分类讨论在应用题中的应用
案例2:学校建花坛余下24米漂亮的小围栏,经总务部门同意,初一五班的同学准备在自己教室后的空地上建一个一面靠墙,三面利用这些围栏的花圃,请你设计一下,使花圃的长比宽多3米,求出花圃的面积是多少?
分析:因为已知条件中并没有明确长和宽的位置,所以需要对长和宽的位置进行讨论 解:(1)假设平行于墙的一边为长x米,则宽为(x-3)米,依题意可列方程
x+2(x-3)=24
解方程得x=10
经检验,符合题意
长为10米,宽为7米,面积为70平方米
(2)假设垂直于墙的一边为长x米,则宽为(x-3)米,依题意可列方程
2x+(x-3)=24
解方程得x=9
经检验,符合题意
长为9米,宽为6米,面积为54平方米
答:当平行于墙的一边为花圃的长时花圃的面积是70平方米,当垂直于墙的一边为花圃的长时花圃的面积是54平方米。
学生在解此类题的错误往往是因为不认真审题,没有弄清已知条件中的各种可能情况
而急于解题所造成,只有审清了题意,全面系统地考虑问题,才可以确定出各种可能情况,解答此类问题就不会造成漏解
2.分类讨论在绝对值方程中的应用
关于绝对值的问题,往往要将绝对值符号内的代数式看成一个整体,将这个整体分为正数,负数,零三种,再分别进行讨论。
案例3:求方程 ︳x﹢2︳﹢︳3﹣x︳= 5的解
分析:本题应该对于代数式 ︳x﹢2︳应分为x=﹣2,x﹥﹣2,x﹤﹣2,对于︳3﹣x︳应分为x=3,x﹥3,x﹤3,把上述范围画在数轴上可见对这一问题应划分以下三种情况分别讨论
解:①当x≦﹣2时,原方程变为﹣﹙x﹣2﹚﹢3﹣x=5,解得x=0与x≦﹣2产生矛盾,故在x﹤﹣2时原方程无解
②当﹣2﹤x≦3时,原方程为x﹢2﹢3﹣x=5恒成立,故满足2﹤x≦3的一切实数x都是此方程的解
③当x﹥3时,原方程为x﹢2﹣﹙3﹣x﹚=5,解得x=3这与x﹥3产生了矛盾,故在x﹥3时原方程无解
综上所述,原方程的解是满足2﹤x≦3的一切实数。
3.分类讨论在解含有参数问题中的应用
所有含有参数的问题都要进行分类讨论,而且要对参数的不同取值范围分类讨论,不能有重复和遗漏。
案例4:若关于x的分式方程xa31无解,求a的值 x1x
解:方程两边同乘以x﹙x﹣1﹚,得﹙x﹣a﹚x﹣3﹙x﹣1﹚=x﹙x﹣1﹚
整理得﹙a﹢2﹚x=3
①当a﹢2=0即 a=﹣2时,方程无解,则原方程也无解
②当x=1时方程无解,此时a﹢2=3,得a=1
③当x=0时方程无解,此时﹙a﹢2﹚×0=3无解
综上所述,a的值为1或﹣2
4.分类讨论在解几何题中的应用
分类讨论思想在几何题中有广泛的应用,在有关点与线的位置关系,直线与直线的位置关系,直线与圆的位置关系,圆与圆的位置关系,等腰三角形等的题目中都需要进行分类讨论。案例5:等腰三角形中,有一个角是另一个角的4倍,求等腰三角形的一个底角的度数? 分析:本题应该分为底角是顶角的4倍和顶角是底角的4倍两种情况进行讨论
解:(1)当一个底角的度数为x度,顶角是4x度时
依题意列方程x﹢x﹢4x=180解得x=30,底角等于30度
(2)当一个底角的度数为4x度,顶角是x度时
依题意列方程4x﹢4x﹢x=180解得x=20,底角等于80度
综上所述,等腰三角形的底角为30度或者80度。
5.分类讨论在解概率题中的应用
在求简单事件的概率时,我们通常会用“列表”或者是“画树状图”的方法来列举所有机会均等的结果,然后找出该事件所包含的结果,从而求出该事件发生的概率。事实上“列表”或者是“画树状图”的方法就是分类讨论的思想方法最直接的体现。
案例6:同时抛掷3枚普通的硬币一次,问得到“两正一反”的概率是多少
分析:每一个硬币都有正面和反面,我们可以用画树状图的方法分析先抛第一枚,再抛第二
枚,最后抛第三枚,可知共有8种机会均等的结果它们是(正正正)(正正反)(正反正)(反正正)(反反正)(反正反)(正反反)(反反反),其中两正一反的结果有3种,可以求得概率是八分之三。
6.分类讨论在解函数题中的应用
分类讨论的思想方法贯穿于初中阶段学过的所有的函数中,一次函数y=kx﹢b﹙k≠0﹚要对k,b取值范围进行分类讨论,反比例y=
2k﹙k≠0﹚函数要对k的取值范围进行分类讨论,x二次函数y=ax﹢bx﹢c﹙a≠0﹚要对a的取值范围进行分类讨论
案例7:求二次函数y=ax﹢﹙3﹣a﹚x﹢1﹙a≠0﹚与x轴只有一个交点,求a的值与交点坐标
解:①当a=0时,此函数为一次函数y=3x﹢1与x轴只有一个交点,交点坐标是(-21,0)3
2②当a≠0时,此函数是二次函数,因二次函数与x轴只能有一个交点则判别式为零﹙3﹣a)﹣4a = 0
解得a=1或a=9
当a=1时,与x轴的交点坐标是(﹣1,0)
当a=9时,与x轴的交点坐标是(【结语】分类讨论思想的应用非常广泛,涉及到初中的全部知识点,这里不能一一列举出来,分类讨论思想的关键是分清引起分类的原因,明确分类讨论的事物和标准,按可能出现的所有情况做出准确分类,再分门别类加以求解,最后将各类结论综合归纳,得出正确答案。数学中的分类思想是一种比较重要的数学思想,通过加强数学分类思想的训练,有利于提高学生对学习数学兴趣,培养学生思维的条理性,缜密性,科学性,这种优良的思维品质对学生的未来必将产生深刻和久远的影响。
参考文献:
(1)2011年版义务教育数学课程标准
(2)任百花:初中数学思想方法教学研究
(3)江国安:初中数学综合题的教学探索
(4)赵峰:浅谈分类讨论思想在解题中的应用
(5)王奎文:增强中学生的数学应用意识 1,0)3
第三篇:初探分类思想在初中数学教学中的渗透
初探分类思想在初中数学教学中的渗透
推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的的关注学生的学习方法和策略。数学家乔治·波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”
。随着课程改革的深入,"应试教育”向“素质教育”转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。如基本知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教育。
数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。
分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对分类思想的主动应用
一、渗透分类思想,养成分类的意识
每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数的分类,绝对值的意义,不等式的性质等,都是渗透分类思想的很好机会。整数、分数
正有理数
零
负有理数
教授完负数、有理数的概念后,及时引导学生对有理数进行分类,让学生了解到对不同的标准,有理数有不同的分类方法,如分为:
有理数
有理数
为下一步分类讨论奠定基础。
认识数a可表示任意数后,让学生对数a 进行分类,得出正数、零、负数三类。讲解绝对值的意义时,引导学生得到如下分类:
0
a
= =
a
a > 0
-a a < 0
通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。
又如,两个有理数的比较大小,可分为:正数和正数、正数和零、正数和负数、负数和零、负数和负数几类情况来比较,而负数和负数的大小比较是新的知识点,这就突出了学习的重点。
结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
二、学习分类方法,增强思维的缜密性 在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。
分类的方法常有以下几种:
1、根据数学的概念进行分类
有些数学概念是分类给出的,解答此类题,一般按概念的分类形式进行分类。例1,化简
解:
这是按绝对值的意义进行分类。
例
2、比较 与 易得 的错误,导致错误在于没有注意到数 可表示不同类的数。而对数 进行分类讨论,既可得到正确的解答: 〉0 时,= 0 时,< 0 时 ,2、根据数学的法则、性质或特殊规定进行分类
学习一元二次方程 , 根的判别式时,对于变形后的方程
用两边开平方求解,需要分类研究 大于0,等于0,小于0这三种情况对应方程解的情况。而此题的符号决定能否开平方,是分类的依据。从而得到一元二次方程的根的三种情况。
例
3、解关于x的不等式:ax+3>2x+a 分析通过移项不等式化为(a-2)x>a-3的形式,然后根据不等式的性质可分为a-2>0,a-2=0,和a-2<0三种情况分别解不等式。当a-2>0,即a>2时,不等式的解是x> 当,a-2=0,即a=2时,不等式的左边=0,不等式的右边=-1 因为0¹-1,所以不等式的解是一切实数。当a-2<0,即a<2时,不等式的解是x<
3、根据图形的特征或相互间的关系进行分类
如三角形按角分类,有锐角三角形、直角三角形、钝角三角形,直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。
例如 等腰三角形一腰上的高与另一腰的夹角为30°,底边长为a,则其腰上的高是
。(2002年河南中考题)
分析:本题根据图形的特征,把等腰三角形分为锐角三角形和钝角三角形两类作高CD,如图,可得腰上的高是 或
从几何图形的点和线出现不同的位置进行分类 在证明圆周角定理时。由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况。这是一种从定理的证明过程中反映出来的分类讨论的思想和方法。它是根据几何图形点和线出现不同位置的情况逐一解决的方法。教材中在证明弦切角定理:弦切角等于它所夹的弧所对的圆周角。也是如此分圆心在弦切角的一条边上,弦切角的内部、弦切角的外部三种不同情况解决的。
三、引导分类讨论,提高合理解题的能力
初中课本中有不少定理、法则、公式、习题,都需要分类讨论,在教授这些内容时,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。一般来讲,利用分类讨论思想和方法解决的问题有两大类:;其一是涉及代数式或函数或方程中,根据字母不同的取值情况,分别在不同的取值范围内讨论解决问题。其二是根据几何图形的点和线出现不同位置的情况,逐一讨论解决问题
例
4、已知函救y=(m-1)x2+(m-2)x-1(m是实数).如果函数的图象和x轴只有一个交点,求m的值.分析:这里从函数分类的角度讨论,分 m-1=0 和 m-1¹0 两种情况来研究解决问题。
解:当m=l 时函数就是一个一次函数y=-x-1,它与x轴只有一个交点(-1,0)。当 m¹1 时,函数就是一个二次函数y=(m-1)x2+(m-2)x-1 当△=(m-2)2+4(m-1)=0,得 m=0.抛物线 y=-x2-2x-1,的顶点(-1,0)在x轴上
例
5、函数 y = x6 – x5 + x4-x3 + x2 – x +1,求证:y 的值恒为正数。
分析:将y的表达式分解因式,虽可证得结论但较难。分析可发现,若将变量x在实数范围内适当分类,则问题容易解决。证明:⑴ 当x ≤0时
∵ x5x ≥0,∴ y≥1恒成立;
⑵ 当0 < x <1时
y = x6 +(x4 – x5)+(x2 – x3)+(x – 1)
∵x4 > x5 , x2 > x3 , 1> x
∴ y > 0 成立;
⑶ 当x = 1 时, y = 1 > 0 成立; ⑷ 当x >1时
y =(x6 – x5)+(x4 – x3)+(x2 – x)+ 1
∵ x6 > x5 , x4 > x3 , x2 > x
∴ y > 1成立 综上可知,y > 0 成立。
例
6、已知△ABC是边长为2的等边三角形,△ACD是含30°角的直角三角形。△ABC和△ACD拼成一个凸四边形ABCD。(1)画出四边形ABCD;(2)求四边形ABCD的面积。
分析含30°角的直角三角形ACD中我们可以把AC作为斜边、AC作为直角边二类情况来研究。如图1是以AC为斜边和等边三角形ABC拼成的四边形ABCD(ÐDAC=30°和ÐDAC=60°这两种图形算出的四边形ABCD面积相同的,故归纳为同一类).AC为直角边又可分为二种不同情况如图2和3。从图1,S四边形ABCD=;从图2,可算得S四边形ABCD=;可算得S四边形ABCD=3 由以上的几个例子,我们可以看出分类讨论往往能使一些错综复杂的问题变得异常简单,解题思路非常的清晰,步骤非常的明了。另一方面在讨论当中,可以激发学生学习数学的兴趣。利用现有教材,教学中着意渗透并力求帮助学生初步掌握分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。相信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。
第四篇:浅谈数学建模思想在初中教学中的应用
浅谈数学建模思想在初中教学中的应用
小勐统中学 李发娣
【摘要】在教学中渗透数学建模思想,适当开展数学建模的活动,对培养学生的能力发挥重要的作用,也是数学教学改革推进素质教育的一个切入口,本文是本人对教学中渗透数学建摸思想活动的方法及一些简单的体会.【关键词】数学建模 建模思想 能力培养
引言: 初中九年级义务教育数学课程标准强调指出:“在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型,估计,求解验证解的正确性和合理性的过程”【1】.从而体会数学与现实生活的紧密联系,增强应用知识的意识,培养运用代数知识与方法解决问题的能力.数学新课程改革的一个重要目标就是要加强综合性.应用性内容,重视联系学生生活实际和社会实践.而数学建模作为重要的数学思想初中学生应该了解,而数学模型作为解决应用问题的最有效手段之一,中学生更应该掌握.在数学课堂教学中及时渗透数学建模思想,不仅可以让学生感受数学建模思想,而且可以利用数学模型提高学生解决实际问题的能力.本文就创设情景教学体验数学建模.以教材为载体,向学生渗透建模思想.通过实际应用体会建模思想在数学中的应用,谈谈自己的感想.初中学生的数学知识有限,在初中阶段数学教学中渗透数学建模思想,应以教材为载体,以改革教学方法为突破口,通过对教学内容的科学加工.处理和再创造达到在学中用,在用中学,进一步培养学生用数学意识以及分析和解决实际问题的能力.下面结合两年来的教学体会粗略的谈谈数学建模在初中教学中的应用
一、创设情景教学 体验数学建模
数学教育学家弗赖登塔尔说“数学来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的‘数学现实’” 【2】.数学只有在生活中存在才能生存于大脑.教育心理学研究表明,学习内容与学生已有的潜意识知识及生活经验相关性越大,学生对此的学习兴趣越浓.我们应重视数学与生产、生活的联系,激发学生的建模兴趣,而生活、生产与数学又密切相关,在数学的教学活
动中,我们若能挖掘出具有典型意义,能激发学生兴趣问题,创设问题情景,充分展现数学的应用价值,就能激发学生的求知欲.例题1 我市某商场为做好“家电下乡”的惠农服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价分别为1000元/台、1500元/台、2000元/台.(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?[3] 解:
(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,得
1000×4x+1500×(108-5x)+2000x≤147000 解这个不等式得
x≥10
因此至少购买丙种电视机10台;(2)根据题意,得
4x≤108-5x 解得 x≤12
又∵x是正整数,由(1)得 10≤x≤12
∴x可以取10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台; 方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台; 方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.二.以教材为载体,把握策略,渗透建模思想
在现行的义务教育课程标准实验教科书教材中,时常能遇到一些创设有关知识情境的问题,这些问题大多数可以结合数学思想、数学方法进行教学,在这个教学过程中就可以进行数学建模思想的渗透,不仅可以使学生体会到数学并非只
是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的好处,进而对数学产生更大的浓厚兴趣.数学建模解决应用性实际问题的步骤是:审题,寻找内在数学关系,准确建立数学模型,求解数学模型.其中关键是建模,而建模的关键环节是审题,所以,首先要教学生掌握审题策略: 1.细读重点字、词、句、式,通过阅读材料,观察图表,找出题设中的关键性字、词、句、式,如不到、超过、增加到、增加了、变化、不变、至多、至少、大于、小于等,结合实际意义,深入挖掘题中隐藏着的数量关系与数学意义,捕捉题中的数学模型.2.借助表格或画图.在某些应用题中,数量关系比较复杂,审题时难以把复杂的数量关系清晰化,怎么办?可以根据事物类别、时间先后、问题的项目等列出表格或画出图形.3.关注问题的实际背景.从现实生产生活中提炼出的应用题,一般都有较浓厚的生活气息,且题设多以文字叙述的方式给出,显得比较抽象,理解难度较大,若我们能多联想问题的原始背景,往往可帮助理解题意,有时会有豁然开朗的感觉.例如:“有理数的加法”这一节的第一部分就是学习有理数的加法法则,课文是按提出问题——进行实验——探索——概括的步骤来得出法则的.在实际教学中我先给学生提出问题“一位同学在一条东西向的路上,先走了30米,又走了20米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少?”,然后让学生回答出这个问题的答案.(结果在实际教学中我发现学生所回答的答案中包括了全部可能的答案,这时我顺便提问回答出答案的同学是如何想出来的,并把他们的回答按顺序都写在黑板上.)在学生回答完之后,就可以结合这个问题顺便介绍数学建模的数学思想和分类讨论的数学方法,本题数学建模的一般步骤:首先,由问题的意思可以知道求两次运动的总结果,是用加法来解答;然后对这个问题进行适当的假设:①先向东走,再向东走;②先向东走,再向西走;③先向西走,再向东走;④先向西走,再向西走;接下来根据四种假设的条件规定向东为正,向西为负,列出算式分别进行计算,根据实际意思求出这个问题的结果.再引导学生观察上述四个算式,归纳出有理数的加法法则.这样一来,不仅可以使学生学习有理数的加法法则,理解有理数的加法法则,而且在这个过程中也使学生学习到了分类讨论的数学方法,并且对数学建模有了一个初步的印象,为今后进一步学习数学建模打下了良好的基础.利用课本知识的教学,在学生学习知识的过程中渗透数学建模的思想,能够使学生初步体会数学建模的思想,了解数学建模的一般步骤,进而培养学生用数学建模的思想来处理实际中的某些问题,提高解决这些问题的能力,促进数学素质的提高.例题3 某中学新建了一栋7层的教学大楼,每层楼有8间教室,进出这栋大楼共有8道门,其中4道正门大小相同,4道侧门也大小相同.安全检查中对8道门进行了测试:当同时开启一道正门和2道侧门时,2分钟可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟之内可以通过800名学生.【3】
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低30%.安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这8道门安全撤离.假如这栋教学大楼每间教室最多有45名学生.问:建造的这8道们是否符合安全规定?请说明理由检查中发现.解:(1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:
2(x2y)560 4(xy)800 x120 解得:y80
答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生.(2)这栋楼最多有学生4×8×45=1440(名)
拥挤时5分钟4道门能通过:52(12080)(120%)=1600(名)
∵1600>1440 ∴建造的4道门符合安全规定.以学生学习生活为背景题材编制应用题,使学生感觉到数学就在身边,必然会提高学生用数学的意识,以及增加学生对学习数学的兴趣.三.实践活动,综合应用,课内外相结合,向学生渗透建模思想
初中九年级义务教育数学课程标准强调指出:强调数学与生活经验的联系(实践性);强调学生主体化的活动;突出学生的主体性.强调了综合应用(综
【1】合应用的含义—不是围绕知识点来进行的,而是综合运用知识来解决问题的).如,某班要去三个景点游览,时间为8:00—16:00,请你设计一份游览计划,包括时间、费用、路线等.这是一个综合性的实践活动,要完成这一活动,学生需要做如下几方面的工作:①了解有关信息,包括景点之间的路线图及乘车所需时间.车型与租车费用、同学喜爱的食品和游览时需要的物品等;②借助数、图形、统计图表等表述有关信息;③计算乘车所需的总时间、每个景点的游览时间、所需的总费用、每个同学需要交纳的费用等.通过经历观察、操作、实验、调查、推理等实践活动,能运用所学的知识和方法解决简单问题,感受数学在日常生活中的作用等,渗透数学建模思想.传统的课堂教学模式,常是教师提供素材,学生被动地参与学习与讨论,学生真正碰到实际问题,往往仍感到无从下手.因此要培养学生建模能力,需要突破传统教学模式.教学形式实行开放,让学生走出课堂.可采用兴趣小组活动,通过社会实践或社会调查形式来实行.例如 一次水灾中,大约有20万人的生活受到影响,灾情将持续一个月.请推断:大约需要组织多少顶帐篷?多少吨粮食?
说明 假如平均一个家庭有4口人,那么20万人需要5万顶帐篷;假如一个人平均一天需要0.5千克的粮食,那么一天需要10万千克的粮食……
例如 用一张正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?
说明 这是一个综合性的问题,学生可能会从以下几个方面进行思考:(1)无盖长方体展开后是什么样?(2)用一张正方形的纸怎样才能制作一个无盖长方体?基本的操作步骤是什么?(3)制成的无盖长方体的体积应当怎样去表达?(4)什么情况下无盖长方体的体积会较大?(5)如果是用一张正方形的纸制作一个有盖的长方体,怎样去制作?制作过程中的主要困难可能是什么?
通过这个主题的学习,学生进一步丰富自己的空间观念,体会函数思想以及符号表示在实际问题中的应用,进而体验从实际问题抽象出数学问题、建立数学模型、综合应用已有的知识解决问题的过程,并从中加深对相关知识的理解、发展自己的思维能力.综上所述,在数学教学过程中进行渗透数学建模思想,不仅可以让学生体会到感受数学知识与我们日常生活间的相互联系,还可以让学生感受到利用数学建模思想和结合数学方法解决实际问题的好处,进而对数学产生更大的兴趣.数学建模的思想与培养学生的能力关系密切.通过建模教学,可以加深学生对数学知识和方法的理解及掌握,调整学生的知识结构,深化知识层次.学生通过观察.收集.比较.分析.综合.归纳.转化.构建.解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,感受到数学的广泛应用.同时,培养学生应用数学的意识和自主.合作.探索.创新的精神,使学生能成为学习数学的主体.因此在数学课堂教学中,教师应适当培养学生数学建模的思想.方法,形成学生良好的思维习惯和用数学的能力.参考文献
[1]全日制义务教育数学课程标准(实验稿).北京:北京师范大学出版社2001 [2]数学教育概论/张奠宙,宋乃庆主编.北京:高等教育出版社,2004.10 [3]初中数学基础知识手册,薛金星总主编.北京:北京教育出版社,2006.
第五篇:初中数学教学论文 分类思想在初中教学中的渗透
初中数学教学论文:分类思想在初中教学中的渗透
推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的的关注学生的学习方法和策略。数学家乔治。波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”.随着课程改革的深入,"应试教育“向”素质教育“转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。如基本知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教育。
数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。
数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。
所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。
分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。
分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对分类思想的主动应用。
用心爱心专心 1