第一篇:人教版物理(选修3-5)第十六章 实验:验证动量守恒定律 学案
2014级物理选修(3-5)课时学案
第十六章
实验:验证动量守恒定律 学案
【考纲解读】
1.会用实验装置测速度或用其他物理量表示物体的速度大小.2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒.
定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如实验原理图乙所示.
(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.
(7)整理好实验器材放回原处.
(8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒. 【基本实验要求】
1. 实验原理
在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒. 2. 实验器材
斜槽、小球(两个)、天平、复写纸、白纸等. 3. 实验步骤
(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.
(2)按照实验原理图甲安装实验装置.调整、固定斜槽使斜槽底端水平.
【规律方法总结】
1. 数据处理
验证表达式:m1v1+m2v2=m1v1′+m2v2′ 2. 注意事项(1)前提条件
保证碰撞是一维的,即保证两物体在碰
撞之前沿同一直线运动,碰撞之后还沿这条直线运动.
(2)利用斜槽进行实验,入射球质量要大于被碰球质量,即m1>m2,防止碰后m1被反弹.(3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固
第十六章
实验:验证动量守恒定律 学案
第 1 页
【考点一】 对实验步骤及实验误差分析的考查
1.某同学利用打点计时器和气垫导轨做“探究碰撞中的不变量”的实验,气垫导轨装置如图1甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差.
带一起运动;
⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图乙所示;
⑧测得滑块1(包括撞针)的质量为310 g,滑块2(包括橡皮泥)的质量为205 g;试着完善实验步骤⑥的内容.
(2)已知打点计时器每隔0.02 s打一个点,计算可知,两滑块相互作用前质量与速度的乘积之和为________ kg·m/s;两滑块相互作用以后质量与速度的乘积之和为______ kg·m/s(保留三位有效数字).
(3)试说明(2)问中两结果不完全相等的主要原因是______________________.
【考点二】 对实验数据处理的考查
2.某同学设计了一个用电磁打点计时器验证动
图1(1)下面是实验的主要步骤:
①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;
②向气垫导轨通入压缩空气;
③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器和弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向;
④使滑块1挤压导轨左端弹射架上的橡皮绳; ⑤把滑块2放在气垫导轨的中间;
⑥先________,然后________,让滑块带动纸
量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速直线运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速直线运动.他设计的装置如图2甲所示.在小车A后连着纸带,电磁打点计时器所用电源频率为50 Hz,长木板下垫着薄木片以平衡摩擦力.
甲
乙
第十六章
实验:验证动量守恒定律 学案
第 2 页
图2(1)若已测得打点纸带如图乙所示,并测得各计数点间距(已标在图上).A为运动的起点,则应选________段来计算A碰前的速度.应选________段来计算A和B碰后的共同速度(以上两空选填“AB”或“BC”或“CD”或“DE”).
(2)已测得小车A的质量m1=0.4 kg,小车B的质量为m2=0.2 kg,则碰前两小车的总动量为________ kg·m/s,碰后两小车的总动量为________ kg·m/s.A、B运动时间的计时器开始工作.当A、B滑块分别碰撞C、D挡板时停止计时,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量是
__________________________________.(2)利用上述测量的物理量,验证动量守恒定律的表达式是____________.
(3)利用上述物理量写出被压缩弹簧的弹性势能大小的表达式为________________.
【考点针对练习】
4.在利用悬线悬挂等大小球进行验证动量守恒定律的实验中,下列说法正确的是()A.悬挂两球的线长度要适当,且等长 B.由静止释放小球以便较准确地计算小球碰前的速度
C.两小球必须都是刚性球,且质量相同 D.两小球碰后可以粘合在一起共同运动 5.在“验证动量守恒定律”的实验中,实验装置的示意图如图4所示.实验中,入射小球在斜槽上释放点的高低对实验影响的说法中正
【考点三】创新实验设计
3.气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨和滑块A和B来验证动量守恒定律,实验装置如图3所示(弹簧的长度忽略不计),采用的实验步骤如下:
图3 a.用天平分别测出滑块A、B的质量mA、mB; b.调整气垫导轨,使导轨处于水平状态; c.在A和B间放入一个被压缩的轻弹簧,用电动卡锁锁定,静止放置在气垫导轨上; d.用刻度尺测出A的左端至C板的距离L1; e.按下电钮放开卡锁,同时使分别记录滑块
确的是()
图4
A.释放点越低,小球所受阻力越小,入射小球速度越小,误差越小
第十六章
实验:验证动量守恒定律 学案
第 3 页
B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确
C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小
D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小 6.如图5(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的冲量时,随即启动打点计时器.甲车运动一段距离后,与静止的(乙)车发生正碰并粘在一起运动.
点计时器所用电源的频率均为b.气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.图8为某次实验打出的、点迹清晰的纸带的一部分,在纸带上以相同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s1、s2和s3.若题中各物理量的单位均为国际单位,那么,碰撞前两滑块的动量大小分别为________、____________,两滑块的总动量大小为____________;碰撞后两滑块的总动量大小为________.重复上述实验,多做几次.若碰撞前、后两滑块的总动量在实验误差允许的范围内相等,则动量守恒定律得到验证.
图5 纸带记录下碰撞前甲车和碰撞后两车运动情况如图(b)所示,电源频率为50 Hz,则碰撞前甲车运动速度大小为________m/s,甲、乙两车的质量比m甲∶m乙
图6
=________.图8
7.气垫导轨(如图6)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了验证动量守恒定律,在水平气垫导轨上放置两个质量均为a的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打
第十六章
实验:验证动量守恒定律 学案
第 4 页
第二篇:实验验证动量守恒定律
碰撞中的动量守恒
1.实验目的、原理
(1)实验目的运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒
(2)实验原理
(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,若用飞行时间作时间单位,小球的水平速度在数值上就等于小球飞出的水平距离.
(b)设入射球、被碰球的质量分别为m1、m2,则入射球碰撞前动量为(被碰球静止)p1=m1v1①
设碰撞后m1,m2的速度分别为v’
1、v’2,则碰撞后系统总动量为
p2=mlV’1+m2v’2②
只要测出小球的质量及两球碰撞前后飞出的水平距离,代入①、②两式就可研究动量守恒.
2.买验器材
斜槽,两个大小相同而质量不等的小钢球,天平,刻度尺,重锤线,白纸,复写纸,三角板,圆规.
3.实验步骤及安装调试
(1)用天平测出两个小球的质量ml、m2.
(2)按图5—29所示安装、调节好实验装置,使斜槽末端切
线水平,将被碰小球放在斜槽末端前小支柱上,入射球放在斜
槽末端,调节支柱,使两小球相碰时处于同一水平高度,且在碰撞瞬间入射球与被碰球的球心连线与斜槽末端的切线平
行,以确保正碰后两小球均作平抛运动.
(3)在水平地面上依次铺放白纸和复写纸.
(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰
撞前的位置,如图5—30所示.
(5)移去被碰球m2,让入射球从斜槽上同一高度滚下,重复10次左右,用圆规画尽可能小的圆将所有的小球落点圈在里面,其圆心即为人射球不发生碰撞情况下的落点的平均位置P,如图5—31所示.
(6)将被碰小球放在小支柱上,让入射球从同一高度滚下,使它们发生正碰,重复10次左右,同理求出入射小球落点的平均位置M和被碰小球落点的平均位置N.
(7)过O、N作一直线,取O0’=2r(r为小球的半径,可用刻度尺和三角板测量小球直径计算厂),则O’即为被碰小球碰撞前的球心的位置(即投影位置).(8)用刻度尺测量线段OM、OP、ON的长度.则系统碰撞前的动量可表示为p1=m1·OP,系统碰撞后的总动量可表示为p2=m1·OM+m2·O'N
若在误差允许范围内p1与p2相等,则说明碰撞中动量守恒.(9)整理实验器材,放回原处.
4.注意事项
(1)斜槽末端切线必须水平.
说明:调整斜槽时可借助水准仪判定斜槽末端是否水平.
(2)仔细调节小立柱的高度,使两小球碰撞时球心在同一高度,且要求两球球心连线与斜槽末端的切线平行。
(3)使小支柱与槽口的距离等于2r(r为小球的半径)
(4)入射小球每次都必须从斜槽上同一位置由静止开始滚下.
说明:在具体操作时,斜槽上应安装挡球板.
(5)入射球的质量(m1)应大于被碰小球的质量(m2).
(6)地面须水平,白纸铺放好后,在实验过程中不能移动白纸.
5.数据处理及误差分析
(1)应多次进行碰撞,两球的落地点均要通过取平均位置来确定,以减小偶然误差.(2)在实验过程中,使斜槽末端切线水平和两球发生正碰,否则两小球在碰后难以作平抛运动.
(3)适当选择挡球板的位置,使入射小球的释放点稍高.
说明:入射球的释放点越高,两球相碰时作用力越大,动量守恒的误差越小,且被直接测量的数值OM、0IP、0N越大,因而测量的误差越小.
一.目的要求
1.用对心碰撞特例检验动量守恒定律;
2.了解动量守恒和动能守恒的条件;
3.熟练地使用气垫导轨及数字毫秒计。
二.原理
1.验证动量守恒定律
动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。
设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。
m1u1m2u2m1v1m2v2(6.1)其中,u1、u2和v1、v2分别为滑块m1、m2在碰撞前后的速度。若分别测出式(6.1)中各量,且等式左右两边相等,则动量守恒定律得以验证。
2.碰撞后的动能损失
只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。但对动能在碰撞过程中是否守恒,还将与碰撞的性质有关。碰撞的性质通常用恢复系数e表达:
ev2v1(6.2)u1u
2式(6.2)中,v2v1为两物体碰撞后相互分离的相对速度,u1u2则为碰撞前彼此接近的相对速度。
(1)若相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2v1u1u2,于是e1,这类碰撞称为完全弹性碰撞。
(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0v2v1u1u2于是,0e1,这类碰撞称为非弹性碰撞。
(3)碰撞后两物体的相对速度为零,即v2v10或v2v1v,两物体粘在一起以后以相同速度继续运动,此时e0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。
三类碰撞过程中总动量均守恒,但总动能却有不同情况。由式(6.1)和(6.2)可求碰撞后的动能损失 Ek(1/2)m1m21e2u1u2/m1m2。①对于完全弹性碰撞,因2
e1,故Ek0,即无动能损失,或曰动能守恒。②对于完全非弹性碰撞,因e0,故:EkEkM,即,动能损失最大。③对于非完全弹性碰撞,因0e1,故动能损失介于二者之间,即:0EkEkM。
3.m1m2m,且u20的特定条件下,两滑块的对心碰撞。
(1)对完全弹性碰撞,e1,式(6.1)和(6.2)的解为
v10(6.3)v2u1
由式(6.3)可知,当两滑块质量相等,且第二滑块处于静止时,发生完全弹性碰撞的结果,使第一滑块静止下来,而第二滑块完全具有第一滑块碰撞前的速度,“接力式”地向前运动。即动能亦守恒。
以上讨论是理想化的模型。若两滑块质量不严格相等、两挡光物的有效遮光宽度s1及若式(6.3)得到验证,则说明完全弹性碰撞过程中动量守恒,且e1,Ek0,s2也不严格相等,则碰撞前后的动量百分差E1为:E1
动能百分差E2为:E2P2P1P1m2s2t1(6.4)m1s1t22m2s2t121(6.5)22m1s1t2Ek2Ek1Ek
1若E1及E2在其实验误差范围之内,则说明上述结论成立。
(2)对于完全非弹性碰撞,式(6.1)和(6.2)的解为:
v1v2vu1(6.6)
2若式(6.6)得证,则说明完全非弹性碰撞动量守恒,且e0,其动能损失最大,约为50%。
s1。同样可求得其动考虑到完全非弹性碰撞时可采用同一挡光物遮光,即有:s2
及E2分别为: 量和动能百分差E1
m2t1P2P11E1mt1(6.7)P112
2Ek1m2t1'Ek(6.8)E21'1Ekm1t2
显然,其动能损失的百分误差则为:
m2t1E21mt1(6.9)
12
及E在其实验误差范围内,则说明上述结论成立。若E1
三.仪器用品
气垫导轨及附件(包括滑块及挡光框各一对),数字毫秒计、物理天平及游标卡尺等。
四.实验内容
1.用动态法调平导轨,使滑块在选定的运动方向上做匀速运动,以保证碰撞时合外力为零的条件(参阅附录2);
2.用物理天平校验两滑块(连同挡光物)的质量m1及m2;
2;3.用游标卡尺测出两挡光物的有效遮光宽度s1、s2及s
14.在m1m2m的条件下,测完全弹性和完全非弹性碰撞前后两滑块各自通过光电
、t2。门一及二的时间t1、t2及t1
五.注意事项
1.严格按照气垫导轨操作规则(见附录2),维护气垫导轨;
2.实验中应保证u20的条件,为此,在第一滑块未到达之前,先用手轻扶滑块(2),待滑块(1)即将与(2)碰撞之前再放手,且放手时不应给滑块以初始速度;
3.给滑块(1)速度时要平稳,不应使滑块产生摆动;挡光框平面应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;
4.严格遵守物理天平的操作规则;
5.挡光框与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。
六.考查题
1.动量守恒定律成立的条件是什么?实验操作中应如何保证之?
2.完全非弹性碰撞中,要求碰撞前后选用同一挡光框遮光有什么好处?实验操作中如何实现?
3.既然导轨已调平,为什么实验操作中还要用手扶住滑块(2)?手扶滑块时应注意什么?
4.滑块(2)距光电门(2)近些好还是远些好?两光电门间近些好还是远些好?为什么?
第三篇:2011高考专题典例解析:验证动量守恒定律实验
实验13:验证动量守恒定律
【例1】如图实所示,在做“验证动量守恒定律”实验时,入射小球在斜槽上释放点的高低直接影响实验的准确性,下列说法正确的有()
A.释放点越高,两球相碰时相互作用的内力越大,外力(小支柱对被碰小球作
用力)的冲量就相对越小,碰撞前后总动量之差越小,因而误差越小
B.释放点越高,入射小球对被碰小球的作用力越大,小支柱对被碰小球作用
力越小
C.释放点越低,两球飞行的水平距离越接近,测量水平位移的相对误差就小
D.释放点越低,入射小球速度越小,小球受阻力就小,误差就小
答案A
【例2】如右图所示,在做“碰撞中的动量守恒”的实验中,所用钢球质量m1=17 g,玻璃球 的质量为m2=5.1 g,两球的半径均为r=0.80 cm,某次实验得到如下图所示的记录纸(最 小分度值为1 cm),其中P点集为入射小球单独落下10次的落点,M和N点集为两球相 碰并重复10次的落点,O是斜槽末端投影点.(1)安装和调整实验装置的两点主要要求是:.(2)在图中作图确定各落点的平均位置,并标出碰撞前被碰小球的投影位置O′.(3)若小球飞行时间为0.1 s,则入射小球碰前的动量p1kg·m/s,碰后的动量p1′=kg·m/s,被碰小球碰后的动量p2′=kg·m/s(保留两位有效数字)
答案(1)斜槽末端要水平,小支柱到槽口的距离等于小球直径且两小球相碰时球心在同一水平线上
(2)略(3)0.0340.0200.01
3【例3】某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续/
5做匀速运动.他设计的装置如图(a)所示.在小车A后连着纸带,电磁打点计时器所用电源频率为50 Hz,长木板下垫着小木片以平衡摩擦力.(1)若已测得打点纸带如图(b)所示,并测得各计数点间距(已标在图示上).A为运动的起点,则应选段来计算A碰前的速度.应选段来计算A和B碰后的共同速度(以上两空选填“AB”或“BC”或“CD”或“DE”).(2)已测得小车A的质量m1=0.4 kg,小车B的质量为m2=0.2 kg,则碰前两小车的总动量为kg·m/s,碰后两小车的总动量为kg·m/s.答案(1)BCDE(2)0.4200.417
【例4】气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨和滑块A和B验证动量守恒定律,实验装置如图所示,采用的实验步骤如下:
a.用天平分别测出滑块A、B的质量mA、mB;
b.调整气垫导轨,使导轨处于水平;
c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;
d.用刻度尺测出A的左端至C板的距离L1;
e.按下电钮放开卡销,同时分别记录滑块A、B运动时间的计时器开始工作,当A、B滑块分别碰撞C、D挡板时计时结束,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量及其符号是.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因有(至少答出两点).答案A、B两滑块被压缩的弹簧弹开后,在气垫导轨上运动时可视为匀速运动,因此只要测出A与C的距离L1,B与D的距离L2及A到C,B到D的时间t1和t2.测出两滑块的质量,就可以用mAL1=mBL2验证动量是否守恒.(1)实验中还应测量的物理量为B与D的距离,符号为t1t
2L2.(2)验证动量守恒定律的表达式是mAL1=mBL2,产生误差的原因:①L1、L2、mA、mB的数t1t
2据测量误差.②没有考虑弹簧推动滑块的加速过程.③滑块并不是标准的匀速直线运动,滑块与导轨间有少许摩擦力.1.在做“碰撞中的动量守恒”的实验中,入射球每次滚下都应从斜槽上的同一位置无初速释放,这是为了使()
B.小球每次都以相同的速度飞出槽口 D.小球每次都能对心碰撞 A.小球每次都能水平飞出槽口 C.小球在空中飞行的时间不变
答案B
2.在“验证动量守恒定律实验”中,下列关于小球落点的说法,正确的是()
A.如果小球每次从同一点无初速度释放,重复几次的落点一定是重合的B.由于偶然因素的存在,重复操作时小球落点不重合是正常的,但落点应当比较密集
C.测定P的位置时,如果重复10次的落点分别是P1,P2,P3,……,P10,则OP应取OP1、OP2、OP3、……、OP10的平均值,即:OP=OP1OP2OP3OP10 10
D.用半径尽可能小的圆把P1、P2、P3,……,P10圈住,这个圆的圆心是入射小球落点的平均位置P 答案BD
3.如图所示为实验室中验证动量守恒的实验装置示意图.(1)若入射小球质量为m1,半径为r1;被碰小球质量为m2,半径为r2,则
A.m1>m2,r1>r
2C.m1>m2,r1=r2()B.m1>m2,r1 (2)为完成此实验,以下所提供的测量工具中必需的是.(填下列对应的字母) A.直尺B.游标卡尺C.天平D.弹簧秤 E.秒表 (3)设入射小球的质量为m1,被碰小球的质量为m2,P为碰前入射小球落点的平均位置,则关系式(用m1、m2及图中字母表示)成立,即表示碰撞中动量守恒.答案(1)C(2)AC(3)m1OP=m1OM +m2ON 4.(2009·青岛模拟)用半径相同的两小球A、B的碰撞验证动量守恒定律,实验 装置示意如图所示,斜槽与水平槽圆滑连接.实验时先不放B球,使A球从斜槽上 某一固定点C由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B球静置于水平槽前端边缘处,让A球仍从C处由静止滚下,A球和B球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O点是重垂线所指的位置,若测得各落点痕迹到O的距离:OM=2.68 cm,OP=8.62 cm,ON=11.50 cm,并知A、B两球的质量比为2∶1,则未放B球时A球落地点是记录纸上的点,系统碰撞前总动量p与碰撞后总动量p′的百分误差 效数字).答案P 25.某同学用图实甲所示装置通过半径相同的A、B两球的碰撞来验证动量守恒定律,图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹,重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近末端的地方,让A球仍从位置G由静止开始向下运动,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.在图甲中O点是水平槽末端R在记录纸上的垂直投影点,B球落点痕迹如图乙所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐 .ppp(结果保留一位有 (1)碰撞后B球的水平射程应取为cm.(2)在以下选项中,本次实验必须进行测量的有 A.测量A球和B球的质量(或两球质量之比) B.测量G点相对于水平槽面的高度 C.测量R点相对于水平地面的高度 D.A球和B球碰撞后,测量A球落点位置到O点的距离 E.水平槽上未放B球时,测量A球落点位置到O点的距离 F.测量A球或B球的直径 答案(1)64.7(2)ADE 6.如图所示装置来验证动量守恒定律,质量为mA的钢球A用细线悬挂于O点,质量为mB的钢球B放在离地面高度为H的小支柱N上,O点到A球球心的() 距离为L,使悬线在A球释放前伸直,且线与竖直线夹角为α,A球释放后摆到最低点时恰与B球正碰,碰撞后,A球把轻质指示针OC推移到与竖直线夹角β处,B球落到地面上,地面上铺有一张盖有复写纸的白纸D,保持α角度不变,多次重复上述实验,白纸上记录到多个B球的落点.(1)图中s应是B球初始位置到的水平距离.(2)为了验证两球碰撞过程动量守恒,应测得的物理量有:.(3)用测得的物理量表示碰撞前后 量:pA,pA′=BB′=答案(1)落点(2)α、β、L、H mA2gL(1cos)0mBs g 2HA球、B球的动(3)mAgL(1cos) 高二 班 姓名 第十七章 波粒二象性 §17.1 能量量子化 【学习目标】 1.知道什么是黑体与黑体辐射。 2.了解“紫外灾难”。 3.知道什么叫能量子及其含意。 【重点和难点】 1.重点:黑体辐射的实验规律 能量量子化 2.难点:黑体辐射的理解 【新课教学】 1.我们周围的一切物体都在辐射电磁波,这种辐射与物体的________有关,所以叫做热辐射。 2.如果某种物体能够________入射的各种波长的电磁波而不发生________,这种物体就是绝对黑体,简称黑体。黑体辐射电磁波的强度按波长的分布只与黑体的________有关。 3.普朗克假说:振动着的带电微粒的能量只能是某一最小能量值ε的________。当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位________地辐射或吸收的。这个不可再分的最小能量值ε叫做________,ε=________,ν是电磁波的频率,h是一个常量,后被称为普朗克常量。其值为h=________ J·s。 4.黑体与黑体辐射 (1)热辐射 ①定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 ②热辐射的特点 物体在任何温度下都会发射电磁波,热辐射强度按波长的分布情况随物体的温度而有所不同。当物体温度较低时(如室温),热辐射的主要成分是波长较长的电磁波(在红外线区域),不能引起人的视觉;当温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大。 (2)黑体 ①定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一个物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 ②黑体辐射的特性:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。 5.黑体辐射的实验规律 (1)温度一定时,黑体辐射强度随波长的分布有一个极大值。 (2)随着温度的升高 ①各种波长的辐射强度都有增加; ②辐射强度的极大值向波长较短的方向移动,黑 体 一般物体 热辐射特点 辐射电磁波的强度按波长(或频率)的分布只与黑体的温度有关 辐射电磁波的情况与温度、材料的种类及表面状况有关 吸收及反射特点 完全吸收各种入射电磁波,不反射 既吸收,又反射,其能力与材料的种类及入射波长等因素有关 【课堂例题】 【例1】:黑体辐射的实验规律如图所示,由图可知 () A.随温度升高,各种波长的辐射强度都有增加 B.随温度降低,各种波长的辐射强度都有增加 C.随温度升高,辐射强度的极大值向波长较短的方向移动 D.随温度降低,辐射强度的极大值向波长较长的方向移动 【例2】:关于对普朗克能量子假说的认识,下列说法正确的是 () A.振动着的带电微粒的能量只能是某一能量值ε B.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍 C.能量子与电磁波的频率成正比 D.这一假说与现实世界相矛盾,因而是错误的【例3】:红光和紫光相比 () A.红光光子的能量较大;在同一种介质中传播时红光的速度较大 B.红光光子的能量较小;在同一种介质中传播时红光的速度较大 C.红光光子的能量较大;在同一种介质中传播时红光的速度较小 D.红光光子的能量较小;在同一种介质中传播时红光的速度较小 【例4】:光是一种电磁波,可见光的波长的大致范围是400—700 nm、400 nm、700 nm电磁辐射的能量子的值各是多少? 【课后反馈】 1.关于对黑体的认识,下列说法正确的是 () A.黑体只吸收电磁波,不反射电磁波,看上去是黑的B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关 C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关 D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸 收,最终不能从小孔射出,这个空腔就成了一个黑体 2.关于对热辐射的认识,下列说法中正确的是 () A.热的物体向外辐射电磁波,冷的物体只吸收电磁波 B.温度越高,物体辐射的电磁波越强 C.辐射强度按波长的分布情况只与物体的温度有关,与材料种类及表面状况无关 D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色 3.红、橙、黄、绿四种单色光中,光子能量最小的是 () A.红光 B.橙光 C.黄光 D.绿光 4.某种光的光子能量为E,这种光在某一种介质中传播时的波长为λ,则这种介质的折射率为() A. B. C. D. 5.某激光器能发射波长为λ的激光,发射功率为P,c表示光速,h表示普朗克常量,则激光器每秒发射的能量子数为 () A. B. C. D. 6.2006诺贝尔物理学奖授予了两名美国科学家,以表彰他们发现了宇宙微波背景辐射的黑体谱形状及其温度在不同方向上的微小变化。他们的出色工作被誉为是宇宙学研究进入精密科学时代的起点。下列与宇宙微波背景辐射的黑体谱相关的说法中正确的是() A.微波是指波长在10-3 m到10 m之间的电磁波 B.微波和声波一样都只能在介质中传播 C.黑体的热辐射实际上是电磁辐射 D.普朗克在研究黑体的热辐射问题中提出了能量子假说 7.在自然界生态系统中,蛇与老鼠和其他生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用。蛇是老鼠的天敌,它是通过接收热辐射来发现老鼠的。假设老鼠的体温约为37 ℃,它发出的最强的热辐射的波长为λm。根据热辐射理论,λm与辐射源的绝对温度T的关系近似为Tλm=2.90×10-3 m·K。 (1) 老鼠发出最强的热辐射的波长为 () A.7.8×10-5 m B.9.4×10-6 m C.1.16×10-4 m D.9.7×10-8 m (2) 老鼠发出的最强的热辐射属于 () A.可见光波段 B.紫外波段 C.红外波段 D.X射线波段 8.二氧化碳能强烈吸收红外长波辐射,这种长波辐射的波长范围约是1.4×10-3—1.6×10-3 m,相应的频率范围是________,相应的光子能量的范围是________,“温室效应”使大气全年的平均温度升高,空气温度升高,从微观上看就是空气中分子的________。(已知普朗克常量h=6.6×10-34 J·s,真空中的光速c=3.0×108 m/s。结果取两位数字) 9.神光“Ⅱ”装置是我国规模最大,国际上为数不多的高功率固体激光系统,利用它可获得能量为2 400 J、波长λ为0.35 μm的紫外激光,已知普朗克常量h=6.63×10-34 J·s,则该紫外激光所含光子数为多少个?(取两位有效数字)。 10.氦—氖激光器发出波长为633 nm的激光,当激光器的输出功率为1 mW时,每秒发出的光子数为多少个? 16.2 动量守恒定律 (一)示范教案 ★新课标要求 (一)知识与技能 理解动量的确切含义和表达式,会计算一维情况下的动量变化; 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围; (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 灵活运用动量守恒定律的不同表达式; (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题; ★教学重点 动量的概念和动量守恒定律的表达式 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv.单位:kg·m/s读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念.②相对性:这是由于速度与参考系的选择有关,通常以地球(即地面)为参考系。③矢量性:动量的方向与速度方向一致。运算遵循矢量运算法则(平行四边形定则)。师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 【例1(投影)】 关于动量的概念,下列说法正确的是;()A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体运动方向一定相同 D.动量相同的物体速度小的惯性大 [解析] 物体的动量是由速度和质量两个因素决定的。动量大的物体质量不一定大,惯性也不一定大,A错;同样,动量大的物体速度也不一定大,B也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C对;动量相同的物体,速度小的质量大,惯性大,D也对。 [答案] CD [点评] 动量是状态量,求动量时必须明确是哪一物体在哪一状态的动量。动量是矢量,它的方向与瞬时速度的方向相同 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。一维情况下:Δp=mΔυ= mυ2-mυ 1矢量差 【例2(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统 内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】(1)系统:相互作用的物体组成系统。(2)内力:系统内物体相互间的作用力(3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 注意:内力和外力随系统的变化而变化。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 (2)适用条件:系统不受外力或者所受外力的和为零(3)公式:p1/+p2/=p1+p2即m1υ1+ m2υ2= m1υ1′+ m2υ2′ 或Δp1=-Δp2或Δp总=0 (4)注意点: ① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)④ 条件:系统不受外力,或受合外力为0。要正确区分内力和外力; 条件的延伸:a.当F内>>F外时,系统动量可视为守恒;(如爆炸问题。) b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。例如:如图所示,斜面体A的质量为M,把它置于光滑的水平面上,一质量为m的滑块B从斜面体A的顶部由静止滑下,与斜面体分离后以速度v在光滑的水平面上运动,在这一现象中,物块B沿斜面体A下滑时,A与B间的作用力(弹力和可能的摩擦力)都是内力,这些力不予考虑。但物块B还受到重力作用,这个力是A、B系统以外的物体的作用,是外力;物体A也受到重力和水平面的支持力作用,这两个力也不平衡(A受到重力、水平面支持力和B对它的弹力在竖直方向平衡),故系统的合外力不为零。但系统在水平方向没有受到外力作用,因而在水平方向可应用动量守恒,当滑块在水平地面上向左运动时,斜面体将会向右运动,而且它们运动时的动量大小相等、方向相反,其总动量还是零。 (注重动量守恒定律与机械能守恒定律适用条件的区别) 【例3(投影)】在光滑水平面上A、B两小车中间有一弹簧,如图所示。用手抓住小车并将弹簧压缩后使小车处于静止状态。将两小车及弹簧看做一个系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手后,动量不守恒 C.先放开左手,再放开右手后,总动量向左 D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 [解析] 在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B错;先放开左手,系统就在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C对;其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变。若同时放开,那么放手后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开后的总动量就与放开最后一只手后系统所具有的总动量相等,既不为零,D对。 [答案] ACD [点评] 动量守恒定律都有一定的使用范围,在应用这一定律时,必修明确它的使用条件。 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块,此系统从子弹开始入射木块到弹簧压缩到最短的过程中,子弹与木块作为一个系统动量是否守恒?说明理由。 分析:此题重在引导学生针对不同的对象(系统),对应不同的过程中,受力情况不同,总动量可能变化,可能守恒。 〖通过此题,让学生明白:在学习物理的过程中,重要的一项基本功是正确恰当地选取研究对象、研究过程,根据实际情况选用对应的物理规律,不能生搬硬套。〗 (三)课堂小结 教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。 学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。 点评:总结课堂内容,培养学生概括总结能力。 教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。 (四)作业:“问题与练习”2、3、4题 课后补充练习 1.一爆竹在空中的水平速度为υ,若由于爆炸分裂成两块,质量分别为m1和m2,其中质量为m1的碎块以υ1速度向相反的方向运动,求另一块碎片的速度。 2.小车质量为200kg,车上有一质量为50kg的人。小车以5m/s的速度向东匀速行使,人以1m/s的速度向后跳离车子,求:人离开后车的速度。(5.6m/s) 3.质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量为90kg,求小孩跳上车后他们共同的速度。 解:取小孩和平板车作为系统,由于整个系统所受合外为为零,所以系统动量守恒。规定小孩初速度方向为正,则: 相互作用前:v1=8m/s,v2=0,设小孩跳上车后他们共同的速度速度为v′,由动量守恒定律得 m1v1=(m1+m2)v′ 解得 v′=m1v1=2m/s,m1m2数值大于零,表明速度方向与所取正方向一致。第四篇:高二物理选修3-5能量量子化教学案
第五篇:物理:新人教版选修3-5 16.2《动量守恒定律(一)》教案(新人教版-选修3-5)