三年级奥数暑假复习讲义(教师版)

时间:2019-05-15 01:57:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三年级奥数暑假复习讲义(教师版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三年级奥数暑假复习讲义(教师版)》。

第一篇:三年级奥数暑假复习讲义(教师版)

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

三年级奥数暑假复习讲义

【课程说明】

由于培优大纲顺序和本课程顺序不同,所以在学习此课程时,有些讲次安排打乱了,重新排序不会影响知识点的学习。

【课程目标】

提升兴趣

※激发学生学习的主动性,乐于思考,乐于学习

培养习惯

※传授给学生正确的数学学习习惯,解题习惯

收获成绩

※通过正确的引导帮助孩子提高成绩,积累成就感和自信心

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

目录

第一讲 高斯求和

{HYPERLINK “ada99:10937_SR.HTM”|第二讲 找简单数列的规律

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

第一讲 高斯求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

1+2+3+4+„+99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

1+100=2+99=3+98=„=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为

(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:

(1)1,2,3,4,5,„,100;

(2)1,3,5,7,9,„,99;(3)8,15,22,29,36,„,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。

例1 1+2+3+„+1999=?

分析与解:这串加数1,2,3,„,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例2 11+12+13+„+31=?

分析与解:这串加数11,12,13,„,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到

项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。

例3、3+7+11+„+99=?

分析与解:3,7,11,„,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。

Beijing XueDa Century Education Technology Ltd.例4 求首项是25,公差是3的等差数列的前40项的和。解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

学大教育个性化教学教案

分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:

由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。

解:(1)最大三角形面积为

(1+3+5+„+15)×12 =[(1+15)×8÷2]×12 =768(厘米2)。

2)火柴棍的数目为

3+6+9+„+24=(3+24)×8÷2=108(根)。

答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里„„第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?

分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球„„第十次多了2×10只球。因此拿了十次后,多了

2×1+2×2+„+2×10 =2×(1+2+„+10)=2×55=110(只)。

加上原有的3只球,盒子里共有球110+3=113(只)。

综合列式为:

(3-1)×(1+2+„+10)+3 =2×[(1+10)×10÷2]+3=113(只)。

练习3

1.计算下列各题:

(1)2+4+6+„+200;(2)17+19+21+„+39;

Beijing XueDa Century Education Technology Ltd.(3)5+8+11+14+„+50;(4)3+10+17+24+„+101。2.求首项是5,末项是93,公差是4的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?

5.求100以内除以3余2的所有数的和。

6.在所有的两位数中,十位数比个位数大的数共有多少个?

学大教育个性化教学教案

练习

1.(1)10100;(2)336;(3)440;(4)780。

2.1127。提示:项数=(93-5)÷4+1=23。

3.2565。提示:末项=13+5×(30-1)=158。

4.180次。解:(1+2+„+12)×2+24=180(次)。

5.1650。解:2+5+8+„+98=1650。

6.45个。

提示:十位数为1,2,„,9的分别有1,2,„,9个。

这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

按一定次序排列的一列数就叫数列。例如,(1)1,2,3,4,5,6,„(2)1,2,4,8,16,32;(3)1,0,0,1,0,0,1,„(4)1,1,2,3,5,8,13。

一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作an。

数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。

许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。

数列(2)的规律是:后项=前项×2,或第n项

数列(3)的规律是:“1,0,0”周而复始地出现。

数列(4)的规律是:从第三项起,每项等于它前面两项的和,即

a3=1+1=2,a4=1+2=3,a5=2+3=5,a6=3+5=8,a7=5+8=13。

常见的较简单的数列规律有这样几类:

第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)。

第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)。

第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例

3、例4来作一些说明。例1 找出下列各数列的规律,并按其规律在()内填上合适的数:(1)4,7,10,13,(),„

Beijing XueDa Century Education Technology Ltd.(2)84,72,60,(),();(3)2,6,18,(),(),„(4)625,125,25,(),();(5)1,4,9,16,(),„(6)2,6,12,20,(),(),„

解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。所以应填16。(2)的规律是:前项-12=后项。所以应填48,36。(3)的规律是:前项×3=后项。所以应填54,162。(4)的规律是:前项÷5=后项。所以应填5,1。(5)的规律是:数列各项依次为

1=1×1,4=2×2,9=3×3,16=4×4,所以应填5×5=25。(6)的规律是:数列各项依次为

2=1×2,6=2×3,12=3×4,20=4×5,所以,应填 5×6=30,6×7=42。

说明:本例中各数列的每一项都只与它的项数有关,因此an可以用n来表示。各数列的第n项分别可以表示为(1)an=3n+1;(2)an=96-12n;

(3)an=2×3;(4)an=5;(5)an=n;(6)an=n(n+1)。

这样表示的好处在于,如果求第100项等于几,那么不用一项一项地计算,直接就可以算出来,比如数列(1)的第100项等于3×100+1=301。本例中,数列(2)(4)只有5项,当然没有必要计算大于5的项数了。例2 找出下列各数列的规律,并按其规律在()内填上合适的数:(1)1,2,2,3,3,4,(),();(2)(),(),10,5,12,6,14,7;(3)3,7,10,17,27,();(4)1,2,2,4,8,32,()。

解:通过对各数列已知的几个数的观察分析可得其规律。

(1)把数列每两项分为一组,1,2,2,3,3,4,不难发现其规律是:前一组每个数加1得到后一组数,所以应填4,5。(2)把后面已知的六个数分成三组:10,5,12,6,14,7,每组中两数的商都是2,且由5,6,7的次序知,应填8,4。(3)这个数列的规律是:前面两项的和等于后面一项,故应填(17+27=)44。(4)这个数列的规律是:前面两项的乘积等于后面一项,故应填(8×32=)256。例3 找出下列各数列的规律,并按其规律在()内填上合适的数:(1)18,20,24,30,();(2)11,12,14,18,26,();(3)2,5,11,23,47,(),()。

解:(1)因20-18=2,24-20=4,30-24=6,说明(后项-前项)组成一新数列2,4,6,„其规律是“依次加2”,因为6后面是8,所以,a5-a4=a5-30=8,故

a5=8+30=38。

(2)12-11=1,14-12=2,18-14=4,26-18=8,组成一新数列1,2,4,8,„按此规律,8后面为16。因此,a6-a5=a6-26=16,故a6=16+26=42。

(3)观察数列前、后项的关系,后项=前项×2+1,所以

a6=2a5+1=2×47+1=95,a7=2a6+1=2×95+1=191。

例4 找出下列各数列的规律,并按其规律在()内填上合适的数:(1)12,15,17,30,22,45,(),();(2)2,8,5,6,8,4,(),()。n-15-n

2学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.解:(1)数列的第1,3,5,„项组成一个新数列12,17,22,„其规律是“依次加5”,22后面的项就是27;数列的第2,4,6,„项组成一个新数列15,30,45,„其规律是“依次加15”,45后面的项就是60。故应填27,60。

(2)如(1)分析,由奇数项组成的新数列2,5,8,„中,8后面的数应为11;由偶数项组成的新数列8,6,4,„ 中,4后面的数应为2。故应填11,2。

练习5

1、按其规律在下列各数列的()内填数。

1.56,49,42,35,()。

2.11,15,19,23,(),„

3.3,6,12,24,()。

4.2,3,5,9,17,(),„

5.1,3,4,7,11,()。

6.1,3,7,13,21,()。

7.3,5,3,10,3,15,(),()。

8.8,3,9,4,10,5,(),()。

9.2,5,10,17,26,()。

10.15,21,18,19,21,17,(),()。

11.数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处?(2)如果其中多了一个数,那么这个数是几?为什么? 答案与提示 练习

1.28。

2.27。

3.48。

4.33。提示:“后项-前项”依次为1,2,4,8,16,„

5.18。提示:后项等于前两项之和。

6.31。提示:“后项-前项”依次为2,4,6,8,10。

7.3,20。

8.11,6。

9.37。提示:an=n+1。

10.24,15。提示:奇数项为15,18,21,24;偶数项为21,19,17,15。

11.(1)缺9,在7与11之间;(2)多15,因为除15以外都不是合数。

2学大教育个性化教学教案

2、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20。

②19,17,15,13,(),9,7。

③1,3,9,27,(),243。

④64,32,16,8,(),2。

⑤1,1,2,3,5,8,(),21,34„

⑥1,3,4,7,11,18,(),47„

Beijing XueDa Century Education Technology Ltd.⑦1,3,6,10,(),21,28,36,().⑧1,2,6,24,120,(),5040。

⑨1,1,3,7,13,(),31。

⑩1,3,7,15,31,(),127,255。

(11)1,4,9,16,25,(),49,64。

(12)0,3,8,15,24,(),48,63。

(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,().分析与解答

①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14。

学大教育个性化教学教案

② 同①考虑,可以看出,每相邻两项的差是一定值2.所以,括号中应填11,即:13—2=11。

不妨把①与②联系起来继续观察,容易看出:数列①中,随项数的增大,每一项的数值也相应增大,即数列①是递增的;数列②中,随项数的增大,每一项的值却依次减小,即数列②是递减的.但是除了上述的不同点之外,这两个数列却有一个共同的性质:即相邻两项的差都是一个定值.我们把类似①②这样的数列,称为等差数列.③1,3,9,27,(),243。

此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3,27=9×3.因此,括号中应填 81,即 81= 27×3,代入后,243也符合规律,即 243=81×3。

④64,32,16,8,(),2

与③类似,本题中,从第1项开始,每一项是其后面一项的2倍,即:

因此,括号中填4,代入后符合规律。

Beijing XueDa Century Education Technology Ltd.综合③④考虑,数列③是递增的数列,数列④是递减的数列,但它们却有一个共同的特点:每列数中,相邻两项的商都相等.像③④这样的数列,我们把它称为等比数列。

⑤ 1,1,2,3,5,8,(),21,34„

学大教育个性化教学教案

首先可以看出,这个数列既不是等差数列,也不是等比数列.现在我们不妨看看相邻项之间是否还有别的关系,可以发现,从第3项开始,每一项等于它前面两项的和.即2=1+1,3=2+1,5=2+3,8=3+5.因此,括号中应填的数是 13,即 13=5+8,21=8+13,34=13+21。

这个以1,1分别为第1、第2项,以后各项都等于其前两项之和的无穷数列,就是数学上有名的斐波那契数列,它来源于一个有趣的问题:如果一对成熟的兔子一个月能生一对小兔,小兔一个月后就长成了大兔子,于是,下一个月也能生一对小兔子,这样下去,假定一切情况均理想的话,每一对兔子都是一公一母,兔子的数目将按一定的规律迅速增长,按顺序记录每个月中所有兔子的数目(以对为单位,一月记一次),就得到了一个数列,这个数列就是数列⑤的原型,因此,数列⑤又称为兔子数列,这些在高年级递推方法中我们还要作详细介绍。

⑥1,3,4,7,11,18,(),47„

在学习了数列⑤的前提下,数列⑥的规律就显而易见了,从第3项开始,每一项都等于其前两项的和.因此,括号中应填的是29,即 29=11+18。

数列⑥不同于数列⑤的原因是:数列⑥的第2项为3,而数列⑤为1,数列⑥称为鲁卡斯数列。

⑦1,3,6,10,(),21,28,36,()。

方法1:继续考察相邻项之间的关系,可以发现:

因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确。

方法2:其实,这一列数有如下的规律:

第1项:1=1

第2项:3=1+2

第3项:6=1+2+3

第4项:10=1+2+3+4

Beijing XueDa Century Education Technology Ltd.第5项:()

第6项:21=1+2+3+4+5+6

第7项:28=1+2+3+4+5+6+7

第8项;36=1+2+3+4+5+6+7+8

第9项:()

学大教育个性化教学教案

即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第五项为15,即:15= 1+ 2+ 3+ 4+ 5;

第九项为45,即:45=1+2+3+4+5+6+7+8+9。

⑧1,2,6,24,120,(),5040。

方法1:这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:

所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6。

方法2:受⑦的影响,可以考虑连续自然数,显然:

第1项 1=1

第2项 2=1×第3项 6=1×2×第4项 24=1×2×3×第5项 120=1×2×3×4×第6项()

第7项 5040=1×2×3×4×5×6×7

Beijing XueDa Century Education Technology Ltd.所以,第6项应为 1×2×3×4×5×6=720

⑨1,1,3,7,13,(),31

与⑦类似:

学大教育个性化教学教案

可以猜想,数列⑨的规律是该项=前项+2×(项数-2)(第1项除外),那么,括号中应填21,代入验证,符合规律。

⑩1,3,7,15,31,(),127,255。

则:

因此,括号中的数应填为63。

小结:寻找数列的规律,通常从两个方面来考虑:①寻找各项与项数间的关系;②考虑相邻项之间的关系.然后,再归纳总结出一般的规律。

事实上,数列⑦或数列⑧的两种方法,就是分别从以上两个不同的角度来考虑问题的.但有时候,从两个角度的综合考虑会更有利于问题的解决.因此,仔细观察,认真思考,选择适当的方法,会使我们的学习更上一层楼。

在⑩题中,1=2-1

3=22-1

Beijing XueDa Century Education Technology Ltd.7=23-1

15=24-1

31=25-1

127=27-1

255=28-1

所以,括号中为26-1即63。

(11)1,4,9,16,25,(),49,64.1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,49= 7×7,64=8×8,即每项都等于自身项数与项数的乘积,所以括号中的数是36。

本题各项只与项数有关,如果从相邻项关系来考虑问题,势必要走弯路。

(12)0,3,8,15,24,(),48,63。

仔细观察,发现数列(12)的每一项加上1正好等于数列(11),因此,本数列的规律是项=项数×项数-1.所以,括号中填35,即 35= 6×6-1。

(13)1,2,2,4,3,8,4,16,5,()。

前面的方法均不适用于这个数列,在观察的过程中,可以发现,本数列中的某些数是很有规律的,如1,2,3,4,5,而它们恰好是第1项、第3项、第5项、第7项和第9项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:

奇数项:1,2,3,4,5

偶数项:2,4,8,16 可以看出,奇数项构成一等差数列,偶数项构成一等比数列.因此,括号中的数,即第10项应为32(32=16×2)。

(14)2,1,4,3,6,9,8,27,10,()。

同上考虑,把数列分为奇、偶项:

偶数项:2,4,6,8,10

奇数项:1,3,9,27,().所以,偶数项为等差数列,奇数项为等比数列,括号中应填81(81=27×3)。

像(13)(14)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列。

3、按一定的规律在括号中填上适当的数:

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.1.1,2,3,4,5,(),7„

2.100,95,90,85,80,(),70

3.1,2,4,8,16,(),64

学大教育个性化教学教案

5.2,1,3,4,7,(),18,29,47

6.1,2,5,10,17,(),37,50

7.1,8,27,64,125,(),343

8.1,9,2,8,3,(),4,6,5,5

Beijing XueDa Century Education Technology Ltd.有这样一道题目:如果每上一层楼梯需要1分钟,那么从一层上到四层需要多少分钟?如果你的答案是4分钟,那么你就错了.正确的答案应该是3分钟。

学大教育个性化教学教案

为什么是3分钟而不是4分钟呢?原来从一层上到四层,只要上三层楼梯,而不是四层楼梯。

下面我们来看几个类似的问题。

例1 裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?

分析 如果呢子有2米,不需要剪;如果呢子有4米,第一天就可以剪去最后一段,4米里有2个2米,只用1天;如果呢子有6米,第一天剪去2米,还剩4米,第二天就可以剪去最后一段,6米里有3个2米,只用2天;如果呢子有8米,第一天剪去2米,还剩6米,第二天再剪2米,还剩4米,这样第三天即可剪去最后一段,8米里有4个2米,用3天,„„

我们可以从中发现规律:所用的天数比2米的个数少1.因此,只要看16米里有几个2米,问题就可以解决了。

解:16米中包含2米的个数:16÷2=8(个)

剪去最后一段所用的天数:8-1=7(天)

答:第七天就可以剪去最后一段。

例2一根木料在24秒内被切成了4段,用同样的速度切成5段,需要多少秒?

可以从中发现规律:切的次数总比切的段数少1.因此,在24秒内切了4段,实际只切了3次,这样我们就可以求出切一次所用的时间了,又由于用同样的速度切成5段;实际上切了4次,这样切成5段所用的时间就可以求出来了。

解:切一次所用的时间:24÷(4-1)=8(秒)

切5段所用的时间:8×(5-1)=32(秒)

答:用同样的速度切成5段,要用32秒。

例3三年级同学120人排成4路纵队,也就是4个人一排,排成了许多排,现在知道每相邻两排之间相隔1米,这支队伍长多少米?

解:因为每4人一排,所以共有:120÷4=30(排)

30排中间共有29个间隔,所以队伍长:1×29=29(米)

Beijing XueDa Century Education Technology Ltd.答:这支队伍长29米。

例4 时钟4点钟敲4下,12秒钟敲完,那么6点钟敲6下,几秒钟敲完?

分析 如果盲目地计算:12÷4=3(秒),3×6=18(秒),认为敲6下需要18秒钟就错了.请看下图:

学大教育个性化教学教案

时钟敲4下,其间有3个间隔,每个间隔是:12÷3=4(秒);时钟敲6下,其间共有5个间隔,所用时间为:

4×5=20(秒)。

解:每次间隔时间为:12÷(4-1)=4(秒)

敲 6下共用的时间为:4×(6-1)=20(秒)

答:时钟敲6下共用20秒。

例5.某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

分析 要求还需要多少秒才能到达,必须先求出上一层楼梯需要几秒,还要知道从4楼走到8楼共走几层楼梯.上一层楼梯需要:48÷(4-1)=16(秒),从4楼走到8楼共走8-4=4(层)楼梯。到这里问题就可以解决了。

解:上一层楼梯需要:48÷(4-1)=16(秒)

从4楼走到8楼共走:8-4=4(层)楼梯

还需要的时间:16×4=64(秒)

答:还需要64秒才能到达8层。

例6晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

分析 要求晶晶从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。

从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有36÷2=18(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯,这样问题就可以迎刃而解了。

解:每一层楼梯有:36÷(3-1)=18(级台阶)

Beijing XueDa Century Education Technology Ltd.晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。

答:晶晶从第1层走到第6层需要走90级台阶。

注:例1~例4所叙述的问题虽然不是上楼梯,但它和上楼梯有许多相似之处,请同学们自己去体会.爬楼梯问题的解题规律是:所走的台阶数=每层楼梯的台阶数×(所到达的层数减起点的层数)。

习题

1.一根木料截成3段要6分钟,如果每截一次的时间相等,那么截7段要几分钟?

2.有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?

3.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?

4.一座楼房每上1层要走16级台阶,到小英家要走64级台阶,小英家住在几楼?

5.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?

6.时钟3点钟敲3下,6秒钟敲完,12点钟敲12下,几秒钟敲完?

7.某人到高层建筑的10层去,他从1层走到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?

8.A、B二人比赛爬楼梯,A跑到4层楼时,B恰好跑到3层楼,照这样计算,A跑到16层楼时,B跑到几层楼?

9.铁路旁每隔50米有一根电线杆,某旅客为了计算火车的速度,测量出从第一根电线杆起到经过第37根电线杆共用了2分钟,火车的速度是每秒多少米?

习题解答

1.解:每截一次需要:6÷(3-1)=3(分钟),截成7段要3×(7-1)=18(分钟)

答:截成7段要18分钟。

2.解:从1层走到11层共走:11-1=10(个)楼梯,从1层走到11层一共要走:17×10=170(级)台阶。

答:从1层走到11层,一共要登170级台阶。

3.解:每一层楼梯的台阶数为:48÷(4-1)=16(级),从1楼到6楼共走:6-1=5(个)楼梯,从1楼到6楼共走:16×5=80(级)台阶。

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.答:从1楼到6楼共走80级台阶。

4.解:到小英家共经过的楼梯层数为:64÷16=4(层),小英家住在:4+1=5(楼)

答:小英家住在楼的第5层。

5.解:火车的总长度为:5×20+1×(20-1)=119(米),火车所行的总路程:119+81=200(米),所需要的时间:200÷20=10(分钟)

答:需要10分钟。

学大教育个性化教学教案

6.解:每个间隔需要:6÷(3-1)=3(秒),12点钟敲12下,需要3×(12-1)=33(秒)

答:33秒钟敲完。

7.解:每上一层楼梯需要:100÷(5-1)=25(秒),还需要的时间:25×(10-5)=125(秒)

答:从5楼再走到10楼还需要125秒。

8.由A上到4层楼时,B上到3层楼知,A上3层楼梯,B上2层楼梯。那么,A上到16层时共上了15层楼梯,因此B上2×5=10个楼梯,所以B上到10+1=11(层)。

答:A上到第16层时,B上到第11层楼。

9.解:火车2分钟共行:50×(37-1)=1800(米)

2分钟=120秒

火车的速度:1800÷120=15(米/秒)

答:火车每秒行15米。

第四讲 植树与方阵问题

一、植树问题

要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。关于植树的路线,有封闭与不封闭两种路线。1.不封闭路线 例:如图

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.如上图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、株距三者之间的关系是: 棵数=段数+1=全长÷株距+1 全长=株距×(棵数-1)株距=全长÷(棵数-1)

② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为: 全长=株距×棵数; 棵数=全长÷株距; 株距=全长÷棵数。

③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵。棵数=段数-1=全长÷株距-1.如右图所示.段数为5段,植树棵数为4棵。株距=全长÷(棵数+1)。2.封闭的植树路线

例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。如右图所示。

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

棵数=段数=周长÷株距.二、方阵问题

学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:

① 方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

② 每边人(或物)数和四周人(或物)数的关系: 四周人(或物)数=[每边人(或物)数-1]×4; 每边人(或物)数=四周人(或物)数÷4+1。

③ 中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆? 分析 要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成 900÷10=90(段)

共需电线杆根数:90+1=91(根)

答:可栽电线杆91根。

Beijing XueDa Century Education Technology Ltd.例2 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?

分析 张军5分钟看到501棵树意味着在马路的两端都植树了;只要求出这段路的长度就容易求出汽车速度.解:5分钟汽车共走了:

9×(501-1)=4500(米),汽车每分钟走:4500÷5=900(米),汽车每小时走:

900×60=54000(米)=54(千米)

列综合式:

9×(501-1)÷5×60÷1000=54(千米)

答:汽车每小时行54千米。

例3 某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?

分析 根据四周人数和每边人数的关系可以知:

每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

解:方阵最外层每边人数:60÷4+1=16(人)

整个方阵共有学生人数:16×16=256(人)

答:方阵最外层每边有16人,此方阵中共有256人。

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.例4 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?

分析 方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。

解:最外边一层棋子个数:(14-1)×4=52(个)

第二层棋子个数:(14-2-1)×4=44(个)

第三层棋子个数:(14-2×2-1)×4=36(个).摆这个方阵共用棋子:

52+44+36=132(个)

还可以这样想:

中空方阵总个数=(每边个数一层数)×层数×4进行计算。

解:(14-3)×3×4=132(个)

答:摆这个方阵共需132个围棋子。

例5 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?

分析 ①在圆形花坛上栽花,是封闭路线问题,其株数=段数.② 由于相邻的两棵芍药花之间等距的栽有两棵月季,则每6米之中共有3棵花,且月季花棵数是芍药的2倍。

解:共可栽芍药花:180÷6=30(棵)

共种月季花:2×30=60(棵)

两种花共:30+60=90(棵)

两棵花之间距离:180÷90=2(米)

学大教育个性化教学教案

相邻的花或者都是月季花或者一棵是月季花另一棵是芍药花,所以月季花的株距是2米或4米。

答:种芍药花30棵,月季花60棵,两棵月季花之间距离为2米或4米。

Beijing XueDa Century Education Technology Ltd.例6 一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?

学大教育个性化教学教案

分析 ①从已知条件中可以知道大三角形的边长是小三角形边长的2倍.又知道每个小三角形的边上均匀栽9株,则大三角形边上栽的棵数为

9×2-1=17(棵)。

② 又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以大三角形三条边上共栽花

(17-1)×3=48(棵)。

③.再看图中画斜线的小三角形三个顶点正好在大三角形的边上.在计算大三角形栽花棵数时已经计算过一次,所以小三角形每条边上栽花棵数为9-2=7(棵)

解:大三角形三条边上共栽花:

(9×2-1-1)×3=48(棵)

中间画斜线小三角形三条边上栽花:

(9-2)×3=21(棵)

整个花坛共栽花:48+21=69(棵)

答:大三角形边上共栽花48棵,整个花坛共栽花69棵。

习题四

1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?

2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?

Beijing XueDa Century Education Technology Ltd.3.在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?

4.在一根长100厘米的木棍上,从左向右每隔6厘米点一个红点.从右向左每隔5厘米点一个红点,在两个红点之间长为4厘米的间距有几段?

题四解答

1.提示:由于是封闭路线栽树,所以棵数=段数,150÷3=50(棵)。

2.提示:在正方形操场边上栽树.正方形边长都相等,四个角上栽的树是相邻的两条边公有的一棵,所以每边栽树的棵数为17-1=16(棵),共栽:(17-1)×4=64(棵)

答:共栽树64棵。

3.解:甲走到第22棵树时走过了22-1=21(个)棵距.同样乙走过了10-1=9(个)棵距.乙走到第10棵树,所用的时间为(9×棵距÷36),这个时间也是甲走过21个棵距的时间,甲的速度为:21×棵距÷(9×棵距÷36)=84米/分。

答:甲的速度是每分钟84米。

学大教育个性化教学教案

4.① 根据已知条件,从左至右每隔6厘米点一红点,不难算出共有17个点(包括起点,终点)并余4厘米。②100厘米长的棒从右到左共点21个点,可分为20段,而最后一点与端点重合,相当于从左到右以5厘米的间距画点.③ 在5与6的公倍数30中,不难看出有2个4厘米的小段;同样在第二个和第三个30厘米中也各有2个,剩下的10厘米只有一个4厘米的小段,所以在100厘米的木棍上只能有2×3+1=7(段)4厘米长的间距.植树问题

一、填空题

1.在相距100米的两楼之间栽树,每隔10米栽1棵,共栽了 棵树.2.圆形滑冰场周长400米,每隔20米装一盏灯,共要装 盏灯.3.一段公路长3600米,在公路两旁每隔9米栽一棵梧桐树,两端都栽,共栽梧桐树 棵.4.在一个半径是125米的圆形花园周围以等距离种白杨树157棵,则两树间的距离是 米.Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

5.一个湖泊周长1800米,沿湖泊周围每隔3米栽一棵柳树,每两棵柳树中间栽一棵桃树,湖泊周围栽柳树 棵,栽桃树 棵.6.一块三角形地,三边之长分别为156米、234米、186米,要在三边上植树,株距6米,三个角上各有一棵,共植树 棵.7.一条马路长440米,在路的两旁每隔8米种一棵树,两边都种,共种 棵树.8.两棵柳树相距408米,计划在这两棵树之间补栽小树23棵,每两棵树间隔相等,则树的间隔 米.9.公路的每边相隔7米有一棵槐树,芳芳乘电车3分钟看到公路的一边有槐树151棵,电车的速度是每分钟 米.10.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米.这列车队要通过536米长的检阅场地,要 分钟.二、解答题

11.参加阅兵的战士有1200人,平均分成5个大队,队距是7.5米.每队6人为一排,排距是2米.整个队伍的总长有多少米.12.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分.如果把这样的钢条锯成半米长的小段,需要多少分钟.13.一人以相等的速度在小路上散步,从第一棵树走到第12棵树用了11分钟,如果这个人走了25分钟,应走到的第几棵树.14.在一个正方形的场地四周种树,四个顶点都有一棵,这样每边都种有24棵,四周共种多少棵树.———————————————答 案——————————————————————

一、填空题

1. 因为两端不能栽树,所以: 棵数=间隔数-1=100÷10-1=9(棵)

2. 间隔数为:400÷20=20 因为是环形问题,装灯的盏数等于间隔数,共要装订20盏.3.间隔数为:3600÷9=400 栽数棵数=(间隔数+1)×2=401×2=802(棵)

4.半径为125米的圆周长为:2×3.14×125=785(米)因为环形问题的棵数等于间隔数,所以间隔数为157.间距=785÷157=5(米)

5.间隔数=1800÷3=600 因为是环形问题,所以栽柳数为600棵.因为每两棵柳树中间栽一棵桃树,即每个间隔内栽一棵桃树,所以栽桃树600棵.Beijing XueDa Century Education Technology Ltd.6.因为156÷6=26 234÷6=39 186÷6=31 又因为三个角上各有一棵,所以共植树:(26+1)+(39+1)+(31+1)-3=27+40+32-3=96(棵)

7.间隔数=440÷8=55 因为两边都种树,所以共种树:(55+1)×2=112(棵)

8.间隔数=棵数-1=(23+2)-1=24 间距=路长÷间隔数=408÷24=17(米)

9.路长=间隔数×间距=(151-1)×7=1050(米)速度=路程÷时间=1050÷3=350(米)所以速度为每分钟350米.10.因为车队行驶的路程等于检阅场地的长度与车队长度的和.所以所需时间为: [4×52+6×(52-1)+536]÷105 =[208+306+536]÷105 =1050÷105 =10(分钟)

学大教育个性化教学教案

二、解答题

11.由题意,队伍总长为: 7.5×(5-1)+2×(1200÷5÷6-1)×5 =7.5×4+2×39×5 =420(米)

12.由题意,所需时间为: 锯一刀所需时间×要锯的刀数.=(60×1+20)÷(5-1)×(4÷0.5-1)=80÷4×7 =140(分钟)

13.由从第1棵走到第12棵,共走了11个间隔,用了11分种,得出每分钟走1个间隔.所以25分钟,走了25个间隔,所以应走到第25+1=26棵树.14.由题意,四周共有:(24-1)×4=92(棵)

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

和归总问题

为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!

归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?

正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。

例1 一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?

分析 为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。

解:①小蜗牛每分钟爬行多少分米? 12÷6=2(分米)

② 1小时爬几米?1小时=60分。

2×60=120(分米)=12(米)

答:小蜗牛1小时爬行12米。

还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。

解:1小时=60分钟

12×(60÷6)=12×10=120(分米)=12(米)

或 12÷(6÷60)=12÷0.1=120(分米)=12(米)

答:小蜗牛1小时爬行12米。

例2 一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?

方法1:

分析 通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。

解:(20000-6000)÷(6000÷3)=7(小时)

答:磨完剩下的面粉还要7小时。

方法2:用比例关系解。

Beijing XueDa Century Education Technology Ltd.解:设磨剩下的面粉还要x小时。

学大教育个性化教学教案

6000x=3×14000

x=7(小时)

答:磨完剩下的面粉还要7小时。

例3 学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?

分析 要求5个足球和4个篮球共花多少元,关键在于先求出每个足球和每个篮球各多少元.根据已知条件分析出第一次和第二次买的足球个数相等,而篮球相差7-5=2(个),总价差355-281=74(元).74元正好是两个篮球的价钱,从而可以求出一个篮球的价钱,一个足球的价钱也可以随之求出,使问题得解。

解:①一个篮球的价钱:(355-281)÷(7-5)

=37元

②一个足球的价钱:(281-37×5)÷3=32(元)

③共花多少元? 32×5+37×4=308(元)

答:买5个足球,4个篮球共花308元。

例4 一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?

分析 要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)

②排水速度:480÷6=80(吨/小时)

③排空全池水所需的时间:480÷(80-60)=24(小时)

列综合算式:

480÷(480÷6-480÷8)=24(小时)

答:两管齐开需24小时把满池水排空。

Beijing XueDa Century Education Technology Ltd.例5 7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?

方法1:

分析 要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。

解:①一辆卡车一次能运多少吨沙土?

336÷6÷7=56÷7=8(吨)

②560吨沙土,5趟运完,每趟必须运走几吨?

560÷5=112(吨)

③需要增加同样的卡车多少辆?

112÷8-7=7(辆)

列综合算式:

560÷5÷(336÷6÷7)-7=7(辆)

答:需增加同样的卡车7辆。

方法2:

学大教育个性化教学教案

在求一辆卡车一次能运沙土的吨数时,可以列出两种不同情况的算式:①336÷6÷7,②336÷7÷6.算式①先除以6,先求出7辆卡车1次运的吨数,再除以7求出每辆卡车的载重量;算式②,先除以7,求出一辆卡车6次运的吨数,再除以6,求出每辆卡车的载重量。

在求560吨沙土5次运完需要多少辆卡车时,有以下几种不同的计算方法:

求出一共用车14辆后,再求增加的辆数就容易了。

Beijing XueDa Century Education Technology Ltd.例6 某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求4天完成任务,可是又要增加6人.求每天加班工作几小时?

分析 我们把1个工人工作1小时,作为1个工时.根据已知条件,加工这批零件,原计划需要多少“工时”呢?求出“工时”数,使我们知道了工作总量.有了工作总量,以它为标准,不管人数增加或减少,工期延长或缩短,仍然按照原来的工作效率,只要能够达到加工零件所需“工时”总数,再求出要加班的工时数,问题就解决了。

解:①原计划加工这批零件需要的“工时”:

8×18×7.5=1080(工时)

②增加6人后每天工作几小时?

1080÷(18+6)÷4=11.25(小时)

③每天加班工作几小时? 11.25-8=3.25(小时)

答:每天要加班工作3.25小时。

例7 甲、乙两个打字员4小时共打字3600个.现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个.求甲、乙二人每小时各打字多少个?

分析 已知条件告诉我们:“在相同时间内甲打字2450个,乙打字2050个.”既然知道了“时间相同”,问题就容易解决了.题目里还告诉我们:“甲、乙二人4小时共打字3600个.”这样可以先求出“甲乙二人每小时打字个数之和”,就可求出所用时间了.解:①甲、乙二人每小时共打字多少个?

3600÷4=900(个)

②“相同时间”是几小时?

(2450+2050)÷900=5(小时)

③甲打字员每小时打字的个数:

2450÷5=490(个)

④乙打字员每小时打字的个数:

2050÷5=410(个)

答:甲打字员每小时打字490个,乙打字员每小时打字410个。

还可以这样想:这道题的已知条件可以分两层.第一层,甲乙二人4小时共打字3600个;第二层,在相同时间内甲打字2450个,乙打字2050个.由这两个条件可以求出在相同的时间内,甲乙二人共打字 2450+2050=4500(个);打字 3600个用4小时,打字4500个用几小时呢?先求出4500是3600的几倍,也一定是4小时的几倍,即“相同时间”。

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.解:①“相同时间”是几小时?

4×[(2450+2050)÷3600]=5(小时)

②甲每小时打字多少个?

2450÷5=490(个)

③乙每小时打字多少个?

2050÷5=410(个)

答:甲每小时打字490个,乙每小时打字410个.与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。例8 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?

分析:(1)工程总量相当于1个人工作多少小时?

15×8=120(时)。

(2)12个人完成这项工程需要多少小时?

120÷12=10(时)。解:15×8÷12=10(时)。

答:12人需10时完成。

例9 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米?

分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?

60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?

300÷4=75(千米)。

(3)每小时多行多少千米?

75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.答:每小时需要多行15千米。

例10 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?

分析:(1)修这条公路共需要多少个劳动日(总量)?

60×80=4800(劳动日)。

(2)60人工作20天后,还剩下多少劳动日?

4800-60×20=3600(劳动日)。

(3)剩下的工程增加30人后还需多少天完成?

3600÷(60+30)=40(天)。

解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。

练习11

学大教育个性化教学教案

1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?

2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?

3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子?

4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?

5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?

6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元?

7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天?

1.75公顷。2.8时。3.768张。

4.60公顷。5.8时。6.2.80元。

7.140天。

8.花果山上桃树多,6只小猴分180棵.现有小猴72只,如数分后还余90棵,请算出桃树有几棵?

Beijing XueDa Century Education Technology Ltd.9.5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?

10.4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方,汽油只有1000公升,问是否够用?

11.5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地,需要增加同样拖拉机多少台?

习题8-11解答

8.180÷6×72+90=2250(棵)

或:180×(72÷6)+90=2250(棵)

答:桃树共有2250棵。

9.300÷(75÷5)-5=15(箱)

或 5×[(300-75)÷75]=5×3=15(箱)

答:要增加 15箱蜜蜂。

10.提示:要想得知1000公升汽油是否够用,先算一算行800千米需要的汽油,然后进行比较.如果大于1000公升,说明不够用;小于或等于 1000公升,说明够用。

240÷4÷300×5×800=800(公升)

800公升<1000公升,说明够用.答:1000公升汽油够用。

学大教育个性化教学教案

11.提示:先求出1台拖拉机1天耕地公亩数,然后求出18天耕54000公亩需要拖拉机台数,再求增加台数。

答:需要增加 25台拖拉机.Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数„„”。

平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数。

解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。

【典型例题】

一、算术平均数

例1 用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?

分析 求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。

解:(4+5+7+8)÷4=6(厘米)

答:这4个杯子水面平均高度是6厘米。【巩固练习】

1、一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

解:总成绩=98+87+93+86+88+94=546(分)。

这个小组有6个同学,平均成绩是

546÷6=91(分)。

答:平均成绩是91分。

例2 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?

分析 解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用和差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。

解:①英语:(84×2+10)÷2=89(分)

②语文: 89-10=79(分)

③政治:86×2-89=83(分)

Beijing XueDa Century Education Technology Ltd.④数学: 91.5×2-83=100(分)

⑤生物: 89×5-(89+79+83+100)=94(分)

答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。

【巩固练习】

1、小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

分析:英语比平均成绩高的这4分,是“补”给了数学和语文,所以三门功课的平均成绩为

(92+90+4)÷2=93(分),由此可求出英语成绩。解:(92+92+4)÷2+4=97(分)。

答:英语得了97分。

学大教育个性化教学教案

二、加权平均数

例3 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?

分析 要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。

解:①什锦糖的总价:

4.40×2+4.20×3+7.20×5=57.4(元)

②什锦糖的总千克数: 2+3+5=10(千克)

③什锦糖的单价:57.4÷10=5.74(元)

答:混合后的什锦糖每千克5.74元。

我们把上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。

【巩固练习】

1、把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克? 解:苹果和梨的总重量为

40+80=120(千克)。

因要装成6筐,所以,每筐平均应装

120÷6=20(千克)。

答:每筐应装20千克。

Beijing XueDa Century Education Technology Ltd.2、小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?

解:两批猪的总重量为

66×3+42×5=408(千克)。

两批猪的头数为3+5=8(头),故平均每头猪重

408÷8=51(千克)。

答:平均每头猪重51千克。

注意,在上例中不能这样来求每头猪的平均重量:

(66+42)÷2=54(千克)。

学大教育个性化教学教案

例4 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?

分析 此题是已知两个数的加权平均数、两个数和其中一个数的权数,求另一个数的权数的问题.甲棉田平均亩产籽棉203斤比甲乙棉田平均亩产多18斤,5亩共多出90斤.乙棉田平均亩产比甲乙棉田平均亩产少15斤,乙少的部分用甲多的部分补足,也就是看90斤里面包含几个15斤,从而求出的是乙棉田的亩数,即“权数”。

解:①甲棉田5亩比甲乙平均亩产多多少斤?

(203-185)×5=90(斤)

②乙棉田有几亩?

90÷(185-170)=6(亩)

答:乙棉田有6亩。【巩固练习】

1、三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少? 解:全班身高的总数为

132×42=5544(厘米),女生身高总数为

136×18=2448(厘米),男生有42-18=24(人),身高总数为

5544-2448=3096(厘米),男生平均身高为

3096÷24=129(厘米)。

综合列式:

(132×42-136×18)÷(42-18)=129(厘米)。

答:男生平均身高为129厘米。

Beijing XueDa Century Education Technology Ltd.三、连续数平均问题

我们学过的连续数有“连续自然数”、“连续奇数”、“连续偶数”.已知几个连续数的和求出这几个数,也叫平均问题。

例5 已知八个连续奇数的和是144,求这八个连续奇数。

分析 已知偶数个奇数的和是144.连续数的个数为偶数时,它的特点是首项与末项之和等于第二项与倒数第二项之和,等于第三项与倒数第三项之和„„即每两个数分为一组,八个数分成4组,每一组两个数的和是144÷4=36.这样可以确定出中间的两个数,再依次求出其他各数。

解:①每组数之和:144÷4=36

②中间两个数中较大的一个:(36+2)÷2=19

③中间两个数中较小的一个:19-2=17

∴这八个连续奇数为11、13、15、17、19、21、23和25。

答:这八个连续奇数分别为:11、13、15、17、19、21、23和25。【巩固练习】

1、已知八个连续奇数的和是2016,求这八个连续奇数。

四、调和平均数

例6 一个运动员进行爬山训练.从A地出发,上山路长11千米,每小时行4.4千米.爬到山顶后,沿原路下山,下山每小时行5.5千米.求这位运动员上山、下山的平均速度。

分析 这道题目是行程问题中关于求上、下山平均速度的问题.解题时应区分平均速度和速度的平均数这两个不同的概念.速度的平均数=(上山速度+下山速度)÷2,而平均速度=上、下山的总路程÷上、下山所用的时间和。

解:①上山时间: 11÷4.4=2.5(小时)

②下山时间:11÷5.5=2(小时)

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

【巩固练习】

1、小胖爬山,上山的平均速度是每小时2千米,到达山顶后立即下山,下山的平均速度是每小时6千米,求小胖上、下山的平均速度.

2、一条山路全长15千米,一名运动员以每小时3千米的速度上山,再以每小时5千米的速度下山,求这名运动员往返一趟的平均速度?

五、基准数平均数

例7 中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每个人平均每分钟跳绳多少个?

分析 从他们每人跳绳的个数可以看出,每人跳绳的个数很接近,所以可以选择其中一个数90做为基准数,再找出每个加数与这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如 87=90-3,3作为减数.把这些差累计起来,用和数的项数乘以基准数,加上累计差,再除以和数的个数就可以算出结果。

解:①跳绳总个数。

93+94+85+92+86+88+94+91+88+89+92+86+93+90+89

=90×15+(3+4+2+4+1+2+3)-(5+4+2+2+1+4+1)

=1350+19-19

=1350(个)

②每人平均每分钟跳多少个?

1350÷15=90(个)

答:每人平均每分钟跳90个.Beijing XueDa Century Education Technology Ltd.【巩固练习】

1、同学们参加跳绳比赛,跳绳情况如下表:

序号 1 2 3 4 5 6 7 男生 84 78 69 80 92 91 87 女生 92 94 90 89 87 92 93

学大教育个性化教学教案

男生平均每人跳多少个?女生呢?

解:男生:(84+78+69+80+92+91+87)÷7,=581÷7,=83(个);

女生:(92+94+90+89+87+92+93)÷7,=637÷7,=91(个).

答:男生平均每人跳83个,女生平均每人跳91个.

习题

1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?

2.求1962、1973、1981、1994、2005的平均数。

3.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。

4.甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?

5.7个连续偶数的和是1988,求这7个连续偶数。

6.6个学生的年龄正好是连续自然数,他们的年龄和与小明爸爸的年龄相同,7个人年龄一共是126岁,求这6个学生各几岁?

7.食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?

习题解答

1.∵甲+乙=184(1)

Beijing XueDa Century Education Technology Ltd.乙+丙=187(2)

丙+丁=188(3)

(2)-(1)丙-甲=3(4)

(3)-(4)丁+甲=185

∴甲=(185+1)÷2=93(分)

丁=93-1=92(分)

乙=184-93=91(分)

丙=187-91=96(分)

答:甲、乙、丙、丁的成绩分别为93分、91分、96分、和92分。

2.1962+1973+1981+1994+2005

=1981×5+(13+24)-(8+19)

=9915。

9915÷5=1983。

3.①上半年总产量:

750×3+750×3×2+66=6816(台)

②下半年总产量:1200×6=7200(台)

③平均月产量:(6816+7200)÷12=1168(台)

答:平均月产量是1168台。

4.(8.8-8.2)×5÷(8.2-7.2)=3(千克)

答:与乙种糖3千克混合。

5.分析 已知奇数个偶数的和,可以用和除以个数求出中间数,再求出其他各偶数。

中间数:1988÷7=284

其他六个数分别为278、280、282、284、286、288、290。

答:这7个偶数分别为:278、280、282、284、286、288、290。

6.分析 6个孩子年龄和与小明爸爸年龄相同,说明小明爸爸年龄是126岁的一半,是63岁.其他6个学生的年龄和也是63岁.63÷3=21(岁),21=10+11为中间两个数,所以其他四人

学大教育个性化教学教案

Beijing XueDa Century Education Technology Ltd.年龄依次为8、9、12、13岁。

答:这六个学生的年龄分别为:8、9、10、11、12、13岁。

学大教育个性化教学教案

7.解:设5只羊的重量从轻到重依次为A1、A2、A3、A4、A5.A1+A2=47,A1+A3=50„„A3+A5=58,A4+A5=59.10次称重5只羊各称过4次,所以它们的重量和应是:

A1+A2+A3+A4+A5

=(47+50+51+52+53+54+55+57+58+59)÷4=13A3=134-(A1+A2)-(A4+A5)=28

A1=50-28=22 A2=47-22=25

A5=58-28=30 A4=59-30=29

答:这5只羊的重量分别为22千克、25千克、28千克、29千克、30千克.和倍应用题

小学数学中有各种各样的应用题。根据它们的结构形式和数量关系,形成了一些用特定方法解答的典型应用题。比如,和倍应用题、差倍应用题、和差应用题等等。

和倍应用题的基本“数学格式”是:

已知大、小二数的“和”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中有“和”,有“倍数”,所以叫做和倍应用题。为了清楚地表示和倍问题中大、小二数的数量关系,画出线段图如下:

从线段图知,“和”是小数的(倍数+1)倍,所以,小数=和÷(倍数+1)。

上式称为和倍公式。由此得到

大数=和-小数,或 大数=小数×倍数。

例如,大、小二数的和是265,大数是小数的4倍,则

小数=265÷(4+1)=53,大数=265-53=212或53×4=212。

【典型例题】

例1 甲、乙两仓库共存粮264吨,甲仓库存粮是乙仓库存粮的10倍。甲、乙两仓库各存粮多少吨?

分析:把甲仓库存粮数看成“大数”,乙仓库存粮数看成“小数”,此例则是典型的和倍应用题。根据和倍公式即可求解。解:乙仓库存粮 264÷(10+1)=24(吨),甲仓库存粮

264-24=240(吨),或

24×10=240(吨)。

答:乙仓库存粮24吨,甲仓库存粮240吨。

【巩固练习】

Beijing XueDa Century Education Technology Ltd.1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

分析 设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:

学大教育个性化教学教案

解:乙班:160÷(3+1)=40(本)

甲班:40×3=120(本)

或 160-40=120(本)

答:甲班有图书120本,乙班有图书40本。

这道应用题解答完了,怎样验算呢?

可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。

验算:120+40=160(本)

120÷40=3(倍)。

例2 甲、乙两辆汽车在相距360千米的两地同时出发,相向而行,2时后两车相遇。已知甲车的速度是乙车速度的2倍。甲、乙两辆汽车每小时各行多少千米?

分析:已知甲车速度是乙车速度的2倍,所以“1倍”数是乙车的速度。现只需知道甲、乙汽车的速度和,就可用“和倍公式”了。由题意知两辆车 2时共行 360千米,故1时共行 360÷2=180(千米),这就是两辆车的速度和。解:乙车的速度为

(360÷2)÷(2+1)= 60(千米/时),甲车的速度为

60×2=20(千米/时),或180-60=120(千米/时)。

答:甲车每时行120千米,乙车每时行60千米。

从上面两道例题看出,用“和倍公式”的关键是确定“1倍”数(即小数)是谁,“和”是谁。例

1、例2的“1倍”数与“和”极为明显,其中例2中虽未直接给出“和”,但也很容易求出。下面我们讲几个“1倍”数不太明显的例子。

例3 甲队有45人,乙队有75人。甲队要调入乙队多少人,乙队人数才是甲队人数的3倍?

Beijing XueDa Century Education Technology Ltd.分析:容易求得“二数之和”为 45+75=120(人)。如果从“乙队人数才是甲队人数的3倍”推出“1倍”数(即小数)是“甲队人数”那就错了,从75不是45的3倍也知是错的。这个“1倍”数是谁?根据题意,应是调动后甲队的剩余人数。倍数关系也是调动后的人数关系,即“调入人后的乙队人数”是“调走人后甲队剩余的人数”的3倍。由此画出线段图如下:

从图中看出,把甲队中“?”人调入乙队后,(45+75)就是甲队剩下人数的 3+1=4(倍)。从而,甲队调走人后剩下的人数就是“1倍”数。由和倍公式可以求解。解:甲队调动后剩下的人数为

(45+75)÷(3+1)= 30(人),故甲队调入乙队的人数为45-30=15(人)。

答:甲队要调15人到乙队。

学大教育个性化教学教案

【巩固练习】

1、甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?

分析 解这题的关键是找出哪个量是变量,哪个量是不变量.从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。

解:①甲、乙两班共有图书的本数是:

30+120=150(本)

②甲班给乙班若干本图书后,甲、乙两班共有的倍数是:

2+1=3(倍)

③乙班现有的图书本数是:150÷3=50(本)

④甲班给乙班图书本数是:50-30=20(本)

综合算式:

(30+120)÷(2+1)=50(本)

50-30=20(本)

答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。

验算:(120-20)÷(30+20)=2(倍)

(120-20)+(30+20)=150(本)。

Beijing XueDa Century Education Technology Ltd.例4 妹妹有书24本,哥哥有书53本。要使哥哥的书是妹妹的书的6倍,妹妹应给哥哥多少本书?

仿照例3的分析可得如下解法。

解:兄妹图书总数是妹妹给哥哥一些书后剩下图书的(6+1)倍,根据和倍公式,妹妹剩下

(53+24)÷(6+1)=11(本)。故妹妹给哥哥书24-11=13(本)。

答:妹妹给哥哥书13本。

例5 大白兔和小灰兔共采摘了蘑菇160个。后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。这时,大白兔的蘑菇是小灰兔的5倍。问:原来大白兔和小灰兔各采了多少个蘑菇?

分析与解:这道题仍是和倍应用题,因为有“和”、有“倍数”。但这里的“和”不是 160,而是160-20+10=150,“1倍”数却是“小灰兔又自己采了10个后的蘑菇数”。线段图如下:

根据和倍公式,小灰兔现有蘑菇(即“1倍”数)

(160-20+10)÷(5+1)=25(个),故小灰兔原有蘑菇25-10=15(个),大白兔原有蘑菇

160-15=145(个)。

答:原来大白兔采蘑菇145个,小灰兔采15个。

学大教育个性化教学教案

例6 光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?

分析 把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。

解:①女生人数:(760+40)÷(3+1)=200(人)

②男生人数:200×3-40=560(人)

或 760-200=560(人)

答:男生有560人,女生有200人。

验算:560+200=760(人)

(560+40)÷200=3(倍)。

例7果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?

分析 下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。

Beijing XueDa Century Education Technology Ltd.学大教育个性化教学教案

解:①梨树的棵数:

(552+20-12)÷(1+1+2)

=560÷4=140(棵)

②桃树的棵数:140×2+12=292(棵)

③苹果树的棵数: 140-20=120(棵)

答:桃树、梨树、苹果树分别是292棵、140棵和120棵。

例8 549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?

分析 上图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。

解:①丙数是:(549+2-2)÷(2+2+1+4)

=549÷9

=61

②甲数是:61×2-2=120

③乙数是:61×2+2=124

④丁数是:61×4=24验算:120+124+61+244=549

120+2=122 124-2=122

Beijing XueDa Century Education Technology Ltd.61×2=122 244÷2=122

答:甲、乙、丙、丁分别是120、124、61、244.练习1

1.小敏与爸爸的年龄之和是64岁,爸爸的年龄是小敏的3倍。小敏和她爸爸的年龄各是多少岁?

2.一肉店卖出猪肉和牛肉共560千克,卖出的猪肉是卖出的牛肉的4倍。猪、牛肉各卖了多少千克?

3.甲、乙两桶汽油共84千克。如果把乙桶中的油倒入甲桶15千克,那么这时甲桶中的汽油等于乙桶中的汽油的3倍。甲、乙两桶原有汽油各多少千克?

4.甲、乙两人共生产零件100个,其中甲有2个零件、乙有5个零件不合格。已知乙生产的合格零件是甲生产的合格零件的2倍。甲、乙各生产了多少个零件?

5.团结村原有水田290公顷,旱田170公顷。要把多少公顷旱田改为水田,才能使水田的公顷数比旱田的公顷数多2倍?

6.红星小学图书馆内,科技书是故事书的3倍,连环画书又是科技书的2倍。已知这三种书共有1600本,那么每种书各有多少本? 答案与提示 练习

1.16岁,48岁。

2.448千克,112千克。

3.甲桶48千克,乙桶36千克。解:乙桶原有84÷(3+1)+15=36(千克),甲桶原有84-36=48(千克)。

4.甲33个,乙67个。

解:甲=(100-2-5)÷(2+1)+2=33(个),乙=100-33=67(个)。

5.55公顷。

解:170-(290+170)÷(2+1+1)=55(公顷)。

6.故事书160本,科技书480本,连环画960本。

解:以故事书为“1倍”数,则科技书为它的3倍,连环画书为它的3×2=6(倍)。由和倍公式,得

故事书有1600÷(1+3+6)=160(本),科技书有160×3=480(本),连环画有160×6=960(本)。

学大教育个性化教学教案

习题2

1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?

2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?

5.甲桶里有油470千克,乙桶里有油190千克,甲桶的油倒入乙桶多少千克,才能使甲桶油是乙桶油的2倍?

6.有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长

Beijing XueDa Century Education Technology Ltd.多少米?习题2解答

1.①小明的本数:120÷(2+1)=40(本).②小强的本数:40×2=80(本)。

学大教育个性化教学教案

2.①杏树的棵数:(340-20)÷(3+1)=80(棵).②桃树的棵数:80×3+20=260(棵)。

3.①长方形的宽:(30÷2)÷(2+1)=5(厘米).②长方形的长: 5×2=10(厘米)。

③长方形的面积:10×5=50(平方厘米)。

4.①甲、乙两水池共有水:

2600+1200=3800(立方米)

②甲水池剩下的水:

3800÷(4+1)=760(立方米)

③甲水池流入乙水池中的水:

2600-760=1840(立方米)

④经过的时间(分钟):1840÷23=80(分钟)。

5.①甲、乙两桶油总重量:

470+190=660(千克):

②当甲桶油是乙桶油2倍时,乙桶油是:

660÷(2+1)=220(千克):

③由甲桶倒入乙桶中的油:220-190=30(千克)。

6.①变化后的绳子总长 95-7+8=96(米).②第二条绳长: 96÷(1+1+1)=32(米)。

③第一条绳长:32+7=39(米)。④第三条绳长:32-8=24(米).与和倍应用题相似的是差倍应用题。它的“基本数学格式”是:

已知大、小二数之“差”,又知大数是小数的几倍,求大、小二数各是多少。

上面的问题中,有“差”、有“倍数”,所以叫做差倍应用题。差倍问题中大、小二数的数量关系可以用下面的线段图表示:

从线段图知,“差”是小数(即“1倍”数)的(倍数-1)倍,所以,Beijing XueDa Century Education Technology Ltd.小数=差÷(倍数-1)。

上式称为差倍公式。由此得到

大数=小数+差,或

大数=小数×倍数。

例如,大、小数之差是152,大数是小数的5倍,则

小数=152÷(5-1)=38,大数=38+152=190或38×5=190。

学大教育个性化教学教案

【典型例题】

例1 王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。师徒二人一天各生产多少个零件?

分析:师徒二人一天生产的零件的“差”是128个。小数(即“1倍”数)是徒弟一天生产的零件数,“倍数”为3。由差倍公式可以求解。

解:徒弟一天生产零件

128÷(3-1)=64(个),师傅一天生产零件

128+64=192(个)或64×3=192(个)。

答:徒弟、师傅一天分别生产零件64个和192个。

【巩固练习】

1、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

分析 上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。

解:①乙班的本数: 80÷(3-1)=40(本)

②甲班的本数: 40×3=120(本)

或40+80=120(本)。

验算:120-40=80(本)

120÷40=3(倍)

答:甲班有图书120本,乙班有图书40本。

Beijing XueDa Century Education Technology Ltd.例2 两根电线的长相差30米,长的那根的长是短的那根的长的4倍。这两根电线各长多少米? 解:“差”=30,倍数=4,由差倍公式得短的电线长

30÷(4-1)=10(米),长的电线长

10+30=40(米)或10×4=40(米)。

答:短的电线长10米,长的电线长40米。

解差倍应用题的关键是确定“1倍”数是谁,“差”是什么。上两例中,“1倍”数及“差”都极明显地直接给出。下面讲两个稍有变化,不直接给出“差”和“1倍”数的例子。

学大教育个性化教学教案

【巩固练习】

1、有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?

分析 上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。

解:①第一根截去12米剩下的长度:

(12+14)÷(3-1)=13(米)

②两根绳子原来的长度:13+12=25(米)

答:两根绳子原来各长25米。

自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长.小结:解答这类题的关键是要找出两个数量的差与两个数量的倍数的差的对应关系.用除法求出1倍数,也就是较小的数,再求几倍数。

解题规律:

差÷倍数的差=1倍数(较小数)

1倍数×几倍=几倍的数(较大的数)

或:较小的数+差=较大的数。

Beijing XueDa Century Education Technology Ltd.例3 甲、乙二工程队,甲队有56人,乙队有34人。两队调走同样多人后,甲队人数是乙队人数的3倍。问:调动后两队各还有多少人?

分析:画线段图如下:

由上图可知,“1倍”数是乙队调动后剩下的人数。因甲、乙队调走的人数相同(不影响他们二队人数之差),所以,甲、乙两队人数之差仍是56-34=22(人)。解:由差倍公式得调动后乙队有

(56-34)÷(3-1)=11(人)。

调动后甲队有

11×3=33(人)或11+(56-34)=33(人)。

答:调动后甲队有33人,乙队有11人。

学大教育个性化教学教案

【巩固练习】

1、菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?

分析 这样想:根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清楚地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。

解:①运来萝卜:(1800-300)÷(3-1)=750(千克)

②运来白菜: 750×3=2250(千克)

验算:

2250-1800=450(千克)(白菜剩下部分)

750-300=450(千克)(萝卜剩下部分)

答:菜站运来白菜2250千克,萝卜750千克。

例4 甲、乙两桶油重量相等。甲桶取走26千克油,乙桶加入14千克油,这时,乙桶油的重量是甲桶油的重量的3倍。两桶油原来各有多少千克?

分析与解:画线段图如下:

Beijing XueDa Century Education Technology Ltd.从上图知,当甲桶取走26千克、乙桶加入14千克后,乙桶里的油就是甲桶里的油的3倍,所以,“1倍”数是甲桶里剩下的学大教育个性化教学教案

油。“差”是什么呢?从图中可知,“1倍”与“3倍”之间的差26+14=40(千克)就是我们要找的“差”。所以,由差倍公式知,“1倍”数=(26+14)÷(3-1)=20(千克)。

故甲、乙桶原来各有油

20+26=46(千克),或 20×3-14=46(千克)。

答:原来各有46千克。

【巩固练习】

1、两块同样长的花布,第一块卖出31米,第二块卖出19米后,第二块是第一块的4倍,求每块花布原有多少米?

分析 已知两块花布同样长,由于第一块卖出的多,第二块卖出的少,因此第一块剩下的少,第二块剩下的多.所剩的布第二块比第一块多31-19=12(米).又知第二块所剩下的布是第一块的4倍,那么第二块比第一块多出的12米正好相当于所剩布的(4-1)倍,这样,第一块所剩布的长度即可求出(见上图)。

解:①第二块布比第一块布多剩多少米?

31-19=12(米)

②第一块布剩下多少米?

12÷(4-1)=4(米)

③第一块布原有多少米?

4+31=35(米)(两块布原有长度相等)

综合列式:

(31-19)÷(4-1)+31

=12÷3+31

=4+31

=35(米)

验算:35-31=4(米)

第二篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

第三篇:三年级暑假奥数练习题差倍问题

三年级暑假奥数练习题(5)差倍问题

(1)金鱼缸里红金鱼的条数是黑金鱼的3倍。红金鱼比黑金鱼多12条。两种金于各有多少条?

(2).妈妈年龄比小刚大24岁,今年妈妈的年龄正好是小刚年龄的3倍,今年妈妈和,小刚各多少岁?

(3)科技小组的人数比体育兴趣小组人数少60人,体育兴趣小组人数是科技小组的人数的3倍,这两个小组各有多少人?

(4)某校有排球的个数比足球多50个,如果再买40个排球,排球的个数就是足球的3倍,足球、排球各有多少个?

(5)一车间原有男工人数比女工多55人,如果调走男工5人,那么男工人数正好是女工的3倍,原有男工多少人?

(6)学农基地种的花生是白薯的16倍,现在已经知道种的花生比白薯多105棵,种花生和白薯各多少棵?

(7)在一道减法算式里,差是18,被减数是减数的7倍,请写出这道减法算式。

(8)大小两个水桶里的水相差24千克,现在把小桶里的水倒入大桶15千克,这样大桶里的水正好是小桶里水的4倍,现在大小桶里的水各有多少千克?

(9)甲书架上的书是乙书架的3倍,如果从甲书架取出620本,从乙书架上取出120本,两个书架上书的本数正好相等,原来两个书架各有多少本?

(10)甲厂人数比乙场人数少540人,如果从两厂各调走200人,乙厂人数恰好是甲厂人数的4倍,那么甲厂原来有多少人?

第四篇:三年级暑假奥数练习题(20)综合1

三年级暑假奥数练习题(20)综合练习题姓名

(1)某年的9月有5个星期日,这一年的9月1日不是星期日,它是星期几?

(2)如果每人的步行速度相同,3个人一起从甲地走到乙地,要2小时,那么,6个人一起从甲地走到乙地要几小时?

(3)甲乙两队进行篮球比赛,结果两队总分之和是100分,现在知道甲队加上7分,就比乙队多1分,那么甲队、乙队原来各多少分?

(4)小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只。白鸡的只数是黄鸡的2倍。白鸡、黄鸡、黑鸡一共有多少只?

(5)三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。男、女同学各有几人获奖?

(6)庆祝“六一”儿童节,5个女同学做纸花,平均每人做5朵,已知每个同学做的数量各不相同,其中有一个人做得最快,她最多做多少朵?

(7)运动场上有一条长100米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每隔5米再插一面彩旗,还需要彩旗多少面?

(8)同学们进行广播操比赛,全班正好排成相等的6行。小红排在第二行,从头数,她站在第4个位置,从后数她也站在第4个位置,这个班共有多少人?

(9)一根木头长36分米,要锯成4分米长的木棍,每锯一次要3分钟,全部锯完最少需要多少分钟?

(10)一条毛毛虫长到成虫,每天长一倍,10天能长到10毫米,长到20毫米时要多少天?

(11)7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年多少岁?

第五篇:三年级暑假奥数练习题(17)还原问题

三年级暑假奥数练习题(17)还原问题

姓名

(1)某数减4,乘以4,加上4,除以4,结果仍为4,求这个数.

(2)一个数加上9,乘以9,减去9,除以9,结果还是9。这个数是多少?

(3)小明问哥哥今年多大,哥哥回答说:用我的年龄加上3,减去4,除以5,再乘以6是24,就是我今年的年龄。小明的哥哥今年的年龄是多少岁?

(4)小强看一本卡通书,第一天看了这本书的一半又5页,第二天看了余下的一半又10页,还有8页没看,问这本卡通书共有多少页?

(5)芳芳、宁宁和玲玲三人分铅笔,芳芳得的比总数的一半多1支,宁宁得的比剩下的一半多1支,玲玲得6支。问原来共有铅笔多少支?

(6)猴子摘桃,第一天摘了树上桃子的一半,第二天又摘上了余下桃子的一半,这时树上还有15个桃子,原来树上有多少个桃子?

(7)一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米?

(8)猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半少1个,这时树上还有15个桃子,原来树上有多少个桃子?

(9)张、王、李、赵4个小朋友共有课外读物200本,为了广泛阅读,张给王13本,王给李18本,李给赵16本,赵给张2本。这时4个人的本数相等。他们原来各有多少本?

(10)兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。小白兔和小黑兔各运走多少个萝卜?

下载三年级奥数暑假复习讲义(教师版)word格式文档
下载三年级奥数暑假复习讲义(教师版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三年级暑假奥数练习题(13)年龄问题

    三年级暑假奥数练习题(13)年龄问题姓名 (1)甲、乙两人的年龄和是33岁,甲比乙大3岁,那么甲乙各多少岁? (2)父亲今年47岁,儿子21岁,几年前父亲的年龄是儿子年龄的3倍? (3)明明比爸爸小28......

    暑假班奥数教学计划

    暑假班奥数教学计划 翁华明张细英 为增强优等生数学学习兴趣,培养严谨的数学思维,优良的数学品质,超强的思维能力,特作出暑假奥数班教学计划如下:课程目标: 1.提高学生学习数学的......

    四年级奥数复习2

    四年级奥数复习练习二 姓名_______ 1、计算 453×457-452×458 1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)42×35+61×35-3×35 18000÷125÷18 3+7+11+15+……41+45 1-2-3+4+5-6-7+8+9-10-11+12+......

    三年级奥数活动总结

    三年级“智慧杯”数学兴趣活动总结 三年级:杨清 林明 这个学期的奥数小组活动,学生们的学习兴趣空前高涨,许多学生要求能有机会再进行学习,并且在这些兴趣者的指引下有不少学生......

    三年级奥数《有余除法》

    教学设计方案 XueDa PPTS Learning Center 第四讲:有余除法 【知识要点】: 把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全......

    三年级下册奥数教案

    三年级下册奥数教案 导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认......

    三年级奥数《重叠问题》

    教学设计方案 XueDa PPTS Learning Center 第九讲:重叠问题 【知识要点】: 三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将2......

    三年级奥数应用题教案

    2015.12.19 三年级周润泽 应用题(一) 教学目标:1、熟悉解答应用题的步骤; 读题,弄清题意,找出条件和问题; 分析题中的数量关系,找到解题方法; 列出算式,算出结果,写出答案2、掌握应用题......