第一篇:2017北师大版高中数学3.1《双曲线及其标准方程》word教案.doc
§3.1双曲线及其标准方程
设计人:赵军伟
审定:数学备课组
【学习目标】
1.理解双曲线的概念,掌握双曲线的定义、会用双曲线的定义解决实际问题; 2.理解双曲线标准方程的推导过程及化简无理方程的常用的方法;
【学习重点】理解双曲线的概念,掌握双曲线的定义;
【学习难点】会用双曲线的定义解决实际问题.【复习旧知识】 1.把平面内与两个定点,的距离之和等于___(大于)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做_____,两定点间的距离叫做______.即当动点设为时,椭圆即为点集
.平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做___定点F不在定直线l上).定点F叫做抛物线的___,定直线l叫做抛物线的___.3.抛物线的___在一次项对应的轴上,其数值是一次项系数的__倍,准线方程与焦点坐标相反;反之可以逆推。
【学习过程】
一、由教材探究过程容易得到双曲线的定义.
把平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线(hyperbola).其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.即当动点设为M时,双曲线即为点集PMMF1MF22a.
二、双曲线标准方程的推导过程
思考:已知椭圆的图形,是怎么样建立直角坐标系的?类比求椭圆标准方程的方法自己建立直角坐标系.
无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程.
类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、a,b,c的关系有明显的几何意义.
y2x2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程221a0,b0.
ba推导过程:
【应用举例】
P到F1,F2距例1 已知双曲线两个焦点分别为F15,0,F25,0,双曲线上一点离差的绝对值等于6,求双曲线的标准方程.
例2 已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.
探究:如图,设A,B的坐标分别为5,0,5,0.直线AM,BM相交于点M,且它们的斜率之积为4,求点M的轨迹方程,并与§2.1.例3比较,有什么发现? 9探究方法:若设点Mx,y,则直线AM,BM的斜率就可以用含x,y的式子表示,由于直线AM,BM的斜率之积是轨迹方程.
【巩固练习】
23.下列动圆的圆心M的轨迹方程:① 与⊙C:x2y2内切,且过点A2,0;
24,因此,可以求出x,y之间的关系式,即得到点M的9
22② 与⊙C1:xy11和⊙C2:xy14都外切;③ 与⊙C1:
22x32y29外切,且与⊙C2:x3y21内切.
2解题剖析:这表面上看是圆与圆相切的问题,实际上是双曲线的定义问题.具体解:设动圆M的半径为r.
【学习反思】
【作业布置】见教材习题
第二篇:优秀教案双曲线及其标准方程
良机网首页
高中青年数学教师优秀课教案:双曲线及其标准方程(一)高中青年数学教师优秀课教案:双曲线及其标准方程
(一)教学目标:
(1)知识与技能:与椭圆定义类比,深刻理解双曲线的定义并能独立推导出双曲线标准方程;
(2)过程与方法:通过定义及标准方程的深刻开采与探究,使学生进一步体验认识类比发现及数形结合等思想方法的运用,提高学生的不雅察与探究能力;
(3)情感态度与价值不雅:通过教师指导下的学生交流探索勾当,发学生的学习兴趣,培养学生用联系的不雅点认识问题。
教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线定义中关于绝对值,2a<2c的理解 授课类型:新授课 课时安排:1课时
教具:多电视台,一根拉链,小夹子 教学过程:
一、复习提问
师:椭圆定义是什么?
生:最简单的面内与两个定点的间隔之和等于常数(大于)的点的轨迹叫作椭圆。(幻灯片展示椭圆图形及其定义)
二、新课引入
1、设问 师:最简单的面内与两个定点的间隔之差等于常数的点的轨迹是什么?学生思虑(老师在黑板上画出两个点 ,使F1在左侧,F2在右侧.记 =2c,2c>0)。
师:在椭圆里到两个定点的间隔的和这个常数是正数,那么,最简单的面内到两定点的差这个常数还一定是正数吗 生:不一定。
师:多是什么数呢?(学生甲回答:是正数,负数或零)师:当常数是零时动点的轨迹是什么?
生:是线段F1F2的中垂线。老师做出的中垂线。师:当常数是正数时的点的位置在什么地方? 生:在线段F1F2的中垂线的右侧。
师:当常数是负数时的点的位置在什么地方?生:在线段F1F2的中垂线的左侧。师:最简单的面内与两个定点的间隔之差等于非零常数的点的轨迹究竟是是什么呢?我们一路做一个实验来探索。
2、实验:(师生共同完成)道具:一根拉链
详细作法:老师在拉开的拉链双侧各取一点打结(实验前已经丈量好,使两结之间的间隔小于两定点间的间隔),请两位同学协助将两点别离固定在定点F1,F2处,使拉链头在的上方。将拉链头看作动点M,使M到F1的间隔比M到F2的间隔远。师:|MF1|比|MF2|长多少?
请同学不雅察,将此中一侧拉链拉过来比较,学生可以很清楚的看到长出的部分。在|MF1|比|MF2|长出的地方用颜色鲜艳的小夹子做记号,在三次演示可以清楚的看到,在拉链的拉合中拉链头M到F1的间隔与到F2的间隔差始末是夹子到F1的间隔,间隔差记为2a(2a>0),当拉链头在的下方时,两次演示在拉链的拉合中,动点拉链头M到F1的间隔与到F2的间隔差始末是夹子到F1的间隔,即M到两定点的差始末是夹子到F1的间隔2a。同学们通过演示不雅察得出,拉链头M到F1的间隔与它到F2的间隔的差始末是正常数.将粉笔放在拉链头处,随着拉链的开合做出一条曲线(在作图过程中要保持将拉链拉直),老师在图的下方板书:|MF1|-|MF2|=2a(a>0);
调换两拉链的固定点,仍然请两位同学协助将两点别离固定在定点F1,F2处,这时候拉链头M到F1的间隔比M到F2的间隔短,使拉链头在的上方。同样在两次演示过程中提问:|MF1|比|MF2|短多少?让同学们不雅察,在拉链的拉合中,|MF1|始末比|MF2|短夹子到F2的间隔,记为2a(2a>0),当拉链头在的下方时结果相同.同学们很容易不雅察到在拉链的拉合过程中,拉链头到F1的间隔与它到F2的间隔的差始末是负常数,这个常数是2a的相反数,记为-2a。将粉笔放在拉链头处,随着拉链的合开做出一条曲线(在作图过程中要保持将拉链拉直),画出中垂线的左侧的一条曲线。
在图的下方板书:|MF1|-|MF2|=-2a(a>0)。师:我们将这两条曲线叫双曲线,此中的一条叫双曲线的一支.在黑板上板书课题: 8.3双曲线的定义及其标准方程。
师:比较每一条曲线满足的条件,这两支曲线,即双曲线上的动点M 满足的条件是什么?生:。
老师板书(2a>0)。
3、研究2a和2c的关系.师:最简单的面内到两定点的间隔的差的绝对值为常数的动点的轨迹一定是双曲线吗?(原以为双曲线定义已经得到的同学们又开始思虑)
师:与椭圆类比,在椭圆里,到两个定点的间隔之和等于常数2a,只有这个常数2a大于两定点的间隔时,动点的轨迹才是椭圆,当两个定点的间隔之和等于两定点的间隔时,动点的轨迹是之间的线段。在双曲线里,到两个定点的间隔差2a与两定点的间隔2c之间是否也有巨细关系呢?(同学们的视线又回到适才作出的双曲线图形上)
师:在适才所做的双曲线上任取一点M,它与构成为了三角学形, |MF1|与|MF2|的差也就是三角学形两边的差,同学们欣喜的喊到:三角学形两边的差小于第三边,2a<2c.(若点刚好是双曲线与所在直线的核心,没有构成三角学形,同学们仍然很容易得到2a<2c.)师:当2a=2c时,动点的轨迹是什么?还是双曲线吗?(同学们不雅察思虑)师:动点可能在所在的直线以外吗? 生:不可能
师:那么它一定在所在的直线上,它的轨迹是什么呢?同学们细心肠不雅察,兴奋地回答:以为端点的两条向外射线。
师:当2a>2c时,动点有轨迹吗?(若动点在之间,到F1与F2的间隔的差在变化,不是定值,并且的总长为2c,动点到F1与F2的间隔的差的绝对值2a不可能大于2c.生:当2a>2c时,动点没有轨迹.师:现在请同学们给出双曲线的准确定义.生(自信地):最简单的面内到两定点的间隔的差的绝对值为常数(小于)的动点的轨迹叫双曲线用投影仪展示双曲线图形及其定义,核心,焦距概念。
三、新课讲解
1、双曲线定义:最简单的面内到两定点的间隔的差的绝对值为常数(小于)的动点的轨迹叫双曲线即,(2a〈2c)叫双曲线的核心,=2c(2c>0)叫做焦距。强调:“最简单的面内”、“间隔的差的绝对值”、“常数2a小于”
2、双曲线的标准方程:
师:与求椭圆的标准方程类似,我们根据双曲线的定义推导双曲线的标准方程。求曲线方程的基本步骤是什么? 生:(1)建系;(2)设点;(3)列式;(4)化简 老师在投影仪上演示求双曲线标准方程的过程中,同学们在练习本上书写求双曲线标准方程的过程。提醒同学们需要注意(1)紧紧抓住双曲线定义列式;(2)在化简
到,结合双曲线定义中2a<2c,则c2-a2是正数,与椭圆的标准方程的化简中令b2=a2-c2对比,可以令b2=c2-a2,使化简后的标准方程美不雅简洁,最后得到,当核心在轴上,核心是的双曲线标准方程是,若坐标系的选取不同,核心在轴上,则核心是,由双曲线定义得: 师:与核心在轴的双曲线方程 比较,它们结构有什么异同点?
生:结构相同,只是字母x,y交换了位置。
师:求核心在轴上的双曲线方程,只需把核心在轴上的双曲线标准方中x,y互换即可。得
3、双曲线的标准方程的独特的地方:
(1)双曲线的标准方程有核心在x轴上和核心y轴上两种: 核心在轴上时双曲线的标准方程为:(,); 核心在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且此中a与b的巨细关系:可以为
4、怎样根据双曲线的标准方程判断核心的位置:
从椭圆的标准方程不难看出,椭圆的核心位置可由方程中含字母、项的分母的巨细来确定,分母大的项对应的字母所在的轴就是核心所在的轴而双曲线是根据项的正负来判断核心所在的位置,即项的系数是正的,那么核心在轴上;项的系数是正的,那么核心在轴上
四、例题讲解
例1 判断下列方程是否表示双曲线.①方程 ②方程
例2 已知双曲线的核心为F1(-5 , 0),F2(5 , 0),双曲线上一点P到F1、F2的间隔的差的绝对值等于6,求双曲线的标准方程.五、课堂练习
1、a=4,b=3,核心在x轴上;
2、双曲线上一点P到F1的间隔为15,求点P到F2的间隔?
6、小结
1、双曲线的定义及其两类标准方程.是核心在轴上,核心在轴上有关系式成立
2、将双曲线的定义及其两类标准方程与椭圆的定义及其两类标准方程列表对比
七、课后作业
八、板书设计
8.3双曲线及其标准方程
(一)例题2:(解答过程)=2c(2c > 0)(2a>0)2a < 2c 教案说明
一、授课内容数学本质和教学目标定位
通过老师创设情景、启发诱导,师生共同动手实验,使学生经历直不雅感知,不雅察发现,归纳类比,抽象概括,符号表示,运算求解数据处理,反思建构等思维过程,进一步体验认识类比发现法及数形结合等思想方法的运用,提高学生的实践,不雅察,思虑,探究能力,特别是提高类比发现能力;通过教师指导下的师生交流探索勾当,激发学生的学习兴趣,培养学生用联系的不雅点认识问题,体会数学的科学价值、应用价值、人类社会文化价值,体会数学的系统性、严密性,崇尚数学的理性精神。对本节课的教学目标从以下几个方面进行定位:(1)知识与技能:与椭圆定义类比,深刻理解双曲线的定义并能独立推导标准方程;(2)过程与方法:通过定义及标准方程的深刻开采与探究,使学生进一步体验认识类比及数形结合等思想方法的运用,提高学生的不雅察与探究能力;(3)情感态度与价值不雅:通过教师指导下的学生交流探索勾当,激发学生的学习兴趣,培养学生用联系的不雅点认识问题,促进学生的数学交流能力,发展学生的创造力,培养学生提出问题的习惯和能力,培养独立思虑,积极探索的习惯。依据教学目标和学生的认知规律,把理解和掌握双曲线的定义及其标准方程确定为本节课的重点,把对双曲线的定义的理解和掌握确定为本节课的难点。
二、学习本内容的基础及今后作用本节教材所处的地位作用 双曲线的定义及其标准方程内容可分为二个课时,第一课时内容主要是双曲线的定义和标准方程,以及课本中的例1;第二课时主要是课本中的例
2、例3及几个变式例题。双曲线在社会出产、日常生活和科学技术上有着广泛的应用,大纲明确要求学生必须熟练掌握学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对圆锥曲线研究内容的进一步深化和提高。通过对椭圆的学习,学生已经对“由已知条件求曲线的方程,再从所得方程来研究曲线的几何性质”的解析法有了进一步的认识,为双曲线的学习在数学思想、方法等方面打好了基础,做好了铺垫。而在双曲线的学习中,如果把双曲线的定义及其标准方程研究透彻、清楚了,不仅很容易解决双曲线的定义及其标准方程(2)中的例
2、例3及几个变式例题,而且对双曲线的简单性质的学习打下了坚实基础。通过对双曲线的定义及其标准方程的学习,对已经学过的椭圆及其标准方程会有更深的理解,对抛物线的学习就会顺理成章,对圆锥曲线部分的解题的有很大帮助,以是这节课在本章中起着承前启后的作用。双曲线的定义与椭圆的定义相比困难程度增大,以是这节课在本章中的地位很是重要。
三、教学诊断分析
学生在学习了椭圆后,利用类比发现法,学习本节教材中的下列知识点是比较容易的:
1、用求曲线方程的一般方法确定求双曲线的标准方程的基本步骤;
2、应用双曲线定义求双曲线的标准方程;
3、双曲线方程的化简。
在本节教材中,较难理解的地方主要集中在双曲线的定义部分:
1、为何在拉链的拉合过程中拉链头到两个定点的间隔之差的绝对值为定值。
2、为何在定义中对差这个常数要加绝对值;
3、为何2a<2c ;
4、当2a=2c时的图像还是双曲线吗?
5、当2a>2c呢?
四、教学独特的地方和预期效果分析
1、通过实验,让学生主动参与、积极体验认识。教材中虽然有拉链,有双曲线的图像, 但那是静态的,为何在拉链的拉合过程中拉链头到两个定点的间隔之差的绝对值为定值,学生对本质并没有一个直不雅的理解;本人用几何画板或动画去做双曲线,不如直接实验得心应手,经过多次考虑决定用拉链画出双曲线的图像,变抽象为直不雅。(1)通过实验中的多次演示,以小夹子作为参照物,让学生清楚的看到在拉链的拉合中拉链头M到F1的间隔与到F2的间隔差始末是定值,并且这个定值随着拉链固定点的调换,可正可负,互为相反数。(2)把拉链头看作动点M,先使M到F1的间隔比M到F2的间隔远,即|MF1|-|MF2|=2a(a>0);将粉笔放在拉链头处,随着拉链的开合做出中垂线右侧一条曲线。调换两拉链的固定点,这时候拉链头M到F1的间隔比M到F2的间隔短,即|MF1|-|MF2|=-2a(a>0),将粉笔放在拉链头处,随着拉链的合开画出中垂线的左侧的一条曲线。这两条曲线叫双曲线,此中的一条叫双曲线的一支.这两支曲线,即双曲线上的动点M 满足的条件是(2a>0)。对定义中绝对值的理解就很是直不雅了。
(3)研究2a和2c的关系.在实验的过程中,能用拉链画出双曲线,现实上是需要条件的。在绘图之前,我已经将两定点的间隔以及差的绝对值的巨细关系定好了,即2a<2c,以保证不仅能画出双曲线,而且使画出的双曲线比较美不雅。结合图形,与椭圆类比设问:在椭圆里,在双曲线里,到两个定点的间隔差2a与两定点的间隔之间是否也有巨细关系呢? 在双曲线上任取一点M,它与构成为了三角学形, |MF1|与|MF2|的差也就是三角学形两边的差,三角学形两边的差小于第三边,2a<2c.(若点刚好是双曲线与所在直线的核心,同学们仍然很容易得到2a<2c)然后设问:到两个定点的间隔差为定值的点的轨迹一定是双曲线吗?又对2a=2c的情况做讨论,同学们经过老师的引导和细心肠不雅察,得到这时候的图像是以为端点的两条向外射线。当2a>2c时,动点没有轨迹.2、以类比发现思维作为教学的主线(1)双曲线的定义与椭圆定义类比,(2)双曲线的标准方程与椭圆的标准方程类比⑶双曲线和椭圆中,2a与2c的意义及巨细关系的类比(4)核心在x轴上的方程与核心在y轴上的方程类比。
3、结合投影仪等形式,加大一堂课的信息容量,提高教学的直不雅性和意见意义性,提高课堂效益。
4、教师创设和谐、愉悦的环境进行引导,用激发兴趣、自主探究的讲解讨论相结合,使学生始末处于问题探索研究状态之中,促进学生说、想、做,鼓励学生发现问题,大胆分析问题和解决问题.进行主动探究学习,形成师生相互作用的教学氛围。老师捕捉住学生发言中的闪光点和思维的火花,对学生的积极体现给予鼓励和肯定。预期教学实效:
1、学生对双曲线的定义中的要害词:差,绝对值,2a<2c有很是清晰的理解,对双曲线的标准方程及其标准方程中a,b,c的关系有了深刻的认识,对例1和例2的解决水到渠成。
2、对椭圆的定义和双曲线的定义的区别和联系有深刻的理解;对椭圆的两个标准方程与双曲线的两个标准方程的形式有了清晰的认识。能结合各自定义说出各自标准方程中的a,b,c的关系。
3、加强了学生的代数运算能力的培养,使学生更深层次到体验认识了类比发现法、化归、数形结合、分类讨论及分析与综合等数学思想方法,为双曲线的定义及其标准方程(2)的学习打下了坚实的基础,为下一节《双曲线的几何性质》的学习即“由数到形”作了坚实铺垫和准备。
第三篇:双曲线及其标准方程教案
双曲线及其标准方程(第一课时)
教学目标:
1.掌握双曲线的定义,能说出其焦点、焦距的意义;
2.能根据定义,按照求曲线方程的步骤推导出双曲线的标准方程,熟练掌握两类标
准方程;
3.能解决较简单的求双曲线标准方程的问题; 4.培养学生观察、分析、归纳和逻辑推理能力。
教学重点:双曲线的定义和标准方程。
教学难点:双曲线标准方程的推导过程。
教学过程:
一、创设情景,引入新课: 师:我们先来思考这样一个问题:(打开几何画板)已知定点F1(1,0)和F2(1,0),定圆C1的圆心为F1,且半径为r,动圆C2过定点F2,且与定圆相切。
(1)若r4,试求动圆圆心的轨迹;(2)若r1,试求动圆圆心的轨迹。(教师结合几何画板演示分析):
师:当r4时,我们得到的轨迹是什么?
生:是椭圆。
是:为什么?
生:因为当r4时动圆C2内切于定圆C1,所以两个圆的圆心距MF1满足
MF14MF2,移项后可以得到:MF1MF24满足椭圆的定义,所以得到的轨迹是一个以F1、F2为定点,4为定长的椭圆。
师:很好。那么,当r1呢,此时动圆C2与定圆C1相切有几种情况?
生:有两种情况:内切和外切。
师:我们先来考察两圆外切时的情况(演示),我们得到的轨迹满足什么条件?
生(同时教师板书):由于两圆外切,所以两个圆的圆心距MF1满足 MF11MF2,移项后可以得到:MF1MF21。(教师演示轨迹)师:我们再来考察两圆内切时的情况(演示),我们得到的轨迹又满足什么条件?
生(同时教师板书):由于两圆内切,所以两个圆的圆心距MF1满足 MF1MF21,移项后可以得到:MF1MF21。(教师演示轨迹)师(同时演示两种情况下的轨迹):我们可以得到与定圆相切且过定点的动圆的圆心满足MF1MF21即MF1MF21,圆心的轨迹我们称之为双曲线。
二、新课讲解:
1、定义给出
师:今天我们来学习双曲线。同学们能否结合刚才的问题给双曲线下个一般定义?
生:双曲线是到平面上两个定点F1、F2的距离的差的绝对值等于常数的点的轨迹。这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。
师:由椭圆的定义,一般情况下,我们设该常数为2a。那么什么情况下表示的是双曲线的右支,什么情况下表示的是双曲线的左支?
生:当MF1MF22a时,表示的是双曲线的右支,当MF1MF22a时,表示的是双曲线的左支。
2、定义探究
(教师引导学生分情况讨论): 师:这个常数2a有没有限制条件?
生:有。这个常数2a要比焦距F1F2小。师:很好。为什么要有这个限制条件呢?其他情况会是怎样的呢?我们一起来分析一下:
(1)若a=0,则有MF1MF20即MF1MF2,此时轨迹为线段F1F2的中垂线;
(2)若2a=F1F2,则有MF1MF2F1F2,此时轨迹为直线F1F2上除去线段F1F2中间部分,以F1、F2为端点的两条射线;
(3)若2a>F1F2,则根据三角形的性质,轨迹不存在。
3、双曲线标准方程的推导过程:
师:我们学过求曲线的方程的一般步骤,现在我们一起根据定义求双曲线的标准方程。(师生互动,共同推导之)
第一步:建立直角坐标系;
第二步:设点:设M(x,y),焦点分别为F1(c,0)和F2(c,0),M到焦点的距离差的绝对值等于2a;
第三步:启发学生根据定义写出M点的轨迹构成的点集: PMMF1MF22a;
第四步:建立方程:(xc)2y2(xc)2y22a;
ab教师强调:我们得到了焦点在x轴上,且焦点是F1(c,0)和F2(c,0)的双曲线标准方程为x2a2b2 师:那么如果焦点在y轴上呢?(学生练习)
y2x2 生(练习后):此时的标准方程应该是221(a0,b0)。
ab 4.双曲线标准方程的探讨:
师:刚才我们共同推导了双曲线的标准方程。请同学想一下,双曲线标准方程中字母a、b、c的关系如何?是不是ab? y21(a0,b0),这里c2a2b2 第五步:化简,得到
x22y221(a0,b0)
生:a、b、c满足等式c2a2b2,所以有a2c2b2,可以得到a,bc,但不能判断ab。师:很好。我们在求双曲线标准方程过程中还发现,确定焦点对求双曲线方程很重要。那么如何根据方程判定焦点在哪个坐标轴上呢?
y2x2x2y2 生:由于焦点在x轴和y轴上标准方程分别为221和221,我们发现焦点所在轴相
abab关的未知数的分母总是a,所以可以由a来判定。
x2y21,那么你如何寻找a?
师:很好。如果我们知道的方程是32 生:因为a所在的这一项未知数的系数是正的,所以只要找正的系数就可以了。
x2y21呢?
师:如果方程是32 生:先化成标准方程。
师:请同学总结一下。生:化标准,找正号。5.运用新知:
y2x21表示双曲线,则m的取值范围是__________,此时
【练习】已知方程9m1双曲线的焦点坐标是________________,焦距是________________;
【变式】若将9改成2m,则m的取值范围是________________________。
【例1】已知双曲线两个焦点的坐标为F1(5,0)、F2(5,0),双曲线上一点P到F1、F2的距离的差的绝对值等于6,求双曲线的标准方程。
解:因为双曲线的焦点再x轴上,所以设它的标准方程为 x22ab 因为2a=6,2c=10,所以a=3,c=5。y221(a0,b0),所以b2523216,x2y21。
所以所求双曲线的标准方程为916 【变式】已知两个定点的坐标为F1(5,0)、F2(5,0),动点P到F1、F2的距离的差
等于6,求P点的轨迹方程。
解:因为PF1PF26,所以P的轨迹是双曲线的右支,设双曲线标准方程为1(a0,b0),a2b2 因为2a=6,2c=10,所以a=3,c=5。x2y2 所以b2523216,x2y21(x3)。
所以所求P点的轨迹方程为916【例2】已知双曲线的焦点在y轴上,并且双曲线上两点P1、P2的坐标分别为
9(3,42)、(,5),求双曲线的标准方程。
4解:因为双曲线的焦点在y轴上,所以设所求双曲线的标准方程为
y2x2 221(a0,b0),ab 因为点P1、P2在双曲线上,所以点P1、P2的坐标适合方程,代入得: (42)232212ab2a162 可解得:。92b9425212bay2x21。
所以所求双曲线得标准方程为:169【变式】已知双曲线的焦点在坐标轴上,并且双曲线上两点P1、P2的坐标分别为
9(分情况讨论)(3,42)、(,5),求双曲线的标准方程。4 【练习】(1)ABC一边两个端点是B(0,6)和C(0,6),顶点A满足ABAC8,求A的轨迹方程。
(2)ABC一边的两个端点是B(0,6)和C(0,6),另两边所在直线的斜率之积是
4,求顶点9A的轨迹。
三、本课小结:
师:我们总结一下本节课我们学了什么?
生:
1、双曲线的定义;
2、双曲线标准方程推导过程;
3、运用已有知识解决一些
简单的问题。
四、作业:
课本P108:2、3、4 问题:一炮弹在M处爆炸,在F1、F2处听到爆炸声。已知两地听到爆炸声的时间差为2s,又知两地相距800m,并且此时的声速为340m/s,那么M点一定在哪条曲线上?
第四篇:《双曲线及其标准方程》说课稿
《双曲线及其标准方程》说课稿
《双曲线及其标准方程》说课稿1
一、教材分析
1、教材地位
本节课是新课程人教A版选修2-1第2章第三节第一课时。它是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,也为后面的抛物线及其标准方程做铺垫。
2、教材作用(重要模型,数形结合)
圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。
3、设计理念:体现素质教育的要求和新课程理念,融合“知识与技能”、“过程与方法”、“情感态度与价值观”三维教学目标,注重学生学习过程的体验,体现自主、合作、探究的学习方式;注重数学基本能力的培养和基础知识的掌握,又注重数学思想与方法的教育,同时反映数学学科前沿以及与科学、技术、社会的联系;教学过程中体现过程性评价对学生发展的作用,体现教师的有效指导作用。
二、目标分析
1、知识与技能目标
①理解双曲线的定义
②能根据已知条件求双曲线的标准方程。
③进一步感受曲线方程的概念,了解建立曲线方程的基本方法。
2、过程与方法目标
①提高运用坐标法解决几何问题的能力及运算能力。
②培养学生利用数形结合这一思想方法研究问题。
③培养学生的类比推理能力、观察能力、归纳能力、探索发现能力。
3、情感、态度与价值观目标
①亲身经历双曲线及其标准方程的获得过程,感受数学美的熏陶。
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。
4、重点难点
基于以上分析,我将本课的教学重点、难点确定为:
①重点:感受建立曲线方程的基本过程,掌握双曲线的标准方程及其推导方法。
②难点:双曲线的标准方程的推导。
三、学情分析:
1、知识方面:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会。
2、能力方面:学生对基本的计算机操作较为熟练、有一定的学习基础和分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力。
四、教法学法分析
在教法上,主要采用探究性教学法和启发式教学法。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。
启发式教学法就是以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
新课程倡导“自主、合作、探究”学习,引导学生自主探索、发现知识;通过设计问题,以支撑学生积极的学习活动,帮助他们成为学习活动的主体;创设真实的问题情境,诱发他们进行探索与解决问题。并注意培养学生的动手实践能力。
五、说教学过程
教学环节教学过程设计意图
复习引入
这一环节既可以使学生温故而知新,也为后面的学习做好铺垫。
双曲线的定义通过课本的实验探究(以动画形式展示),引入双曲线的定义:平面内与两定点的距离的差的绝对值等于常数(小于)的点的集合。
符号表示:xx
其中:焦点——;焦距——(设为);
设常数
思考:
1、去掉“绝对值”后,点M的轨迹为什么?(用动画展示)
2、若常数,则点M的轨迹是什么?(用动画展示)
1、让学生在具体的问题情境中经历知识的形成和发展,将实际问题抽象为数学模型,并进行解释与运用的过程。课堂教学的关键是要激发学生的求知欲,让学生主动参与,发现学习。
2、通过设问,把学生逐步引入问题情景中,通过师生互动等形式,让学生在问题中学会思考,学会学习,最终使问题得以解决。同时,问题具有一定的梯度,对学生的思考有一定的引导和启发作用。
双曲线的标准方程1、复习求曲线方程的一般步骤:建系、设点——列式——化简——检验
2、推导焦点在x轴和y轴上的双曲线的标准方程
学生分成两大组,一组推导焦点在x轴上的双曲线的标准方程,另一组推导焦点在y轴上的双曲线的标准方程,最后交换结论。
3、比较两种标准方程。
两点说明:
①关系:
②如何判断焦点的位置:看前的系数的正负,哪一项为正,则在相应的轴上。(口诀:焦点看正负!)
1、在比较如何化简方程简单后,我选择放手让学生化简,让学生体验化简方程的艰辛,经受锻炼,尝试成功,提高学生参与教学过程的积极性。
2、在得到双曲线的标准方程之后,我和学生共同总结推导双曲线标准方程的步骤,其目的是进一步强化求曲线方程的一般步骤,同时也让学生享受成功的喜悦。
3、体现类比推理的思想.培养学生归纳总结和类比推理的能力.
4、在推导过程中我令,一是为了美化方程,使方程具有对称性,二是为后面几何性质的学习做铺垫。
例题解析
例1的教学是为了让学生清楚:求双曲线的焦点坐标(或者是方程当中的),必须要把方程化为标准方程。
通过例2让学生明白,求双曲线的标准方程主要是确定两个要素:一是双曲线的位置,由焦点来决定;二是双曲线的形状,由来决定。
例3是双曲线的实际应用,关键是利用双曲线的定义来解题,要注意焦点的位置。
课堂小结
为了让学生建构自己的知识体系,我让学生自己概括所学的内容。我认为这样既能培养了学生的概括能力,又能营造民主和谐的师生关系。
作业布置上交:人教版高中数学选修2--1
P61习题2、3A组第2,5题
进一步巩固本节课所学内容
六、板书设计:
一、双曲线的定义
二、双曲线的标准方程
1、焦点在x轴上
2、焦点在y轴上
三、例题解析
例1
例2
例3
我选择这样的板书设计,其目的是让学生清楚的认识到本节课的重要内容。
《双曲线及其标准方程》说课稿2
一、教材分析与处理
(一)教材的地位与作用
学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。
(二)学生状况分析
学生在学习本节课之前,已掌握了椭圆的定义和标准方程,也曾经尝试过探究式的学习方式,所以说从知识和学习方式上来说学生已具备了自行探索和推导方程的基础。另外,高二学生思维活跃,敢于表现自己,不喜欢被动地接受别人现成的观点,但同时也缺乏发现问题和提出问题的意识。
根据以上对教材和学生的分析,考虑到学生已有的认知规律,我希望学生能达到以下三个教学目标。
(三)教学目标
1、知识与技能:理解双曲线的定义并能独立推导标准方程;
2、过程与方法:通过定义及标准方程的挖掘与探究 ,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力;
3、情感态度与价值观:通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生用联系的观点认识问题。
(四)教学重点、难点依据教学目标,根据学生的认知规律,确定本节课的重点为理解和掌握双曲线的定义及其标准方程。
难点为双曲线标准方程的推导。
(五)教材处理
我对教学内容作了一点调整:教材中是借用细绳画出的双曲线图形,而我改用几何画板画出双曲线图形。因为相比之下,几何画板更为形象直观。通过几何画板,学生不仅可看到双曲线形成的过程,而且较易看出椭圆与双曲线的联系和区别。
二、教学方法与教学手段
(一)教学方法
著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。”双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验,所以本节课我采用了“启发探究”式的教学方式。
重点突出以下两点:
1、以类比思维作为教学的主线
2、以自主探究作为学生的学习方式
(二)教学手段
采用多媒体辅助教学,体现在用几何画板画双曲线。但不是单纯用动画给学生看,而是通过动画启发引导学生进行思考,调动学生学习的积极性。
三、教学过程与设计
为达到本节课的`教学目标,更好地突出重点,分散难点,我将教学过程分为四个阶段。
(一) 知识引入---- 知识回顾、观察动画、概括定义在课的开始我设置了这样几个问题,以帮助学生进行知识回顾:
1、椭圆的第一定义是什么?定义中哪些字非常关键?
2、椭圆的标准方程是什么?
3、如何判断焦点位置?a、b、c是何种关系?
通过回顾,既检测了学生对前面知识的掌握情况,同时又为下面双曲线的学习做好铺垫。之后,告诉学生:今天要学习一种新的曲线。打开几何画板,首先通过动画让学生再一次回顾椭圆的生成过程,然后改变图中的条件,将F1,F2距离变大,动画生成一种新的曲线,学生易看出该曲线为双曲线。双曲线的定义其实就是动点所满足的关系,那么双曲线的定义是什么?也就是动点所满足的关系是什么?这个问题可让学生进行探究。解决这个问题有两个难点:一是距离的运算关系的得出;二是运算关系的简化。在探究中,学生类比椭圆会想到动点到两定点的距离差为定值,会认为这个定值必是正值,而会忽视距离差为负值的情况,其实这只能得到双曲线的一支。对于这种情况,我会采取启发引导,把P从一支移到另一支,然后让学生再次思考自己得到的关系是否正确。在引导下,学生会想到动点到两定点的距离差为正值或正值的相反数。但这个关系能不能加以简化?学生这个时候会联想到可利用绝对值进行简化。这样就得到了动点所满足的较为精炼的关系,也就是得到了双曲线的定义。这一设计让学生先形象直观地看到椭圆与双曲线的形成过程,在此基础上,再通过教师的引导,生就可在观察思考中一步一步地由感性认识上升到理性认识,最终得到双曲线定义,从而培养了学生的观察能力及概括能力。另外,这一设计也在形的方面实现了椭圆与双曲线的比较,也为下面双曲线定义的挖掘及两种曲线的对比打下基础。随着双曲线定义的得出,教学进入第二阶段---知识探索
(二) 知识探索---- 定义的挖掘、标准方程的推导、方程的对比
1、定义的挖掘
在这一环节中,我们要认识到定义中的绝对值和两点间距离与常数的大小关系二者对曲线的影响。
首先,我设置了这样两个问题:
(1)类比椭圆寻找双曲线定义中的关键字;
(2)若分别去掉这几个关键字曲线会发生怎样变化?
《双曲线及其标准方程》说课稿3
一、教材分析与处理
1、教材的地位与作用
学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。
2、学生状况分析:
学生在学习这节课之前,已掌握了椭圆的定义和标准方程,也曾经尝试过探究式的学习方式,所以说从知识和学习方式上来说学生已具备了自行探索和推导方程的基础。另外,高二学生思维活跃,敢于表现自己,不喜欢被动地接受别人现成的观点,但同时也缺乏发现问题和提出问题的意识。
根据以上对教材和学生的分析,考虑到学生已有的认知规律我希望学生能达到以下三个教学目标。
3、教学目标
(1)知识与技能:理解双曲线的定义并能独立推导标准方程;
(2)过程与方法:通过定义及标准方程的挖掘与探究 ,使学生进一步体验类比及数形结合等思想方法的运用,提高学生的观察与探究能力;
(3)情感态度与价值观:通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生用联系的观点认识问题。
4.教学重点、难点
依据教学目标,根据学生的认知规律,确定本节课的重点是理解和掌握双曲线的定义及其标准方程。难点是双曲线标准方程的推导。
5、教材处理:
我对教学内容作了一点调整:教材中是借用细绳画出的双曲线图形,而我改用几何画板画出双曲线图形。因为相比之下,几何画板更为形象直观。通过几何画板,学生不仅可看到双曲线形成的过程,而且较易看出椭圆与双曲线形成的联系和区别。
二、教学方法与教学手段
1、教学方法
著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。”
双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验, 所以本节课我
采用了“启发探究”式的教学方法,重点突出以下两点:
(1)以类比思维作为教学的主线
(2)以自主探究作为学生的学习方法
2、教学手段
采用多媒体辅助教学。体现在用几何画板画双曲线。但不是单纯用动画演示给学生看,而是用动画启发引导学生思考,调动学生学习的积极性。
三、教学过程与设计
为达到本节课的教学目标,更好地突出重点,分散难点,我把教学过程分为四个阶段。
(一)知识引入---- 知识回顾、观察动画、概括定义
在课的开始我设置了这样几个问题,以帮助学生进行知识回顾:
(1)椭圆的第一定义是什么?定义中哪些字非常关键?
(2)椭圆的标准方程是什么?
第五篇:双曲线的定义及其标准方程教案
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
圆锥曲线教案 双曲线的定义及其标准方程教案
教学目标
1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,双曲线的标准方程的探索推导过程.
2.在与椭圆的类比中获得双曲线的知识,培养学生会合情猜想,进一步提高分析、归纳、推理的能力.
3.培养学生浓厚的学习兴趣,独立思考、勇于探索精神及实事求是的科学态度.
教学重点与难点
双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中的“差的绝对值”,a与c的关系的理解是难点.
教学过程
师:椭圆的定义是什么?椭圆的标准方程是什么?
(学生口述椭圆的两个定义,标准方程,教师利用投影仪把椭圆的定义、标准方程和图象放出来.)师:椭圆的两个定义虽然都是由轨迹的问题引出来的,但所采用的方法是不同的.定义二是在认识上已经把椭圆和方程统一起来,在掌握了坐标法基础上利用坐标方法建立轨迹方程.这是通过方程去认识轨迹曲线.定义中设定的常数2a,|F1F2|=2c,它们之间的变化对椭圆有什么影响?
生:当a=c时,相应的轨迹是线段F1F2.当a<c时,轨迹不存在.这是因为a、c的关系违背了三角形中边与边之间的关系.
师:如果把椭圆定义中的“平面内与两个定点F1、F2的距离的和”改写为“平面内与两个定点F1、F2的距离的差”,那么点的轨迹会怎样?它的方程又是怎样的呢?
(师生共同做一个简单的实验,请同学们把准备好的实验用具拿出来,一起做实验.教师把教具挂在黑板上,同时板书:平面内与两个定点F1、F2的距离之差为常数的点的轨迹是什么曲线?边画、边操作、边说明.)师:做法是:适当选取两定点F1、F2,将拉锁拉开一段,其中一边的端点固定在F1处,在另一边上截取一段AF2(<F1F2),作为动点M到两定点F1和F2距离之3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
差.而后把它固定在F2处.这时将铅笔(粉笔)置于P处,于是随着拉锁的逐渐打开铅笔就徐徐画出一条曲线;同理可画出另一支.如图2-36.
师:通过这个实验,你们发现了什么?
生:所画的曲线不是椭圆,是两条相同的曲线,只是位置不同.其原因都是应用“平面内与两个定点的距离之差|MF1|-|MF2|(或|MF2|-|MF1|)是同一常数的条件画图的.
师:所画出图象与椭圆完全不同,能说出属于哪一类曲线吗? 生:属于双曲型曲线.
师:很好!我们把这类曲线就叫做双曲线.我们思考以下几个问题: 1.|MF1|和|MF2|哪个大?
生:不一定.当点M在双曲线右支时,有|MF1|>|MF2|,当点M在双曲线左支时,|MF1|<|MF2|.
师:2.点M与点F1、F2距离之差是否就应是|MF1|-|MF2|? 生:未必是.也可以是|MF2|-|MF1|. 师:如何表示这两种情况?
生:若要同时表示这两种情况,正确的表示是应||MF1|-|MF2||.无论哪种情况总是成立的.
师:3.点M与点F1、F2的距离之差的绝对值与|F1F2|的大小关系怎样? 生:由三角形的两边之差小于第三边可知,应是小于|F1F2|.否则作不出图形.
在上述讨论的基础上,引导学生概括出双曲线的定义,教师板书课题.
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
(学生试叙述,教师协助完成.)
一、双曲线的定义
平面内与两个定点F1、F2的距离的差的绝对值是常数2a(a>0且小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,这两个焦点间的距离叫做焦距,记作2c(c>0).
通过学生自己动手画图,得到了双曲线定义,同时进一步让学生在实验中观察定义中两个常数间大小关系对于动点M的轨迹的影响.激发学生探求知识的兴趣,调动学生的求知的渴望.师生共同归纳:
师:由定义知||MF1|-|MF2||=2a,|F1F2|=2c,并设动点为M,请大家讨论以下几个问题:
(1)当0<a<c时,动点M的轨迹是什么? 学生略思考一下,回答出是双曲线.(2)当a=c时,动点M的轨迹是什么?
分析
若a=c,也就是||MF1|-|MF2||=2a=2c,如图2-37所示:
可以看出,动点M的轨迹是分别以点F1、F2为端点,方向指向F1F2外侧的两条射线.
(3)当a>c>0时,动点M的轨迹是什么?
由前面归纳已知动点M的轨迹不存在.这是因为a、c的关系违背了三角形中两边之差小于第三边的性质.
二、双曲线的标准方程
师:现在来研究双曲线的方程.我们可以参照求椭圆的方程的方法来求双曲线的方程.首先建立直角坐标系,即以两定点连线为x轴,两定点的垂直平分线为y轴.然后,观察双曲线的特征,猜测双曲线方程的结构与椭圆方程的结构是否有类似之处?(如图2-38)3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
当点M移动到x轴上点A1、A2时,如何求点A1、A2的坐标? 生:点A1、A2是关于原点对称的,所以|A1A2|=|F1F2|-|F1A1|-|F2A2|=|F1F2|-2|F2A2|=|F1A2|-|F2A2|=2a.
所以点A1和A2的坐标分别是(-a,0)和(a,0).
师:请同学们对照椭圆的定义及其标准方程推导过程导出双曲线的标准方程.
生:1.建立直角坐标系.
2.设双曲线上任意一点的坐标为M(x、y),|F1F2|=2c,并设F1(-c,0),F2(c,0).
3.由两点间距离公式,得
4.由双曲线定义,得 |MF1|-|MF2|=±2a,即
5.化简方程
两边平方,得
化简得:
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
两边再平方,整理得(c2-a2)x2-a2y2=a2(c2-a2).
(为使方程简化,更为对称和谐起见.)由2c-2a>0,即c>a,所以c2-a2>0. 设c2-a2=b2(b>0),代入上式,得 b2x2-a2y2=a2b2,也就是
师:利用椭圆标准方程推导类比地推导出双曲线的标准方程,它同样具有方程简单、对称,具有和谐美的特点,便于我们今后研究双曲线的有关性质.这一简化的方程称为双曲线的标准方程.
结合图形再一次理解方程中a>b>0的条件是不可缺少的.b的选取不仅使方程得到了简化、和谐,也有实际的几何意义.具有c2=a2+b2与椭圆中a2=b2+c2的不同之处.
师:与椭圆方程一样,如果双曲线的焦点在y轴上,这时双曲线的标准方程形式又怎样呢?我们可以从所画的图形上观察,对比来看一看互相间的转化.(图2-
39、图2-40)
生:从图形的对称来看,只要交换一下x轴、y轴的名称,然后逆时针翻转90°使之y轴向上、下,x轴水平放置即可得到焦点在y轴上的双曲线.
师:从方程上来分析,只要将方程(1)的x、y互换就可以得到它的方程
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
此方程也是双曲线的标准方程. 师:如何记忆这两个标准方程?
生:双曲线的方程右边为1,左边是两个完全平方项,符号一正一负,为正的项相应的坐标轴为实轴,焦点在该轴上,且分母为a2.负项相应的坐标轴为虚轴,且分母为b2.
师:用一句话概括“以正负定实虚”.
三、举例
例1 已知两点F1(-4,0)和F2(4,0),曲线上的点到两个焦点的距离之差为6,求曲线方程.
解
由焦点坐标可知c=4,2a=6,所以a=3,而b2=c2-a2=16-9=7. 所以,所求的双曲线方程为
例2 求满足下列条件的双曲线方程 1.若a=4,b=3,焦点在x轴上;
解
(1)因为a=4,b=3,并且焦点在x轴上,所以所求的双曲线方程为
(2)由题意设双曲线的标准方程为:
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
所以代入双曲线方程得
所以
b2=16,所以所求的双曲线的标准方程为
例1和例2可由学生自行解答,黑板上板演,并对照检查对错.
四、小结(师生共同参与完成)1.知识方面
双曲线的定义和双曲线的标准方程;方程中的3个常数a、b、c间的关系:c2=a2+b2.
理解“以正负定实虚”的意义,会确定实轴、虚轴、焦点所在位置,会求双曲线的标准方程.
2.在教学中体会到数学知识的和谐美,几何图形的对称美.
五、作业:第89页习题七1,2.
六、课后思考题
2.结合图形的演示,试讨论||MF1|-|MF2||=2a,在2a趋近于零的过程中双曲线的变化趋势.
设计说明
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
1.关于教学目标
(1)由于双曲线的定义及其标准方程是本章的重点之一,因而作为本节课的教学目标之一.
(2)MM教育方式的基本要求,其课堂教学要师生共同参与.每个环节都应给学生创设一种思维情境,一种动脑、动手、动口的机会.运用教具的演示,增强了数学教学的直观性,有助于培养学生观察、比较、分析、抽象、归纳及数学语言的运用能力.对全面提高学生素质起着十分重要作用,待此制定了教学目标2和3.
2.关于教学重点
为实现教学目标,把充分展现双曲线的定义及其标准方程的探索、发现、推理的思维过程和知识形成过程作为本节课的重点.
3.关于教学方法
按照MM教育方式“学习、教学、研究同步协调原则”和“二主方针”,在教学中充分发挥教师的主导作用和学生的主体作用.运用问题性,给学生创造一种思维情境,一种动脑、动手、动口的机会,使学生在开放、民主、愉悦和谐的教学氛围中获取新知识,提高能力,促进思维发展.因此,采用讨论式、启发式的教学方法.
4.关于教学过程
(1)利用学生已清楚的知识,转换条件提出问题,通过自己动手和联想,为类比地探索双曲线的定义奠定基础,最后推出双曲线的定义.
(2)在双曲线的标准方程的推导过程中,揭示科学实验的规律,巧妙地把学生从旧知识引向新知识,使知识过渡那么自然,学生学起来不感到困难.体现数学发现的本质,培养学生合情推理能力、逻辑思维能力、科学思维方式、实事求是的科学态度及勇于探索的精神.
(3)例题比较简单,由学生自行解答,同时由学生板演,在解题过程中培养学生合理地思考问题,清楚地表达思想和有条不紊的学习习惯.同时随时注意纠正学生在学习过程中的偏差.
(4)以学生为主,教师协助的方式进行本节课的小结,充分发挥学生的主观能动性,提高学生分析、概括、综合、抽象能力,注意把学生本节课所学到的新知识纳入学生已有知识体系中,使学生学习解析几何内容形成一个知识结构,对学生掌握解析几何的学习是大
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!