复变与积分变换教案

时间:2019-05-15 01:58:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《复变与积分变换教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《复变与积分变换教案》。

第一篇:复变与积分变换教案

《复变与积分变换教案》

第七次课 教学目标:导出解析函数的高阶导数,学会运用高阶导数公式计算复积分。

讲课段落:

 Cauchy积分高阶导数定理的背景;  多连通域的Cauchy积分高阶导数定理  运用高阶导数公式计算复积分。知识要点:

 对每个自然数

n,在D内定义函数

f()Fn(z)d n(z)则对zD,有

Fn(z)nFn1(z)

 对每个自然数n,f(z)在D内处处有n阶 导数,且对zD 有 f(n)n!f()(z)dn1 2i(z) 由于f(z)uxivxvyiuy,而高阶导数定理认定,一但

f(z)解析 则f(z)也解析,自然更有f(z)连续,从而可知ux,vx,uy,vy都连续。

 设D为单连域,f(z)在D内连续,若对

f(z)dz0CD任一内简单闭曲线有 C,则f(z)在D解析。

第二篇:复变函数与积分变换复习题

复变函数与积分变换复习题

1,将下列复数化为三角形式与指数形式1)z2i;

2)zsin3i

cos

3;

3)z1icot,2.4)z1cosisin,0.(cos5isin5)2

5)z 3(cos3isin3)

2,求下列函数的辐角

1)z;2z)n)3)求下列复数的模

1)z45)设n为正整数,证明下式成立

3n13n11.6)证明函数f(z)1i4n11i4n1? Re(z)当z0时极限不存在; z

z当z0时极限不存在; z

1zz()当z0时极限不存在; 2izz7)证明函数f(z)8)证明函数f(z)

[Re(z2)]2,z029)证明函数f(z)在z=0点连续。z

0,z0

x3y(yix),z042f(z)10)证明函数在z=0点连续。xy

0,z0

11)判断f(z)x2yi是否可导。

12)判断函数的解析性

1)z;2)zRe(z);

13)证明函数f(z)z=0处满足C-R方程,但是不可导。(P33)

14)已知调和函数u(x,y)x2y2xy,求一解析函数f(z)u(x,y)iv(x,y)使得f(0)0,并求出df(z).dz

15)验证以下函数为调和函数,并求出以zxiy为自变量的解析函数wf(z)uiv.1)u(x,y)(xy)(x24xyy2)

2)P74例题3.4.2例题3.4.3

16)解方程sinzish1.17)求Ln(i),Ln(34i)和它们的主值。

18)求ii,3i,(1i)i的值。

19)解方程lnz2i

20)计算6czdz.(1)C:ii的直线段;

(2)C:左半平面以原点为中心逆时针方向的单位半圆周.21)计算积分dz(nZ).n(zz)0CC:zz0r0.22)计算积分dz,zCdz,zCCdzz,C:z1.23)计算积分1dz,C为包含0与1的任何正向简单闭曲线.2zzC

ez

24)计算积分,其中C:z1,a为a1的任何复数.3(za)C

25)计算积分3z2,其中C:z(1i) 4z1C

ez

26)计算积分,其中C:zr(r1,2).z(z1)(z2)C

27)计算积分z,其中C:z2.2(9z)(zi)C

cosz,其中C:z2.5(z1)C28)计算积分

ez

29)计算积分,其中C:zr1.22(z1)C

30)计算积分sin5z,其中C:z4.32z(z1)C

31)判断下列数列是否收敛?如果收敛,求出其极限。

1i)n;nncinosn(1en.32)下列级数是否收敛?是否绝对收敛?

nn1ii(8i)(1)i(1e)n;;n ]nn2n1nn0nn1

33)求下列幂级数的收敛半径

zn(z1n)

3;;(coinszn)nn1nn1n0

34)把函数1展成z的幂级数.(1z)3

1展成z的幂级数,1

1展成z-1幂级数,0

37)把函数z22z5展成z的幂级数,1

2z2z5展成z的幂级数,2

1展成z的幂级数.(z-1)(z-2)38)把函数

39)把函数ze在0

41)求积分zz01e1zz0(zz0)3dz.42)求积分zez21z.1z

43)求下列各函数在孤立奇点(不考虑无穷远点)的留数

z2n1e2z1;4;n1zzsinz

44)计算积分z1

2sinz.2zz(1e)

z.(z2)2(z1)45)计算积分1z22

122C1z4.C:xy2x.sinz3.C:z.47)计算积分Cz246)计算积分

3z3248)计算积分C(z1)(z29).C:z4.49)计算积分Czdz.C正向曲线:z2.z41

50)计算积分1C(z+i)10(z1)5(z4).C正向曲线:z5.2

51)计算积分0

2sin2d.(ab0).abcos

52)计算积分cos2d.(0p1).212pcosp0

计算积分cos2d.(a21).212acosa0



53)计算积分01dx.(n0,1,2,).2n1(1x)

x2

54)计算积分2dx.(a0,b0).222(xa)(xb)



55)计算积分cosaxdx.(a0).2x1



56)计算积分0

xsinxdx.(a0).22xa(x21)cosax57)计算积分dx.42xx1

|z|1f(z)dz2πiRes[f(z),z]kk1n

第三篇:读《复变函数》与《积分变换》有感

班级B10202姓名李建良学号36

读《复变函数》与《积分变换》有感

在学了《高等数学》之后,我们进一步学习《复变函数》和《积分变换》这两本书,这两本书是《高等数学》的微积分扩展和延伸,还有将复数将以深入学习和扩展,并引入函数的概念。因此感觉有一定的深度和难度。它们都利用数学的理论来解决实际问题。

复变函数中有很多概念,其中理论和方法是实变函数在复数领域内的推广和发展,因而它们有许多相似之处,但是复变函数与实变函数有不同之点。就拿第一章来说,复数与复变函数,本课程研究对象就是自变量为复数的函数。在中学阶段,我们已经学习过复数的概念和基本运算。本章将原来的基础上作简要的复习和补充。然后再介绍在复变平面上区域以及复变函数的极限和连续性等概念,为进一步研究解析函数理论和方法奠定必要的基础。概括一下,以前学过方程x2=-1是无解的,因而设有一个实数的平方等于-1。第一节是复习原来的内容,然后逐步引入函数的概念。再引进对复变函数的表达式和复变函数重幂与方根以及加减法研究。由于上学期,我们学习函数概念中,引入极限的概念,然而复变函数也有极限特性。所以对复变函数极限分析有着相似之处,因此可以借鉴学函数极限方法来研究复变函数,然而复变函数又有其独特特性,研究时必然会给我们带来很多困难和意想不到的问题,所以就是它的不同之处。后面将复变函数引入微积分的概念,刚开始觉得挺好学,按照以前学微积分的思想就能接纳复变函数的微积分,当我遇到了用函数微积分解决复变函数时,复变函数的转化和变形却是难题,但是经过一番努力,我逐渐领悟到复变函数在微积分在数学中的独特魅力。

在学习复变函数中,要勤于思考,善于比较分析其共同点,更要领越复变函数的独特魅力,如果这样才能抓住本质,融会贯通。

而《积分变换》研究的是将复杂的运算转化为较简单的运算。本书讲解了积分在数学中的应用,常用的两种积分变换Fourier变换和Laplace变换。利用Fourier变换和Laplace变换将复杂的积分转化为简单的积分变换,有利于对复杂积分的求解,所以学习《积分变换》的思路就不像学习《复变函数》一样,它的解题思路和《积分变换》截然不同,就拿Fourier变换而言,先引进Fourier定理,然后利用Fourier定理解决数学中一些难解的积分,用积分变换也可以解决工业中一些工程计算。其重在积分变换。对于积分变换理论的学习,有助于解决我们在工业设计中遇到的问题,但对与此书着重对积分变换的思想培养和应用。当我开始学习《积分变换》时,感觉无从下手,尤其是对积分的变换,一看到积分变换的过程就很头疼,不知道从哪个地方开始下手,当学到Laplace变换时,才发现积分变换有它的一定的规律,只要把Fourier变换的思路用在Laplace变换,就会简化对Laplace变换的学习,我才明白Fourier变换只是学习积分变换的一种方法,第一种内容学会了,后面的内容就迎刃而解了。

通过这两本书的学习,我觉的,它不仅仅带给我的是挑战,而且也将为我们将来在工程技术领域中开扩了思路,照亮了方向,这也让我们知道数学在工程领域的作用和不可磨灭的高度。

第四篇:2014年3月大工《复变函数与积分变换》课程考试模拟试卷A

机密★启用前

大连理工大学网络教育学院

2014年3月份《复变函数与积分变换》课程考试

模 拟 试 卷

考试形式:闭卷试卷类型:(A)

☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________姓名____________学号____________

四、证明题(本大题1小题,共10分)

证明:若F[ei(t)1。(t)][F()F()]]F(),其中(t)为一实函数,则F[cos2证明:F()

ei(t)eitdt



F()ei(t)eitdtei(t)eitdt 

i(t)e1ei(t)

it[F()F()]edt 22

cos(t)eitdt 

F[cos(t)]

大工《复变函数与积分变换》课程考试 模拟试卷(A)

第五篇:2014年3月大工《复变函数与积分变换》课程考试模拟试卷B

机密★启用前

大连理工大学网络教育学院

2014年3月份《复变函数与积分变换》课程考试

模 拟 试 卷

考试形式:闭卷试卷类型:(B)

☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________姓名____________学号____________

四、证明题(本大题1小题,共10分)证明(z)在复平面上不解析

证明:令zxiy,(z)xyi2xy,(1分)

所以u(x,y)xy,(1分)v(x,y)2xy。(1分)222222

uvuv(1分)(1分)(1分)(1分)2y,2x。2x,2y,yyxx

由此可知,(z)仅在点(0,0)处柯西—黎曼条件成立,所以(z)仅在点(0,0)处可导,而在整个复平面上不解析。(3分)22

大工《复变函数与积分变换》课程考试 模拟试卷(B)

下载复变与积分变换教案word格式文档
下载复变与积分变换教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    积分变换电子教案使用说明

    积分变换电子教案使用说明一、简介 “积分变换电子教案”是为教师在课堂上讲授“积分变换”课程而制作的,属于助教型教案。该教案适合开设“积分变换”课程的各大专院校的本......

    积分变换与数理方程报告

    积分变换与数理方程 班级:电信09103班 学号:200911020309 姓名:何双来 《积分变换与数理方程》学习总结报告 这个学期我们开了《积分变换与数理方程》这门课。这个课是为大三学......

    复变函数与积分变(北京邮电大学)课后的习题答案

    复变函数与积分变换(修订版)主编:马柏林——课后习题答案习题一1.用复数的代数形式a+ib表示下列复数.①解②解:③解:④解:2.求下列各复数的实部和虚部(z=x+iy)R);①:∵设z=x+iy则∴......

    复变函数教案1.1

    第一章 复数与复变函数 教学课题:第一节 复数 教学目的:1、复习、了解中学所学复数的知识; 2、理解所补充的新理论; 3、熟练掌握复数的运算并能灵活运用。 教学重点:复数的辐角......

    复变函数与电子信息工程

    复变函数与电子信息工程我是这个学期才接触到复变函数与积分变换这门课,要很详细的说出复变函数与电子信息工程这个专业的关系与作用确实很有难度的,但我喜欢做的就是高难度的......

    复变函数教案7.3.2(五篇)

    第七章 共形映射 教学课题:第三节黎曼存在定理 教学目的:1、充分理解黎曼存在定理极其重要意义; 2、充分了解边界对应定理; 3、了解线性变换的不动点; 4、掌握线性变换的保形性、......

    复制与变换教案

    复制与变换 教学目标: 1. 学会“复制”、“粘贴”的使用方法。对“复制”、“粘贴”有感性的理解。 2. 学会让选定区域旋转。3. 能清除选定的区域。 重点:学会“复制”、“粘......

    复变函数小结

    复变函数小结 第一章 复变函数 1)掌握复数的定义(引入),知道复数的几何意义(即复数可看成复数平面的一个点也可以表示为复数平面上的向量) 2) 掌握 复数的直角坐标表示与三......