第一篇:仪器分析实验双语教学体会论文
【摘要】本文从双语教学的概念和意义出发,结合多年双语教学的经验,提出实验课的双语教学主要受课堂设计、学生积极性及教师的专业及英语水平影响,并提出相应的建议。
【关键词】仪器分析实验 双语教学双语教学的概念
在我国,双语教学原本是国家在少数民族聚居区的学校,既为了保证少数民族语言和文化能得以保持和传承,又为了更好地促进民族间交流、使少数民族学生通过掌握我国的主流语言—汉语来接受更新更广博的知识,从而使用汉语和本族语言进行教学的方法。双语教学是实施双语教育的一种手段。现在,我们约定俗成地将双语教学视为学校采用英语和汉语共同传授非语言学科的教学方法。
但是目前,很多人对双语教学的概念仍存在理解误区。
一是将双语教学等同于外语教学[1],纯粹地用英语教学。外语教学,即TEFL(Teaching English as a Forengn Language),主要是指把英语作为外语而进行的语言教学活动,教授学生系统的英语语言知识与技能,最终目的是帮助学生掌握和熟练运用英语进行学习和工作。
一是纯粹地用母语教学,只加入部分英文板书。有的老师本身英语、尤其是口语不过关,但为了顺应双语教学的潮流,就采用这种讲授法。事实上,学生听课本就是以听为主,再带动思维。如果讲授内容较多,学生听觉都跟不上来,那么对英文版书的注意又能有多少?双语教学的效果则可想而知。
双语教学与上述两种情况都不一样。双语教学是通过外语(主要指英语)教授非语言学科知识,帮助学生在非语言科目知识的学习中促进对该外语的掌握,并熟悉外语表达学科知识的习惯,以便为以后可能进行的学术交流奠定语言及理解基础。因此,其教学重点即不在英语语法知识的分析和专业词汇的记忆上,也不在英语笔记的记录上,而是一种英语思维和表达习惯的形成。仪器分析实验双语教学的意义[2]
随着我国加入世界贸易组织,与外部世界的交流剧增,英语作为一门世界通用语在人们的日常生活中显得越来越重要[3]。对于当代的大学生们来说,仅仅拥有专业知识是不够的,还必须具备较高的专业英语水平,才能适应当今的信息社会,才能真正做到“走出去,迎进来”。
仪器分析实验是《分析化学》课程的重要组成部分,是我院药学专业的一门极其重要的实验课程。该门课程学习的好坏,直接影响其后续专业课《药物分析》、《波谱解析》等的学习。我系已于07年开始在《分析化学》理论课中推行双语教学。因此,同步对其实验课程进行改革,实施双语教学,使学生能在英语环境中熟练掌握基本的实验技能和操作,并巩固实验原理,具有显著的意义。
因此,近两年来,我们在医学院药学系06-07级学生的仪器分析实验教学中进行了双语教学的尝试,取得了初步的成效。仪器分析实验双语教学的课堂设计
一节课上得好不好,学生的掌握程度如何,主要取决于两方面因素。一是教学内容是否具有吸引力,另一方面则是教师的教学方法是否新颖,是否能使学生产生学习的兴趣。由于学生长期学习英语,并要应付过级的需要,部分学生对英语有严重的抵抗情绪,因此,双语教学的方法极为重要,其课堂设计更是尤为关键的一个环节。
我们通常把整个实验讲解分成两大块:一是实验目的和原理,二是实验步骤和注意事项。
实验目的和原理这一部分的专业性较强,一般我们会采用中文讲解。但如果是结合仪器的构造来讲测量原理的话,由于直观性强、具体,那么采用英语讲解可弥补理论课堂的不足,取得事半功倍的成效。
例如,“721可见分光光度计测Fe含量”这个实验,就可以很好地使用双语讲理论。首先,我们会请学生们共同来熟悉仪器的构造,向他们逐一介绍其组成(Instrument Components):光源(light sources)、单色器(monochromators/ wavelength selectors)、吸收池(sample containers/ sample cells/ cuvettes)、检测器(detectors)和信号处理及数据输出系统(signal processors and readout devices)。这些词汇不生僻,而且有实物参照,易于为学生们所接受。而且,同一部件有不同的表示法,如吸收池可表述为sample container,也可叫做 cell,还可称为cuvette,而他们对cell的一般了解为“细胞”或是“电池”,这让大家觉得有新收获之感,纷纷跟着念,起码的初步记忆就在实验课上形成了。然后在熟悉了部件的基础上可以进行提问,比如“What kind of light source is used in this experiment?”那么学生通过对理论课的知识回忆,可以回答“钨灯”或“a tungsten filament lamp”。不一定要求英语,因为这是一个渐进的过程,使用多了再做较高要求。
在此基础上,可在比对仪器的同时,采用简单的语句对光度计的测量原理进行说明。如:“A beam of visible light from the tungsten filament lamp can be divided into various wavelength or frequency of lights through the wavelength selector,then we can choose the needed radiation of a single wavelength passing through cuvettes containing ferric solution,and part of that will be absorbed by the solution.The left part radiation then enters into detectors,there the radiant energy can be converted into an electrical signal that can be recorded and read out.Since the concentration of an absorbing analyte is linearly related to absorbance as represented by Beer’s Law,the unkown concentration can be calculated when compared with those whose concentrations are known.From the readout devices we can read out the radiations absorbed by the analyte,namely,absorbance,so it’s easy for us to get the concentration of the unkown ferric solution.”在放缓语速的同时,讲到辐射从光源发出、通过单色器、吸收池、检测器和显示器时,可以一一对应该部件指示出来,并在该处停留片刻、重复,这样即直观又加深了印象,对原理的理解是很有帮助的。
实验步骤这一部分我们事先会做好中文板书,让大家先了解具体的操作步骤。如果内容相对较简单,可要求学生用英语自己组织语言来复述,鼓励自由发挥、自行增减。如进行“比色皿配对”,能稍微提及进行“配对”的原因更好。如:“Because of the making procedures,technology and measurement errors,no two cuvettes are the same.So it is necessary for us to match them before beginning the experiment.First let them contain the same solution,next measure one’s absorbance using another as a blank one under a fixed wavelength,then we can get the difference between them.Note to take it into account during the next measurements.”一开始不要求说得很好很全面,只要开口说就要给予鼓励,通过正性评价激发其兴趣。在大家掌握原理了解步骤之后,可以对注意事项展开讨论,中英文均可。这样在实验课内逐渐开展双语的教学,学生熟悉了教学风格后,就可以渐渐加大英语的比例,带领他们慢慢养成实验课上用英语进行学习和思考的习惯。
而且,逐渐要求学生用自己的语言简单地描述实验报告的讨论部分,因为适当的压力也可推动学习。只要持之以恒,学生进步会非常明显,教师的收获也会不断增加,每次课都会有心得,而这些又对下次课的讲授起到借鉴和指导的作用。仪器分析实验双语教学的学生工作
教学向来是教学相长,“教”与“学”是互动的。因此,即使教师使出浑身解数,学生不配合,也达不到教学的目的和要求。但实验课有调动学生积极性的优势所在。实验课通常比较随意轻松,老师和学生的距离拉得相对较近,很容易就某件事某个观点进行交流。我们可以就双语教学是否有必要开展、其意义如何、收效怎样共同进行探讨,很随意地交流,允许学生保留自己的意见,不搞一言堂。不高高在上,灌输大道理,那么学生会觉得我们处于平等的角度,感到他的意见受到了尊重,反过来,他也会尊重我们双语教学的开展的。这样首先从心理、从情绪上解决了一个难点。
由于双语教学对学生有着较高的语言要求,因此,双语教学过程中普遍会出现的问题是——时间不够用。实验课针对这个问题的解决办法是,要求学生对每一个实验都认真做好预习,在母语基础上熟悉实验内容和原理。即推动学生复习了理论课知识,又鼓励了自学,一举两得。仪器分析实验双语教学的思考
进行双语教学离不开多方面支持和师生的共同努力,仪器分析实验双语教学能顺利开展,与国家教育部的指导思想,学校、院系领导和各位老师的高度重视和大力支持紧密相关。国家和校方从政策到教学改革所需要的经费、教师的英语培训都提供了大力支持,而参与改革的老师都孜孜求学,努力提升自己的业务水平。学生们也对此持支持和肯定的态度。正是各方的支持,使我们实验课的双语教学取得了较好的成效。
但我们仍然存在不足之处。教师们的英语水平参差不齐,不可能因一两次短期培训就得到很大的提高,这还需要我们自己课余多用功多学习。建议大家可以跟随VOA的Special English练习口语,效果很好。而且,每次上课要用英语表述的内容,尽量都作为备课笔记写下来,而且要留有余地,以便以后进行补充。并且应当把讲解的内容自行多讲几遍,达到熟练表达的程度。
参考文献
[1] 汪斌斌,对我国双语教学实验的简单透视,中国成人教育2006年第5期.[2] 易钢,颜玉蓉等,分析化学课程双语教学的探索,医学教育探索,2005年第4卷第6期:419-420.[3] 张立新,现代仪器分析化学双语教学的实践与思考,化学教育,2006年第9期:32-35.
第二篇:《仪器分析实验》复习题
《仪器分析实验》复习题
1、单光束和双光束紫外吸收光谱仪的结构有什么特点?
2、红外光谱法中,对试样有哪些要求?
3、pH玻璃电极的原理,如何测定pH值
答:玻璃电极法测定水样的PH值是以饱和甘汞电极为参比电极,以玻璃电极为指示电极,与被测水样组成工作电池,再用PH计测量工作电动势,由PH计直接读取PH值。
4、为什么荧光光度计使用的比色皿是四面透光的? 答:如果在一条直线上 那是测吸光度的
荧光分光光度计入射光源和检测器的方向是垂直的 这样在垂直方向上 就不可能有入射光
而激发的荧光在四个方向上都有 在垂直方向上检测 干扰最小 所以四面透光
不是四面透光,只有俩面透光,透光面是为了不同波长的激发光穿透比色皿与比色皿内的待测物质发生物理作用而测定物质的浓度等,不透光的俩面是为了方便实验操作人员用手抓取放置比色皿
5、在极性、非极性色谱柱上的出峰顺序是如何确定的?
答:对于同分异构体来说,极性柱上是极性弱的组份先出峰,极性强的组份后出峰。其它情况下不一定。对于同系物来说,非极性柱上是沸点低的先出峰,沸点高的后出峰。其它情况不一定。
6、在原子吸收光谱法中,峰值吸收代替积分吸收的条件是什么?
7、简述火焰原子化器(包括雾化器)的工作原理。
8、从速率理论可以看出有哪些因素可以影响色谱的柱效?在什么情况下应采用相对分子质量较大的载气,什么情况下应采用相对分子质量较小的载气?如何确定最佳流速?
9、原子吸收分析中,若产生下述情况而引致误差,应采用什么措施来减免之?
(1)光源强度变化引起基线漂移,(2)火焰发射的辐射进入检测器(发射背景),(3)待测元素吸收线和试样中共存元素的吸收线重叠.
10、在电导滴定过程中,为什么溶液的电导会发生连续变化,解释盐酸、醋酸的电导滴定曲线。设计电导法测定盐酸、醋酸混合液的实验方案。
第三篇:《仪器分析》仿真实验
仪器分析实验仿真实验
紫外分光光度计仿真实验
一、实验概述:
在分之中,除了电子相对于原子核的运动之外,还有原子核之间振动和转动引起的相对位移。这三种运功能量都是量子化的,对应有一定的能级。分子的能量是这三种能量的总和。当用一定频率(波长)的电磁波(光)照射分子,其能量恰好等于分子的两个能级差时,则分子就会吸收光的能量而由较低的能级跃迁到较高的能级,同时光的强度(能量)变小。吸光度符合吸收定律:
A=lg(I0/I)=KcL 根据这一关系可以用工作曲线法来测定未知溶液中吸光物质的浓度。
二、实验装置:
仪器调节面板:
本实验仿真的设备是UV-754C紫外可见光风光光度计,它具有卤钨灯(30W)、氘灯(2.5A)两种光源,分别适用于360~850nm和200~360nm波段,采用平面光栅作色散元件,GD33光电管作接受器。
三、实验操作: 第一步:选取实验
点击主菜单上的“实验选取”,会出现如下的对话框:
用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。
第二步:打开电源、预热
用鼠标点击紫外分光光度计上的暗箱盖,暗箱盖会自动打开,如下图所示:
1
然后用鼠标点击仪器右下角的红色电源开关接通电源,这是仪器调节面板会自动显示,并进入开机自检状态,此状态大约持续10秒左右,在这段时间里计算机出现停滞现象是正常的.随后计算机进入预热期, 时间大约为1分钟(真实仪器为20分钟)。预热结束时会听见蜂鸣声,并且会看见预热按钮上方的灯熄灭此时仪器就进入工作状态了。
关状态:
开状态:
第三步:配置试液
用鼠标点击主菜单中的“配置试液”按钮,出现配置试液窗口:
2
用鼠标点击下面5个容量瓶,选择每个容量瓶要加入的蒽醌标准溶液量,系统会自动稀释到刻度线:
5个容量瓶的溶液都配置好以后,点击窗口右下角的箭头进入下一步。
第四步:确定吸收波长
点击试液配置窗口右下角的箭头后,系统会显示如下窗口,自动测量完成了吸收光谱图: 3
点击文字中的“吸光度——波长曲线”到吸收光谱图窗口,再点击“绘制吸收光谱”按钮就可以看到蒽醌的紫外吸收光谱图:
记录下最大的吸收波长,关闭此窗口,然后进行下一步
第五步:调节吸收波长
用鼠标点击紫外分光光度计上的波长调节位置,出现波长调节窗口,用鼠标左键或者右键点击波长调节旋钮来增大或者减小波长到刚才记录的最大波长。
4
第六步:仪器调节面板
点击调出仪器调节面板
点击按钮打开氘灯,依次点击、、按钮关闭钨灯,点击到T,然后按下 按钮,等待数字显示平稳后,点击到A。
调节完成后的面板如下图:
5
第七步:将样品装入吸收池架
点击主界面上的吸收池架调出吸收池画面:
吸收池架有四个位置,在测量时分别对应仪器调节面板的上的“参考”、“1#”、“2#”、“3#”四个指示位置。把鼠标停留在上面6个容量瓶上,下面会显示相应的说明。点击每个位置选择要加入的溶液:
加入溶液后,窗口右下角会出现箭头提示放入暗箱,点击系统会将吸收池架自动放入。
第八步:测量
点击调出仪器调节面板以便读取吸光度数据,然后前后拉动拉杆将不同的溶液放进光路中,从仪器调节面板上读取吸光度数据,系统会自动记录。
6
按照以上方法把六组数据测试完毕。
第八步:实验数据处理
六组数据测试完毕后,点记主菜单上的“实验数据”按钮,调出数据处理窗口,在工作曲线页点击“绘制工作去先”按钮,系统会自动绘制工作曲线,并根据工作曲线给出待测溶液的浓度。
如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。
第十步:实验完毕
取出暗箱中的吸收池,关闭暗箱,关闭电源。然后清洗吸收池、整理现场。
7
原子吸收分光光度计仿真实验
一、实验概述:
原子吸收分光光度分析法又称原子吸收光谱分析法,是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。
与原子发射光谱相反,元素的基态原子可以吸收与其发射波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律:
A=lg(I0/I)=KcL
根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。
在火焰原子吸收光谱分析中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要的问题。本实验在对钠元素测定时,分别对灯电流、狭缝宽度、燃烧器高度、燃气和助燃气流量比(助燃比)等因素进行选择。
二、实验装置:
本实验仿真的设备是AA320型原子吸收分光光度计,主要设备参数如下: 波长范围:190.0~900.0 nm 光栅刻线:1200 条/mm 闪跃波长:250 nm 线色散倒数:2.38 nm/mm 狭缝宽度1~6档对应的nm数分别为:0.2,0.4,0.7,1.4,2.4,5.0 8
原子吸收分光光度计的放大图:
三、实验操作: 第一步:选取实验
点击主菜单上的“试验选取”,会出现如下的对话框:
用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。
选取实验后回到实验主界面,窗口上面的标题栏会显示实验名称+实验文件名称。第二步:打开电源
在主界面上用鼠标点击原子吸收分光光度计,会出现原子吸收分光放大图,用鼠标点击右下角的总电源开关打开电源。
9
第三步:打开空气压缩机电源开关
打开原子吸收分光光度计的总电源开关后,用鼠标点击窗口右下角的“返回”按钮回到主界面,然后点击空气压缩机,会出现空气压缩机窗口,如图所示:用鼠标点击空气压缩机电源开关打开电源,电源上面的指示灯会亮起来。
打开电源开关后,关闭空气压缩机的窗口回到主界面。
第四步:选择阴极灯 回到主界面后,点击原子吸收分光光度计出现原子吸收分光光度计放大图,用鼠标点击左上的阴极灯箱,会出现阴极灯窗口。
10
做实验时要根据待测元素的不同选择相应的元素灯。用鼠标左键点击左上角的阴极灯的种类,会出现阴极灯选择画面:
用鼠标左键点击要选的阴极灯,然后点击阴极灯电源开关接通电源,灯被点亮。关闭此窗口回到原子吸收分光光度计画面,然后进行下一步。
11
第五步:粗调节阴极的灯电流
点击原子吸收分光光度计上的阴极灯电流指示位置,会出现阴极灯电流调节窗口:
在调节旋钮上点击鼠标左键增大电流,点击右键减小电流。根据实验要求,调节电流再8~11mA之间。然后关闭电流表调节窗口,回到原子吸收分光光度计画面。
第六步:波长扫描
用鼠标点击原子吸收分光光度计右下的波长扫描按钮,左边白色的按钮是在一定范围内自动从大到小扫描,灰色按钮是在一定范围内自动从小到大扫描,系统会自动扫描找到最合适的波长。
第七步:调节多功能面板
用鼠标点击原子吸收分光光度计右上的多功能面板,出现多功能面板的放大图。
12
多功能面板上的调节旋钮用鼠标左键点击逆时针旋转,用鼠标右键点击顺时针旋转。调节“方式”到“调整”档,然后关闭多功能面板窗口回到原子吸收分光光度计画面。
第八步:调节阴极灯位置
用鼠标步左键点击原子吸收分光光度计右下的能量表,会出现能量表的放大图,用鼠标点中能量表窗口的蓝色标题栏,然后按住左键移动鼠标,窗口就会跟随鼠标的轨迹移动,按照此方法把能量表窗口移动到屏幕靠边上的位置。然后用鼠标点击原子吸收分光光度计的阴极灯箱,出现阴极灯调节窗口。此时应调节窗口的位置,使得在调节阴极灯位置的时候可以看到能量仪表。
13
分别在垂直和水平方向上调节阴极灯的位置,使得获得的能量最大,调节的时候一定要反复多试几次,如果在最大点位置附近移动一两下不好调准,可以先移动到最大点位置比较远的地方再向回调,如此反复几次,找准最大能量的位置。如果调整到最大能量后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭阴极灯窗口。不要关闭能量表窗口。
第九步:微调波长
用鼠标点击原子吸收分光光度计的波长微调旋钮,左键增加,右键减小,使获得最大的能量输出。如果调整到最大能量后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。不要关闭能量仪表,进入下一步。
第十步:调节狭缝宽度
点击原子吸收分光光度计右上的多功能面板,调整多功能面板窗口和能量窗口的位置,使得再多功能面板上操作的时候能够看见能量窗口。
14
用鼠标点击狭缝调节旋钮,左键点击逆时针旋转,右键点击顺时针旋转,调节需要的狭缝宽度,一般情况下狭缝越小,能量越小,太小的能量不利于测定,狭缝越大,能量越大,但是可能会引起光谱通带的增加而产生其他共振线的吸收而影响实验结果,因此狭缝的宽度要根据具体实验来定。选择好狭缝宽度后,如果能量表的指针偏出红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭多功能面板和能量表,然后在原子吸收分光光度计画面上点击右下角的“返回”按钮返回到主界面。
第十一步:打开乙炔钢瓶
在主界面上点击乙炔钢瓶,会出现乙炔钢瓶的放大窗口。
先打开乙炔总阀,用鼠标左键点击乙炔总阀,总阀会自动打开,再次用鼠标左键点击后自动关闭。然后调节乙炔支阀,左键点击增加开度,右键点击减小开度,调节支压力表的压力到足够大。在真实实验中,如果支阀压力太小,可能造成火焰无法点燃,建议压力不小于0.15Mpa。调节完成后,关闭乙炔钢瓶窗口,回到主界面。
第十二步:接通气路、点火
在主界面上点击原子吸收分光光度计,出现原子吸收分光光度计放大图。用鼠标左键点击原子吸收分光光度计中间下部的气路开关部分,出现气路开关放大的窗口,从左到右依次点击打开各个开关,然后关闭窗口。
15
打开气路开关以后,关闭气路开关窗口回到原子吸收分光光度计画面,用鼠标左键点住点按钮几秒钟,火焰即被点燃。
注:真实实验中,点火前要先进行室内排风,本实验忽略了这一环节。
第十二步:调零
打开原子吸收分光光度计右上的多功能面板,点击“方式”旋钮使调整到“吸光度”位置后,关闭多功能面板。点击主窗体左边的菜单中的“溶液选取”按钮或者右下角的溶液烧杯选取溶液
点击“溶液选取”框内的下拉条,选取“空白样液”,然后点击窗口下部的“选取”按钮,系统会将所选的溶液自动喷入雾化器。
16
点击原子吸收分光光度计右下的调零按钮进行调零,左右两个键功能相同。
第十三步:调节燃烧器位置
任意选取一份在线性范围的标准对比样液
点击“选取”按钮自动喷入雾花器后,仪器会现实一定的吸光度值,此时点击原子分光光度计中下部的燃烧器位置调节旋钮,两个旋钮中上面的是调垂直位置,左键点击燃烧器向下移动,右键点击向上移动,下面的旋钮是调水平位置,左键点击向右移动,右键点击向左移动,调整的同时密切注意吸光度的变化,找到吸光度最大的位置。
17
第十四步:微调阴极灯电流
同时打开能量表和阴极灯电流表,调整两个窗口的位置,使得在调节电流表的时候可以看到能量表和吸光度值
微调阴极灯电流的原则是:在保证有足够且稳定的光强输出条件下,选择低的工作电流,没有特别的数量限制,根据实验要求而定,一般是先选定大致的测量条件,然后选定一个大致的灯电流的范围,然后喷入标准溶液,在选定的灯电流范围内每隔1~2mA测量一次,计算 18
平均值和标准偏差,并绘制吸光度与灯电流的关系曲线,选取灵敏度高、稳定性好的条件为工作条件。对于本实验,10mA为最佳值,省略了选择的过程。如果调整电流后能量表指针偏出了红色区域,可以用增益旋钮调节使指针回到红色范围。调节好以后,关闭能量表和阴极灯电流表。
注:在实验中调节阴极灯的电压、电流以及能量增益按钮都可以改变能量输出值的大小;实际上,在新式的阴极灯中,一般没有电压调节钮,它的能量增益钮能自动控制电压。
第十三步:调节空气和乙炔的流量
用鼠标点击原子吸收分光光度计左下的空气和乙炔流量调节位置出现空气和乙炔的流量调节窗口,调整窗口位置,使得在调节空气和乙炔流量的时候可以看到吸光度数值,左边的转子流量计指示空气的流量,右边的转子流量计指示乙炔的流量,左边的旋钮调节空气的流量,右边的旋钮调节乙炔的流量。首先固定空气流量(具体值由实验确定),改变乙炔流量,使当前液指示吸光度最大。接着固定乙炔流量,改变空气流量,使当前液指示吸光度最大。
第十四步:样品测试和数据记录
前面已经把仪器调节好,不要在改变实验条件,打开多功能面板,把“信号”旋钮转到“积分”位置(由于吸光度的值一直在变化,旋转“信号”旋钮到“信号积分”位置,这可使变化速率变慢)。点击左边菜单的“溶液选取”或者烧杯选择溶液,依次测量各标准溶液和未知溶液,且在每次测试前都要用空白样液校零。每测量一种溶液后,要记录数据,点击左边菜单的“试验数据”按钮打开数据记录窗口,按照所列的项目依次读取数据并写入数据,然 19
后点即“取消”按钮关闭记录窗口。
测量并记录完最后一组数据后,点击数据记录窗口上的“试验报告”按钮进入实验数据处理。
第十五步:数据处理
记录完最后一组数据后,点击“试验报告”按钮,出现实验报告界面:
20
此时就可以根据实验数据确定待测元素的浓度。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。
第十六步:实验完毕
实验结束后,吸入去离子水2~3min,先关乙炔,再关空气。
关闭灯电源开关及总电源开关,将仪器上各旋钮转至零位,最后关闭通风装置电源。
21
气相色谱仿真实验
一、实验概述:
实现色谱分离的先决条件是必须具备固定相和流动相。固定相可以是一种固体吸附剂,或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊相互作用(若流动相为液体或超临界流体可与被分离的组分存在相互作用)。
色谱分离能够实现的内因是由于固定相与被分离的各组分发生的吸附(或分配)系数的差别,其微观解释就是分子间的相互作用力(取向力、诱导力、色散力、氢键力、络合作用力)的差别。
实现色谱分离的外因是由于流动相的不断流动。由于流动相的流动使被分离的组分与固定相发生反复多次(达几百、几千次)的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离。
二、实验装置:
本实验仿真的设备是GC102型气相色谱仪,该产品为实验室用的填充相气相色谱仪,具有热导、氢焰二种检测器,定温控制恒温槽及气流控制装置。主要设备参数如下: 检测器灵敏度:热导池:S≥1000mVml/mg;载气H2样品C6H6
-氢焰:Mt≤1×1010g/sec;载气N2样品C6H6
检测器稳定性:基线漂移:≤0.05mV/h 层析柱恒温室:室温+40℃-300℃ 恒温精度:±0.3℃
22
有效区最大温差:2℃ 气化室:最高400℃
气相色谱仪各部分介绍:
三、实验操作: 第一步:选取实验
点击主菜单上的“实验选取”,会出现如下的对话框:
用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。
选取实验后回到实验主界面,窗口上面的标题栏会显示实验名称+实验文件名称。
第二步:确认操作条件
点击主菜单上的“操作条件”,会出现如下的操作条件列表:
23
在实验调节过程中,请以此列表内的条件为准进行调节,否则不能正确输出色谱峰。
第三步:开载气
用鼠标点击实验主界面上三个气体钢瓶中的载气钢瓶,出现钢瓶的调节阀画面:
当阀关闭时,用鼠标左键点击打开,当阀打开时,用鼠标左键点击关闭。打开总阀和减压阀,注意开关阀门的顺序。
第四步:检查柱前压力
点击气相色谱仪上的柱前压力表,查看柱前压力是否符合操作条件。
24
注意:在仿真实验中,柱前压力都默认是正确值,在真实实验中,应该根据实验的具体要求用钢瓶的减压阀调节柱前压力。
第五步:调节载气流量
点击气相色谱仪上的流量调节部分,会出现流量调节器和皂膜流量计。
一般气相色谱仪的流量调节部分都有三个调节器,分别控制载气、氢气、空气(后两者用于FID检测气),但是转子流量计的指示都不是很准确,因此都要加一个皂膜流量计来进行精确的测定。界面上的三个流量调节旋钮,左键点击增加流量,右键点击减小流量,调节到一定开度后,转子流量计中的转子上升到了一定的高度,此时用鼠标左键点击皂膜流量计的橡皮头,产生一个皂膜,被载气推动由下向上运动,记录皂膜通过一定体积的时间就可以求出载气的流量,载气的精确流量在上面自动计算显示出来。在仿真实验中,为了简便,用皂膜流量计测量过一次以后,以后再调节流量调节旋钮时,精确流量就会自动显示,不用反复测量,在真实实验当中,是每次都重新测量的。
调节载气流量到实验操作条件要求的数值,然后进行下一步。
第六步:打开电源
用鼠标点击打开气相色谱仪上的电源开关。
关的状态:
开的状态:
第七步:调节温度
用鼠标点击气相色谱仪的温度调节步部分,出现温度调节详细画面。
25
调节温度时,用鼠标点击相应数字位上的“+”或者“—”,该数字位就会加1或者减1。按照实验操作条件要求分别调节柱室(柱温)、进样器(气化室温)、离子室(离子室温)的温度,注意:柱室的温度是X1的,而进样器和离子室的温度是X10的。
第八步:调节TCD参数(如果用FID检测器,此步应该调节FID参数)
用鼠标点击气相色谱仪上的TCD调节面版。
首先用鼠标点击电源开关接通电源,指示灯亮。然后根据实验的要求选择桥电流和衰减比。如果电流表指示的电流稍有偏差,可以用“电流微调”旋钮调节。“零调”旋钮可以用来调节记录笔在记录纸上的位置,粗调位置变化大,细调位置变化小。然后点击落笔开始走基线。
调节好各项参数,基线走平稳后,可以进行下一步——“进样”。
注意:对于使用FID检测器的实验,此步应该调节FID参数,如下图:
26
然后还要开氢气、压缩空气(助燃气),点火等步骤。
第九步:进样
所有的实验参数调节好之后,点击主界面上的注射进样器,出现如下对话框:
输入实验操作条件规定的进样量,然后点击“开始进样”按钮。系统会自动注射进样,记录仪开始画出色谱图。
当色谱峰输出完成后,会出现如下对话框:
点击“确定”按钮关闭对话框。
第十步:数据处理
27
点击主界面上的“实验数据”按钮,出现实验报告界面:
根据得出的保留时间、峰高、半峰宽等实验数据,可以计算分离度等相关参数。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。
第十一步:实验完毕
在真实实样当中,实验完毕半小时后,按开机步骤反方向关机:
1、关闭记录仪电源,台起记录笔
2、将桥电流关至最小,关闭热导电源和氢火焰离子放大器电源
3、依次将柱室、进样器、离子室的温度调节至常温
4、关闭总电源
5、打开柱室,等柱温接近室温时,关闭载气。
6、最后清洗进样器。
28
高效液相色谱仿真实验
一、实验概述:
以液体做流动相的色谱称为液相色谱。人们把已经比较成熟的气相色谱理论应用于液相色谱,使液相色谱得到了迅速的发展。随着其他科学技术的发展,出现了新型的高压输液泵、高效的固定相和柱填充技术、高灵敏度的检测器,加上计算机的应用,使得液相色谱实现了高效率和高速度。这种分离效率高、分析速度快的液相色谱称为高效液相色谱(High performance liquid chromatography, HPLC)。
二、实验装置:
Agilent(安捷伦)1100系列液相色谱系统简介:
Agilent1100系列HPLC组件和系统,将Agilent长期的化学分析经验与领先的计算机技术结合,把网络技术引入了实验室。从1996年以来,在全球已经安装了超过130,000台1100组件和55,000多套化学工作站数据处理系统,成为目前单一型号市场占有率最高的液相色谱系统。
本仿真软件是模拟用Agilent化学工作站的数据处理系统进行样品分析和数据采集(色谱图)的过程。
注:本软件只是模拟分析的过程和内容,并不涉及其原理,所以实验中的参数调节对结果并没有影响,而真实实验结果是随参数的变化而变化的,这一点需要特别注意!
实验主界面:
29
化学工作站界面:
三、实验操作: 第一步:选取实验
点击主菜单上的“实验选取”,会出现如下的对话框:
用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框 中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。
30
第二步:确认操作条件
点击主菜单上的“操作条件”,会出现如下的操作条件列表:
第三步:加入试剂
点击仪器上的自动进样器部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:
在实验调节过程中,请以此列表内的条件为准进行调节,否则不能正确输出色谱峰。
点击下面的试剂小瓶,会自动放置到自动进样器的托盘中。
完成后,点击主界面上的电脑启动化学工作站。
第四步:编辑方法
击主界面上的电脑启动化学工作站开始编辑方法。
所谓方法就是一个参数集,它包括分析一个样品所需要的所有的参数:数据采集参数、数据分析参数和命令行或者宏指令。
点击菜单“方法→编辑方法”开始编辑方法(注意:此时不可以改变方法的参数,可改变的参数将在下面特别说明):
31
然后会出现下面的窗口让你选择编辑方法的内容:
用鼠标点击复选框选择要编辑的方法的内容,然后点击“确定”按钮开始方法编辑,点击“取消”按钮终止方法编辑。
开始方法编辑后,系统会根据你选择的内容分别依次显示每一部分的具体内容,点击“确定”按钮进入下一部分,点击“取消”按钮终止方法编辑。
完成方法编辑后,系统会回到主操作界面,此时色谱柱已经开始升温,在图形界面中会有显示,如下图中红色圆圈标示区域所示:
32
特别说明:
对于本实验要改变的参数,可以点击化学工作站软件界面中央的图示的进样器、溶剂系统、色谱柱、检测器等部分,会弹出各部分参数窗口,此时可以按照实验要求的参数进行调节(实验参数可以点击主界面上左边菜单中的“实验数据”按钮察看)。进样器:
溶剂系统:
33
色谱柱:
检测器:
编辑方法完成后,在启动系统之前,请返回液相色谱仪,打开二元泵系统,调节Purge阀,观察使回路无汽泡。
第五步:调节Purge阀
点击仪器上的二元泵系统部分(当鼠标移到仪器的各部分时会出现相应的说明),出现如下画面:
34
图中蓝色方框部分就是Purge阀,此时是关闭的,用鼠标点击蓝色方框部分,会出现Purge阀的放大画面,然后点击Purge阀会自动逆时针方向旋转打开Purge阀。
打开Purge阀后,右边的试剂瓶的导管当中会有气泡流出,待没有气泡再流出之后,再次点击Purge阀会自动逆时针方向旋转关闭Purge阀。然后进行下一步“启动系统”。
第六步:启动系统
完成方法编辑后,点击菜单“设备→系统开”或者图中红色圆圈指示的按钮“开启系统”:
35
启动系统后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:
同时在色谱峰显示区域开始走基线,开始的时候系统不稳定,基线变化很厉害,等到基线走平稳表示系统稳定后,可以开始进样运行方法。
第七步:进样、运行方法
等到状态指示栏显示“Ready”后,表明系统已经准备完毕。点击菜单“运行控制→运行方法”开始进样和分析,或者点击图中红色圆圈所指示的“Start”按钮或者按“F5”键:
36
开始进样后,在图形界面中会有显示,如下图中红色圆圈标示区域所示:
37
待色谱图出完后,样品分析完毕。
第八步:完成实验报告
样品分析完成后,点击化学工作站界面上的红色方框部分,或者点击主界面左边菜单中的“实验数据”调出实验报告:
38
根据得出的保留时间、峰高、半峰宽等实验数据,可以计算分离度等相关参数。如果计算机安装了打印机,可以点击右上角“打印报表”按钮打印实验报告。
39
第四篇:《仪器分析实验》指导书
编写
刘开敏
化学工程与技术系
2008年3月
《仪器分析实验》指导书
目
录
邻菲罗啉分光光度法测定铁„„„„„„„„„„„„„„„„„„„„„„1 电位法测定水溶液的pH值„„„„„„„„„„„„„„„„„„„„„„4 醋酸的电位滴定和酸常数测定„„„„„„„„„„„„„„„„„„„„„6 水中氟化物的测定-离子选择电极法„„„„„„„„„„„„„„„„„„8 气相色谱定量分析„„„„„„„„„„„„„„„„„„„„„„„„„10 紫外分光光度法测定苯甲酸含量„„„„„„„„„„„„„„„„„„„11 荧光法测定维生素B2„„„„„„„„„„„„„„„„„„„„„„„„13 水质 钾和钠的测定 火焰原子吸收分光光度法„„„„„„„„„„„„„15 原子吸收分光光度法测定自来水中镁的含量„„„„„„„„„„„„„„19 苯、萘、联苯的高效液相色谱分析及柱效能的测定„„„„„„„„„„„21
邻菲罗啉分光光度法测定铁
一、实验内容:
1.吸收曲线的制作。
2.标准曲线的制作。
3.未知水样的铁含量的测定。
二、准备工作 1、722S型分光光度计20台(二人一台)。
2、通知仪器室准备20套仪器:
(1)50ml容量瓶7只。
(2)1ml刻度吸管1支。
(3)吸球1只。
(4)洗瓶1只。
(5)400ml烧杯(废液杯)1只。3.准备好公用仪器:
(l)1ml刻度吸管(发样品用)1支。
(2)100ml小烧杯(发标准Fe3+)20只。
(3)自动加液器二套(6只),盛放HAc-NaAc缓冲溶液,1%盐酸羟胺及0.1%邻菲罗啉。
4.试剂:
(1)100μg/mlFe3+标准溶液:准确称取1.9gNH4Fe(SO4)2·12H2O于100ml烧杯中,加入1:1HCl20ml及少量水,溶解后,转移到1L容量瓶中,用水稀释到刻度、摇匀。
(2)0.10%邻菲罗啉水溶液:将0.100g邻菲罗啉溶于加有2~3滴浓HCl的蒸馏水100ml中,贮于棕色瓶内。
(3)HAc-NaAc缓冲溶液:取12.9mlC.P.级HAc及34gC.P.级NaAc·3H2O溶于水中,稀释至1000ml。
(4)1%盐酸羟胺水溶液:取1g盐酸羟胺溶于水中,稀释至100ml。
5.未知样品
不另配制,直接将标准Fe3+液发于同学交上来的容量瓶中,发放体积应介于0.2~1.0ml间,可为0.3,0.5,0.7,0.9ml。未知样品体积以1ml计。
三、提问内容:
1.在本实验中,那些试剂加入量要比较准确,哪些试剂则可不必?为什么?
2.要使分光光度测定结果的误差尽可能小一些,吸光度的最佳读数范围为多少?如何控制?
比色皿壁被有机试剂染上颜色,用水不易洗去,可试用HCl-C2H5OH(1:2)洗涤液浸泡,然后水洗,应避免使用毛刷或铬酸洗涤液。
(3)比色皿的盛液量:比色皿内所装溶液量不宜太少,致使光线无法照射到溶液上,也不宜太多,以使溶液洒出流入光度计内,一般以装至比色皿高度的2/3~4/5为宜。
7.实验中如用配制过久的盐酸羟胺溶液,对分析结果将有何影响?
如盐酸羟胺配制过久,则因其还原能力减弱,而无法将试样中的Fe3+完全还原成Fe3+,并与邻菲罗啉定量形成橙红色络合物,这样将使测定结果偏低。
8.吸收曲线的制作:
吸取1.0ml 100μg/ml标准Fe3+溶液,注入50ml容量瓶中,加入5ml 1%盐酸羟胺溶液,5mlHAc—NaAc缓冲液及3ml 0.10%邻菲罗啉溶液,以水稀释至刻度、摇匀。
在722S型分光光度计上,用1cm比色皿,采用试剂空白,在440~560nm间,每隔10nm测定一次吸光度,然后绘制A—λ吸收曲线,以选择最适当的测定波长。
9.标准曲线的制作:
在5只容量瓶中,分别加入100μg/ml标准Fe3+液0.20ml,0.40ml,0.60ml,0.80ml及1.0ml(可利用上述那个,不必再配)。再各加入5ml 1%盐酸羟胺溶液,5ml HAc-NaAc缓冲溶液和3ml 0.10%邻菲罗啉溶液(次序不能颠倒),以水稀释至刻度摇匀,在所选择的波长下,用1cm比色皿,采用试剂空白,测定各溶液的吸光度,作出A-C工作曲线。
10.未知试样中铁含量的测定:
用洗净的50ml容量瓶一只向教师领取1ml未知试样(贴上标签,写上学号),按与标准溶液完全相同的步骤配成有色溶液,并摇匀,然后在与制作标准曲线完全相同的测试条件下测出其吸光度。由该吸光度值即可从工作曲线上查得相应的铁含量。
五、计算公式
未知试样含铁量(p.p.m.)=
六、评分标准
≤5‰
≤10‰
≤15‰
>15‰
5分
4分
3分
2分
(1)选用仪器“pH”档,将清洗干净的电极浸入欲测标准pH缓冲溶液中,按下测量按钮,转动定位调节旋钮,使仪器显示的pH值稳定在该标准缓冲溶液pH值;(2)松开测量按钮,取出电极,用蒸馏水冲洗几次,小心用滤纸吸去电极上水液;(3)将电极置于欲测试液中,按下测量按钮,读取稳定值pH,记录。松开测量按钮,取出电极,按(2)清洗,继续下个样品溶液测量。测量完毕,清洗电极,并将玻璃电极浸泡在蒸馏水中。
2.双标准pH缓冲溶液法测量溶液pH值
为了获得高精度的pH值,通常用两个标准pH缓冲溶液进行定位校正仪器,并且要求未知溶液的pH值尽可能落在这两个标准pH溶液的pH值中间。
(1)按单位标准pH缓冲溶液方法步骤(1)﹑(2),选择两个标准缓冲溶液,用其中一个对仪器定位;
(2)将电极置于另一个标准缓冲溶液中,调节斜率旋钮(如果没设斜率旋钮,可使用温度补偿旋钮调节),使仪器显示的pH读数至该标准缓冲溶液的pH值;
(3)松开测量按钮,取出电极,用蒸馏水冲洗几次,小心用滤纸吸去电极上水液;再放入第一次测量的标准缓冲溶液中,按下测量按钮,其读数与该试液的pH值相差至多不超过0.05pH单位,表明仪器和玻璃电极的响应特性均良好。往往要反复测量﹑反复调节几次,才能使测量系统达到最佳状态;
(4)当测量系统调定后,将洗干净的电极置于欲测试样溶液中,按下测量按钮,读取稳定pH值,记录。松开测量按钮,取出电极,冲洗净后,将玻璃电极浸泡在蒸馏水中。
五﹑问题讨论
1. 在测量溶液的pH值时,为什么pH计要用标准pH缓冲溶液进行定位? 2. 使用玻璃电极测量溶液pH值时,应匹配何种类型的电位计?
3.为什么用单标准pH缓冲溶液法测量溶液pH值时,应尽量选用pH与它相近的标准缓冲溶液来校正酸度计?
用吸液管取1.00、3.00、5.00、10.00、20.00 mL氟化物标准溶液,分别置于5只50 mL容量瓶中,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。分别移入100 mL聚乙烯杯中,放入一只塑料搅拌子,按浓度由低到高的顺序,依次插入电极,连续搅拌溶液,读取搅拌状态下的稳态电位值(E)。在每次测量之前,都要用水将电极冲洗净,并用滤纸吸去水分。在半对数坐标纸上绘制E-lgcF-标准曲线,浓度标于对数分格上,最低浓度标于横坐标的起点线上。
4.水样测定
用无分度吸液管吸取适量水样,置于50 mL容量瓶中,用乙酸钠或盐酸溶液调节至近中性,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。将其移入100 mL聚乙烯杯中,放入一只塑料搅拌子,插入电极,连续搅拌溶液,待电位稳定后,在继续搅拌下读取电位值(Ex)。在每次测量之前,都要用水充分洗涤电极,并用滤纸吸去水分。根据测得的毫伏数,由标准曲线上查得试液氟化物的浓度,再根据水样的稀释倍数计算其氟化物含量。
5.空白试验
用去离子水代替水样,按测定样品的条件和步骤测量电位值,检验去离子水和试剂的纯度,如果测得值不能忽略,应从水样测定结果中减去该值。
当水样组成复杂时,宜采用一次标准加入法,以减小基体的影响。其操作是:先按步骤4测定出试液的电位值(E1),然后向试液中加入与试液中氟含量相近的氟化物标准溶液(体积为试液的1/10~1/100),在不断搅拌下读取稳态电位值(E2),按下式计算水样中氟化物的含量:
式中:Cx—水样中氟化物(F-)浓度(mg/L);
Vx—水样体积(mL);
cs—F-标准溶液的浓度(mg/L);
Vs—加入F-标准溶液的体积(mg/L);
△E—等于E1
气相色谱定量分析
一、实验目的
用苯作标准物,测定己烷、环己烷、甲苯的定量校正因子,根据色谱图,用归一法测定混合物中各组分的含量;用外标法测定混合物中甲苯的含量。学习定量校正因子的测定和气相色谱常用的定量方法。
二、仪器与试剂
气相色谱仪、热导池检测器、10微升注射器3支、色谱柱:不锈钢色谱柱(长2米,内径4毫米)
15%聚乙二醇—1000:6201担体(60—80目)、苯、甲苯、己烷、环己烷(都为分析纯)、混合物样品
三、实验步骤
1.色谱条件:
柱温80ºC;载气,氮气或氢气15—20毫升/分钟(柱后),检测器温度100℃,汽化室温度120—150℃,桥电流130毫安。2.测定相对重量校正因子
在分析天平上,于5毫升中,按重量比大约2 :1的比例,称取己烷和苯配制二元混合物。待色谱仪基线稳定后,进样分析二元混合物,重复3—5次。量取己烷和苯的峰面积,按公式求出己烷对苯的相对重量校正因子。以此为例,测定并求出环己烷对甲苯的相对重量校正因子。
3.定量测定各组分含量
(1)归一化法
如果被测样品中只含有己烷、环己烷和甲苯,并且三者相对重量校正因子均已求出,即可进被测样品进行色谱分析,按归一化法求出各组分的含量。(2)外标法
如果被测试样中含有微量苯,预测定其含量,则可以甲苯为溶剂,配制已知浓度的苯标准溶液,用外标法测定试样中苯的含量,具体方法如下:准确量取10毫升苯于100毫升容量瓶中,用甲苯稀至刻度,摇匀,作为标准储备液(体积百分数,v/V)。准确分别量取1,2,3,4,5,6毫升储备液于5个10毫升容量瓶中,用甲苯稀释定容,摇匀,作为系列标准溶液。
将六个标准溶液分别进样,每次1微升,测量各自的峰高(或峰面积)。以峰高(或峰面积)对苯浓度绘制工作曲线。取1微升被测样品注入色谱分析,重复3次,取峰高(或峰面积)平均值,由工作曲线查出被测样品中苯的浓度。
四、问题讨论
1.在气相色谱定量分析中,峰面积为什么要用校正因子校正? 2.试说明归一化法定量的适用范围。
0
苯甲酸吸收曲线(10ug/mL)1.6001.4001.200吸光度1.0000.8000.6000.4000.2000.0002002052102************3103***335340345350波长
3.3 标准曲线的绘制
准确吸取苯甲酸标准溶液若干体积,稀释成一系列不同浓度的标准溶液(0~16ug/mL),于最大吸收波长分别测出其吸光度。然后以浓度为横坐标,以相应的吸光度为纵坐标绘制出标准曲线。3.4 样品测定
由步骤3.2的测量结果,从标准曲线查出样品的浓度。
五、结果计算
根据未知液的稀释倍数,可求出未知溶液的浓度。
三、仪器与试剂
1.仪器
930 型荧光光度计(附液槽一对,漏光片一盒)容量瓶
毫升6个 吸量管
5毫升l支
棕色试剂瓶(500 mL)洗瓶(500 mL)冰箱 2.试剂
(1)100.0 mg·L1 -维生素B2标准贮备液准确称取0.1000 g维生素B2,将其溶解于少量的1%乙酸 中,转移至1 L容量瓶中,用1%乙酸稀释至刻度,摇匀。(2)5.00 mg·L-1
-维生素B2工作标准溶液准确移取5.00 mL 100.0 mg·L1
维生素B2标准贮备液于1L容量瓶中,用1%乙酸稀释至刻度,摇匀。
(3)待测液取市售维生素B2一片,用1%乙酸溶液溶解,在1 L容量瓶中定容。以上溶液均应装于棕色试剂瓶中,置于冰箱冷藏保存溶液应保存在棕色瓶中,置于阴凉处。
四、实验步骤
1.标准系列溶液的配制
在五个干净的50 mL容量瓶中,分别加入1.00 mL,2.00 mL,3.00 mL,4.00 mL和5.00 mL 5.00 mg·L-1维生素B2工作标准溶液,用蒸馏水稀释至刻度,摇匀。
2.标准系列溶液的测定
开启仪器电源,预热约10min。用蒸馏水作空白,从稀到浓测量标准系列溶液的荧光强度。
3.未知试样的测定
取2.50 mL待测液置于50 mL容量瓶中,用蒸馏水稀释至刻度,摇匀。用测定标准系列溶液时相同的条件,测量其荧光强度。
五、数据及处理
1.用标准系列溶液的荧光强度绘制标准曲线。2.根据待测液的荧光强度,从标准曲线上求得其浓度。3.计算药片中维生素B2的含量,用mg/片表示。
六、思考题
1.在荧光测量时,为什么激发光的入射与荧光的接收不在一直线上,而呈一定角度? 2.为什么要使用两块滤光片,其选择的根据是什么?
参考资料
[1]H.H.Willard,L.L.Merritt and J.A.Dean,《Instrumental Methods ofAnalysis》,5th ed.,p.145,Nostrand,New York,1974。
[2]厦门大学化学系分祈化学教研室编,陈国珍主编,《萤光分析法》,第248页,科学出版社,1975。
43.5.5 钠标准使用溶液I,含钠100.00mg/L:吸取钠标准贮备溶液(3.5.2)10.00mL于100mL容量瓶中,加2mL硝酸溶液(3.2),以水稀释至际线,摇匀。此溶液可保存3个月。3.5.6 钠标准使用溶液Ⅱ,含钠10.00mg/L:吸取钠标准使用溶液Ⅰ(3.5.5)10.00mL于100mL容量瓶中,加2mL硝酸溶液(3.2),以水稀释至标线,摇匀。此溶液可保存一个月。仪器
4.1 原子吸收分光光度计:仪器操作参数可参照厂家说明书进行选择。
4.2 钾和钠空心阴极灯:灵敏吸收线为钾766.5nm,钠589.0nm;次灵敏吸收线为钾404.4nm,钠330.2nm。
4.3 乙炔的供气装置:使用乙炔钢瓶或发生器均可,但乙炔气必须经水和浓硫酸洗涤后,方可使用。
4.4 空气压缩机:均应附有过滤装置,由此得到无油无水净化空气。
4.5 对玻璃器皿的要求:所用玻璃器皿均应经硝酸溶液(3.2)浸泡,用时以去离子水洗净。采样和样品
水样在采集后,应立即以0.45μm滤膜(或中速定量滤纸)过滤,其滤液用硝酸(3.2)调至pH1~2,于聚乙烯瓶中保存。分析步骤
6.1 试料的制备
如果对样品中钾钠浓度大体已知时,可直接取样,或者采用次灵敏线测定先求得其浓度范围。然后再分取一定量(一般为2~10mL)的实验室样品于50mL容量瓶中,加3.0mL硝酸艳溶液(3.3),用水稀释至标线,摇匀。此溶液应在当天完成测定。6.2 校准溶液的制备 6.2.1 钾校准溶液
取6只50mL容量瓶,分别加入钾标准使用溶液(3.5.4)0,0.50,1.00,1.50,2.00,2.50mL,加硝酸艳溶液(3.3)3.00mL,加硝酸溶液(3.2)1.00mL,用水稀释至标线,摇匀。其各点的浓度分别为:0,1.00,2.00,3.00,4.00,5.00mg/L。本校准溶液应在当天使用。6.2.2 钠校准溶液
取6只50mL容量瓶,分别加入纳标准使用溶液Ⅱ(3.5.6)0,1.00,3.00,5.00,7.50,10.00mL,加3.00mL硝酸铯溶液(3.3),加1mL硝酸溶液(3.2),用水稀释至标线,摇匀。其各点的浓度分别为0,0.20.0.60,1.00,1.50,2.00mg/L。本校准溶液应在当天使用。6.3 仪器的准备
将待测元素灯装在灯架上,经预热稳定后,按选定的波长,灯电流,狭缝,观测高度,空气及乙炔流量等各项参数进行点火测量。
注意:在打开气路时,必须先开空气,再开乙炔;当关闭气路时,必须先关乙炔,后关空气,以免回火爆炸。
当点火后,在测量前,先以硝酸溶液(3.3)喷雾5min,以清洗雾化系统。
6对于钾和钠浓度较高的样品,在使用本标准时会因稀释倍数过大,降低测定的精密度、同时也给操作带来麻烦。因一般的地表水中钾和钠的浓度都比较高,可使用次灵敏线钾440.4nm、钠330.2nm测定,浓度范围可扩大到钾为200mg/L以内,钠为100mg/L以内。
附加说明:
本标准由国家环境保护局规划标准处提出。本标准由黄河水资源保扩监测中心站负责起草。本标准主要起草人冯荣周。
本标准委托中国环境监测总站负责解释。
83、浓盐酸 优级纯,稀盐酸溶液1 mol·L
4、纯水 去离子水或蒸馏水
1四、实验步骤
1、配制标准溶液系列
(1)标准溶液系列 准确吸取2.00、4.00、6.00、8.00、10.0mL上述钙标准使用液,分别置于5只25mL容量瓶中,用水稀释至刻度,摇匀备用。该标准溶液系列钙的浓度分别为8.00、16.0、24.0、32.0、40.0μg ·L-1。
(2)镁标准溶液系列 准确吸取1.00、2.00、3.00、4.00、5.00mL上述镁标准使用液,分别置于5只25mL容量瓶中,用水稀释至刻度,摇匀备用。该标准溶液系列镁地浓度分别为2.0、4.0、6.0、8.0、10.0μg ·L-1。
2、配制自来水样溶液 准确吸取适量(视未知钙、镁的浓度而定)自来水置于25mL容量瓶中,用水稀释至刻度,摇匀。
3、根据实验条件,将原子吸收分光光度计按仪器操作步骤(见本章8.3.4节)进行调节,待仪器电路和气路系统达到稳定,记录仪基线平直时,即可进样。测定各标准溶液系列溶液的吸光度。
4、在相同的实验条件下,分别测定自来水样溶液中钙、镁的吸光度。
五、思考题
1、简述原子吸收分光光度分析的基本原理。
2、原子吸收分光光度分析为何要用待测元素的空心阴极灯作光源?能否用氢灯或钨灯代替,为什么?
3、如何选择最佳的实验条件?
4、原子化器有何作用?
5、样品预处理的目的是什么?
0-
1-1
四、操作步骤
1.测定条件的选择
(1)色谱柱长 250 mm,内径 4.6 mm,装填 C-18 烷基键合相,颗粒度 10μm 的固定相
(2)流动相 甲醇:水(83:17),流量 1.0 mL· min1
-(3)紫外光度检测器 测定波长 254 nm(4)进样量 20μL 2.仪器操作
(1)将配置好的流动相于超声波发生器上,脱气 15 min。
(2)将仪器按照仪器的操作步骤调节至进样状态,待仪器液路和电路系统达到平衡,基线平直时,吸取 60µL 标准工作液,进样 20µL,记录色谱图,重复进样两次。
(3)吸取 60µL 样品,进样 20µL,记录色谱图,重复进样两次。
五、数据处理
1.记录实验测定条件
(1)色谱柱与固定相
(2)流动相及其流量
(3)检测器
(4)进样量
2.测量各色谱图中苯、萘、联苯等的保留时间tR及相应色谱峰的半峰宽Y1/2,计算各对应理论塔板n,并将数据列表。已知组分的出峰顺序为苯、萘、联苯。
3.求样品中各组分的含量。
六、思考题
1.由计算得到的各组分理论塔板数说明了什么?
2.高效液相色谱采用 5~10 μm 粒度的固定相有何优点?为什么?
第五篇:仪器分析课程论文
色谱分析技术在植科专业相关实验和教学中的应用
2011—2012 学年第一学期
课程名称: 仪 器 分 析
班 级: 09级植物科学与技术(2)班
学 号:
学生姓名:
摘 要:本文通过对色谱分析的一些方法的简要分析和与我们植物保护学院植物科学与技术专业的联系来向大家论述相关知识和信息。我们专业有许多实验都要借助于色谱分析方法才能够圆满的完成相关实验。因此,色谱分析技术在我们专业能够得到很好的运用与发挥。同时也因为色谱分析方法的发展才引领了科技的进步,进而取得了一系列的科技成果。
关键词:色谱;实验;化学;应用
正 文:
一、色谱分析法的起源、分类及其原理
1、色谱分析法的起源[1]
色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография,这个单词最终被英语等拼音语言接受,成为色谱法的名称。汉语中的色谱也是对这个单词的意译。
2、色谱分析法的分类[2]
色谱分析法根据流动性的性质可以分为:气相色谱分析法和高效液相色谱分析法两种。气相色谱分析法具有高分离效能、高检测性能、分析时间快等优点,因此应用比较广泛。而高效液相色谱分析法也因其高效、快速而得以广泛应用。根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。
3、色谱分析法的简单原理[3] 色谱分析法是一种利用混合物中诸组分在两相间的分配原理以获得分离的方法。其过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。
二、色谱分析法在相关学习实验中的应用
1、植物生理学相关实验
(1)、叶绿素的提取与分离实验 先从菠菜叶片中,用有机溶剂将叶片中的色素提
[4]取出来;然后利用纸层析,在圆形的滤纸中心用毛细管进行点样(少量多次,尽量均匀,形状规则);再以汽油做扩散剂将叶绿素进行扩散,进而得到叶片内色素的主要成份。此试验应用的纸层析法是色谱分析法的一种较常用的方法,不仅见效快、成本低、现象明显、重复性强,而且易于操作,适合于教学研究和学生实验,同时也有利于色谱分析法的发展。
[5](2)、植物组织呼吸强度及呼吸商的测定的实验 用直径4mm和2000mm的色谱柱装上担体。采用热导检测器[6] 检测,柱温为60℃,进样器温为40℃,以氦气为载气,气体流速为20ml/min;再用微量注射器分别抽取不同量的纯O2和纯CO2,注入气相色谱仪中,并记录O2和CO2出峰时间和不同量的峰值。进而描绘出进样量中O2和CO2的绝对量和峰值的标准曲线。然后运用相关知识计算植物组织呼吸强度及呼吸商的测定的实验。
2、分子生物学相关实验
[7](1)、糖蛋白的分离和纯化实验 糖蛋白是存在与植物体内的一种大分子化合物,本实验主要运用三种色谱柱(Sepharose CL-6B、S-Sepharose、SynChropak RP-PC16)依次进行分离和纯化。首先,使用Sepharose CL-6B色谱柱进行初步的分离,然后再将流出液通过S-Sepharose色谱柱进行初步的纯化,使得样品中的各组分的分离更彻底,最后用SynChropak RP-PC16色谱柱进行最终的纯化,最后将吸附柱上的大分子洗脱出来,一般用0.1%TFA和65%乙腈进行脱洗28分钟即可得到纯品。
3、生物化学相关实验
[8](1)、检验莨菪碱和东莨菪碱的分离效果实验 用碱性氧化铝作为吸附剂,撤在玻板上,然后路套有调节荡层厚度的塑料环的破棒置于玻板一端,用手推至另一线即可。然后,用样品进行点样,接着用有一定倾斜度的薄层色谱进行展开;最后对其进行显色,用改良德氏试剂喷雾显色。显色剂用小型喷雾器喷出,雾点要小,与薄层保持一差距离,或可在展开剂尚未蒸干以前喷雾显色,以免将薄层表面吹坏。如果分离效果好,则显色后共显现两个斑点,莨菪碱及东莨菪碱各显一个斑点。
[9](2)、从绿色叶片中制备线粒体实验 试验前供拭材料放在暗处2—3天,取材前再给光照I一3小时,这种暗处理消除了细胞中大量淀粉,有利于相系统中的分配行为。试验材料为生长健壮的嫩叶片。首先将较大的叶脉除去,然后取100g叶片、洗净、剪碎加200m1冷的A液。在4℃下于组织捣碎机中高速匀浆2次,每次5—7秒钟。8层妙布过滤。滤液以600xg离心10分钟。上清液再以11000xg离心10分钟.沉淀悬浮于B液,并用B液洗2次。用11000xg离心l0分钟收集沉淀。此即线粒体的粗制品。
线粒体的纯化是在Dextran—PEG相[10] 系统中进行的。相系统的成分为:6.1%DextranT500,6.1%PEG、2mMKCl、0.3M蔗糖和5mM磷酸钾缓冲液(pH7.8)。新制备的相系统,放置约1小时就可以形成明显的上下两相。此时Dextran分布在下相,PEG在上相。取5m1上相液悬浮线粒体粗制品。再加入4ml下相液,充分混合后,用600xg离心3—4分钟。此时大部分叶绿体颗粒及色素分配到上相,所以上相为绿色。尤其在上层的界面处分布着大量叶绿体颗粒。而在下相液中游离色素和叶绿体颗粒很少,几乎为白色透明液体。在下相液的界面处分布着大量的线粒体。小心地吸出绿色的上相液。注意不要破坏它的界面,以免把线粒体带出。然后再加入5m1新的上相液,与下相液充分混合后,依照以上步骤,重复分配2次。最后用7倍体积的B液稀释含线粒体的下相液,并用500xg离心3分钟,上清液再以11000xg离心10分钟收集沉淀,此即纯化的线粒体。
4、植物化学相关实验
[11](1)、从番茄中提取番茄红素和β—胡萝卜素首先,将新鲜番茄洗净,捣碎成浆状后,称取15g左右放人烧瓶中,添加20ml 95%乙醇,热水浴回流5分钟,温度不应高于85℃,趁热过滤,滤渣转移至烧瓶备用;然后,向烧瓶中加人20ml二氯甲烷,热水浴回流7分钟(温度应低于55℃),冷却,过滤,滤渣转移回烧瓶,再添加10ml二氯甲烷,重复操作,合并乙醇和两次二氯甲烷的提取液,倒入分液漏斗中,添加5ml饱和氯化钠溶液,振荡,静置,分出有机相,用无水硫酸钠干燥,过滤,将滤液蒸馏以回收大部分溶剂,所剩溶液继续在通风橱内水浴蒸干备用;最后,用氧化铝装柱,石油醚洗脱。开始之前,应将自制的有色物料平铺在氧化铝上,用滴管添加少许石油醚后,打开活塞,放出石油醚,直至与柱顶平齐。黄带(β一胡萝卜素)移动快,红带(番茄红素)移动慢。待黄带完全从柱上洗去后,换用氯仿继续洗脱红带。将两份洗脱液在通风橱内水浴蒸干,得到的就是两种较纯的色素。
[12](2)、槲皮素与金雀异黄素的分离与提纯实验 槲皮素(quercetin)、金雀异黄素(genistein)同属于黄酮类化合物,具有广泛的抗肿瘤、抗血小板、抗氧化等药理作用[13~14]。首先,精确配制SDS浓度为0.0081,0.01,0.02,0.03,0.04,0.05mol·L-1的水溶液作为展开剂(0.0081mol·L-1为SDS的CMC)进行实验,并在一定浓度下依次分别加入体积分数为2%,4%,6%,8%的甲醇、异丙醇、正戊醇、正丁醇、冰乙酸。新华三号滤纸切割成2.5cm×12cm的纸条,毛细管点样。药品溶解在甲醇中,展开前层析缸密闭,以展开剂蒸气饱和1h,上行法展开约10cm左右。点样量:Q,Q1,Q2均为0.5μl,而G,G1,G2则均为2μl(因G,G1,G2的检出灵敏度较低)。然后,以10g·L-1FeCl3溶液喷洒后,各药品点显紫黑色,以初步鉴定样品酚型结构的存在。在365nm的紫外光照射下,对原始样品点、非SDS溶液展开并经50g·L-1AlCl3甲醇溶液喷洒的样品迁移点、SDS胶束水溶液展开并经50g·L-1AlCl3甲醇溶液喷洒的样品迁移点,3种不同情况下的荧光表现进行比较。
三、现代色谱分析法的应用
近年来,有越来越多的色谱分析成果问世,比如:多孔性聚合物填料在高效液相色谱中的应用、高速逆流色谱技术在植物特殊化学成分研究方面的应用、智能色谱的诞生及其应用以及超临界流体色谱的迅猛发展等等。这些都极大的促进了当今世界科技的快速发展,反过来快速发展的科技又给色谱分析技术的发展提供的动力。这种“双赢”的局面正迎合了这个信息高速传播、生活娱乐节奏加快的当今世界,是一个良好的循环发展系统。相信色谱分析技术必定能够更好更快的发展。
参考文献: [1].王瑞芬.现代色谱分析法的应用.北京:冶金工业出版社,2006 [2].敖潇潇.分析化学中的色谱法分类.河南:河南科技杂志,2011 [3].李艳红.分析化学.北京:石油工业出版社,2008
[4].陈建勋.植物生理学实验指导.广州:华南理工大学科技出版社,2002 [5].李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000 [6].杜斌.实用现代色谱技术.河南:郑州大学出版社,2009
[7].师治贤.生物大分子的液相色谱分离和制备.北京:科学出版社,1996 [8].张志良.植物生物化学技术和方法.北京:农业出版社,1986
[9].B.L.威廉斯,K威尔逊编.实用生物化学原理和技术.北京:科学出版社,1979
[10].郅文波,邓秋云,宋江楠等.高速逆流双水相色谱法纯化卵白蛋白.生物工程学报,2005 [11].陈亚.有机化学实验.昆明:云南科技出版社,2004 [12].刘文,邓亦峰,梁念慈.槲皮素和金雀异黄素硫酸酯合成方法的改进及其HPLC-MS的鉴定.中药材JOURNAL OF CHINESE MEDICINAL MATERIALS,2008
[13].Ioku K,Tsushida T,Takei et al.Antioxidative avtivity of quercetin and quercetin monoglucoside in solution and phospholipid bilayers.Biochim Biophys Acta,1995,1234(4):99.[14].Barnes S,Peterson TG.Biochemical targets of the isoflavone genistein in tumor cell lines.The Society for Experimental Biology and Medicine,1995,208:103.