第一篇:圆有关的比例线段教案设计
教学建议
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.2、教学建议
本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.(1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;
(2)在教学中,引导学生观察猜想证明应用等学习,教师组织下,以学生为主体开展教学活动.第1课时:相交弦定理
教学目标 :
1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;
2.学会作两条已知线段的比例中项;
3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;
4.通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重点:
正确理解相交弦定理及其推论.教学难点 :
在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.教学活动设计
(一)设置学习情境
1、图形变换:(利用电脑使AB与CD弦变动)
①引导学生观察图形,发现规律:D,B.②进一步得出:△APC∽△DPB..③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?
组织学生观察,并回答.2、证明:
已知:弦AB和CD交于⊙O内一点P.求证:PAPB=PCPD.(A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)
(证明略)
(二)定理及推论
1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PAPB=PCPD.2、从一般到特殊,发现结论.对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且ABCD于P.提问:根据相交弦定理,能得到什么结论?
指出:PC2=PAPB.请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PAPB.若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:
PC2=PAAC2=APCB2=BPAB
(三)应用、反思
例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.引导学生根据题意列出方程并求出相应的解.例2 已知:线段a,b.求作:线段c,使c2=ab.分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.作法:口述作法.反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?
将条件隐化,增加难度,提高学生学习兴趣
练习2 如图,CD是⊙O的直径,ABCD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.练习3 如图:在⊙O中,P是弦AB上一点,OPPC,PC 交⊙O于C.求证:PC2=PAPB
引导学生分析:由APPB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PCPD=PAPB.又根据条件OPPC.易 证得PC=PD问题得证.(四)小结
知识:相交弦定理及其推论;
能力:作图能力、发现问题的能力和解决问题的能力;
思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.(五)作业
教材P132中 9,10;P134中B组4(1).第2课时 切割线定理
教学目标 :
1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;
2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力
3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.教学重点:
理解切割线定理及其推论,它是以后学习中经常用到的重要定理.教学难点 :
定理的灵活运用以及定理与推论问的内在联系是难点.教学活动设计
(一)提出问题
1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)
当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?
2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.3、证明:
让学生根据图2写出已知、求证,并进行分析、证明猜想.分析:要证PT2=PAPB,可以证明,为此可证以 PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明PTA=B又P,因此△BPT∽△TPA,于是问题可证.4、引导学生用语言表达上述结论.切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(二)切割线定理的推论
1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?
观察图4,提出猜想:PAPB=PCPD.2、组织学生用多种方法证明:
方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明PAC=D,P,因此△PAC∽△PDB.(如图4)
方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明D,又P.因此△PAD∽△PCB.(如图5)
方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)
(三)初步应用
例1 已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.(解略)教师示范解题.例2 已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,求证:AE=BF.分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.巩固练习:P128练习1、2题
(四)小结
知识:切割线定理及推论;
能力:结合具体图形时,应能写出正确的等积式;
方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.(五)作业 教材P132中,11、12题.探究活动
最佳射门位置
国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.故,又,OB=30.34+7.32=37.66.OP=(米).注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角
第二篇:比例线段教学设计
比例线段
【学习内容】
1、比例及其性质。
2、两条线段的比,比例线段。
3、黄金分割。
【重点、难点】
重点:比例及其性质,黄金分割。
难点:比例性质的运用。
【知识讲解】
一、复习与巩固比例有关内容。
1、四个数a,b,c,d成比例定义,比例的项,内、外项的含义。
(1)两个比相等的式子叫比例,记作:b,c,d均不为0)。
(2)“比”——两数相除叫两数的比,记作:(a∶b),在此a是比的前项,b是比的后项。
(3)中各部分名称
(a∶b=c∶d),称作:a,b,c,d成比例(其中a,①a,d叫比例的外项
②b,c叫比例的内项
③d叫做a,b,c的第四比例项(a,b,c顺序不准乱动)
(4)比例中项
若a∶b=b∶c,则b叫a,c的比例中项。
如:在比例式
2、比例的基本性质
小学学过“比例的外项乘积等内项的乘积”,故
可推出a·d=b·c。其实我们可以这样去
两边同乘bd得到a·d=b·c;
中,c是线段3a、m、m的第四比例项。m是线段3a、c的比例中项。
理解,因为a,b,c,d均不为0,用等式性质(去分母法)将反之,将ad=bc同除以bd可得
“
。因此,我们得到如下的比例基本性质:
”的意义是由左边可推出右边,且由右边也可推出左边,称为等价符号。
b2=ac这两个式子均表示b是a,c的比例中项。
不同的比例式:
如:
其实,由ad=bc还可得到另七个与 1、二、线段的比,比例线段
1、线段的比 :两条线段的比就是两条线段长度的比。
如:(1)若a,b为两条线段,且a=5cm,b=10cm。它们的比:a∶b=5cm∶10cm=0.5。
(2)若c,d为两条线段,且①c=5cm,d=100mm。求c∶d;②c=0.05m,d=0.1m,求c∶d。
①d=100mm=10cm,故c∶d=0.5 ②c∶d=0.05m∶0.1m=0.5
注意:1)、a,b代表两条线段,a∶b=k,a是b的k倍;(一般a∶b≠b∶a,只有当k=1时,a∶b=b∶a)
2)、求两条线段的比时,必须统一单位;
3)、两条线段的比值与采用的长度单位无关;
4)、两条线段的比总是正数(因为线段长为正数);
2、比例线段
(1)在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。
(2)概念的理解
①必须是四条线段才能成比例,并且有顺序。若若a,b,c,d成比例,则有
②在;若,则叫a,b,c,d成比例;反之,这些是比例的变形。比例变形是否正确只需把比例式化为等积式,看与原式所得的等积式是否相同即可,相同说明正确,反之,比例变形就是错误的。,则叫c,d,a,b成比例。
中,b是c,d,a的第四比例项。中,d是a,b,c的第四比例项,而在③在线段a,b,c中,若b2=ac,则b是a,c的比例中项。
在线段a,b,c,x中,若x=,则x是a,b,c的第四比例项。
由此可见前面所学的比例性质均可用于成比例线段中。
④又如四条线段m=1cm,n=3cm,p=4cm,q=12cm,可以发现p,q成比例,不能说明m,p,q,n成比例,因为m,p,q,n成比例,则有
3、应用比例的基本性质判断成比例线段
将所给的四条线段长度按大小顺序排列,如:a>b>c>d,若最长(a)和最短(d)两条线段之积ad与另两条线b、c之积bc相等,则说明 线段a,b,c,d 成比例。
三、比例的另外两条重要性质,这说明 m,n。
1、合比性质
如果
因为:
2、等比性质,那么,∴,∴
如果=……=(b+d+……+n≠0),那么
因为:设,则有a=bk,c=dk,……,m=nk
∴
四、黄金分割
1、黄金分割:是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC2=AB·BC),C点为黄金分割点。
说明:
①一条线段有两个黄金分割点。
②这种分割之所以被人们称为黄金分割,是因为黄金分割存在美学规律和具有实用价值。德国著名天文学家开普勒(Kepler,1571—1630)把这种分割称为“神圣的比例”,说它是几何中的瑰宝,大家也可以看一下课外的阅读材料,体会一下黄金分割中所蕴含的美学。
2、黄金分割的求法
①代数求法:
已知:线段AB
求作:线段AB的黄金分割点C。
分析:设C点为所求作的黄金分割点,则AC2=AB·CB,设,AB=,AC=x,那么 CB=-x,由AC2=AB·CB,得:x2=·(-x)
整理后,得:x2+x-=0
根据求根公式,得:x=
∴(不合题意,舍去)
即 AC=AB≈0.618AB
则C点可作。
②黄金分割的几何求法(尺规法):
已知:线段AB
求作:线段AB的黄金分割点C。
作法:如图:
(1)过B点作BD⊥AB,使BD=AB。
(2)连结AD,在AD上截取DE=DB。
(3)在AB上截取AC=AE。
则点C就是所求的黄金分割点。
证明:∵AC=AE=AD-AB
而AD=
∴AC=
∴C点是线段AB的黄金分割点。
例2:已知,线段a=cm,b=4cm,c=cm,求a,b,c的第四比例项。
解:设a,b,c的第四比例项为xcm,根据比例的定义得:,∴a,b,c的第四比例项为cm。
例3 :已知,a=2.4cm,c=5.4cm,求a和c的比例中项b。
解:依题意得:b2=ac=2.4×5.4=12.96
∴b=±3.6
∵b为线段
∴b>0
∴b=3.6cm。
例4 :已知,线段a=1,b=,c=,求证:线段b是线段a,c的比例中项。
证明:∵ac=1×,b2=
∴b2=ac
∴线段b是线段a,c的比例中项。
例5 :若3x=4y,求。
解:∵3x=4y
∴
同理,甡合比怇质徖:
∴
∵x=49
∴も
侊:巒知$。
①当b+d(f≠0斶,求的倸。
␡当b-2d*3f≠0时,求的值。
解:①∕错误!
且b+d)f≠
∴由等比性质得:
⑁∵
∰
且b-2d+3f∀
∔错误!??。
例7:在相同时创的物高与影长成比例,妀果一古塔在地面上的弱镽为50籓,同斶,高为1.米的测竿的影长为2.5籲,那么古塔的高是多少米?
分析:“圈相同时刺的物骘丆影长成比例” 的含义,昧指用同一时刻两个物体的高与它们的对应影长成比例。
解:设,古塔的高ะx米(核据题意徖:
∴2.5p=1*5䃗50(比例的基本性质)
∰x-30(米)
答:古塔高丸 30 籣。
例8:如图,AD=15,AB=40,AC=2, 求:AE。
错误!
分析:由条件中给出AD,AB,AC,最她能利用比侊的性质将DB,EC 轨化为题中已知条件AB(AC。
解:∵
∴
∴
即
∴AE=
=10.5(cm)。
(合比性质)
例9:已知,线段AB,求作AB的黄金分割点。
解:①可用代数求法,不妨设黄金分割点为C,求出AC≈0.618AB,则点C可作。
②可用几何尺规作图法(见知识讲解中黄金分割的求法)。
③若不限尺规作图,用量角器可作以线段AB为一腰,顶点为∠A=36°的等腰ΔABC,然后作 ∠ACB的平分线CD交AB于D,则点D就是AB的黄金分割点。
【巩固练习】
1、从下列式子中求x∶y。
①(x + y)∶ y = 8 ∶ 3
②(x-y)∶y=1∶2
2、已知:
3、已知:
4、已知:如图,BF 的长。,AB=8cm,AD=2cm,BC=7.2cm,E为BC中点。求:EF,x+y-z=6。求x,y,z。求:(a+b+c)∶b。
5、已知,线段a=2,且线段a,b的比例中项为
。求:线段b。
6、已知,点P在线段AB上,且AP∶PB=2∶5。求AB∶PB,AP∶AB。
7、ΔABC和ΔA′B′C′中,的周长。
8、已知,如图。求证:(1)
(2),且ΔA′B′C′的周长为50cm。求:Δ ABC
【巩固练习答案与提示】
1、①
②2、3、x=9,y=12,z=15
4、提示:
BF=3.6+1.2=4.8(cm)
5、b=5
6、∵ ∴ ∴
∵
∴,7、ΔABC周长为30cm。
8、提示:①
由①,(比例基本性质)
第三篇:比例线段教学反思
《比例线段》教学反思
本节课的教学有以下几个方面取得了十分好的效果:
首先,课堂内容的导入是本节课的一个亮点,从众多的线段、各种图形中找出比值相等的组成比例式,从而认识比例、熟悉比例的定义,使本节课有了一个良好的开端。
其次,在讲授比例的基本性质时,让学生运用基本性质进行变形,使学生对该性质有了一个深刻的认识。
最后,习题的设置充分体现了层次性,形式多样,有利于提高学生的学习兴趣,增强了趣味性。这些成功之处是与教师的正确引导、深入研究教材变化、分析学生分不开的,这也是我今后努力的方向。
这节课的不足之处是对于基础较差的学生没有给予充分的重视,忽视了他们的发展,这是以后应该注意的地方,研究教法、精选习题,注重因材施教,让学生全面发展,全面提高我班学生的数学素质。同时,对本节课的内容还应该与其他学科的知识联系一下,比如:本节课,我用到了黄金分割的内容,这里就可以和现实中的应用、美术等方面多加联系,而这节课联系的就不够好,这些方面都是我以后应加以改进的地方。研究教材无止境、研究教法无止境,在今后的教学工作中还要不断学习,提高自己运用新教材的能力。
第四篇:比例线段教学设计
3.6 比和比例(第三课时)
教学目标:
1.知识与技能:了解线段的比、成比例的线段的意义;能判断已知的线段是否成比例;了解连比的意义;会进行有关的计算.2.过程与方法:在线段的比、成比例线段的过程中,让学生体会“观察—比较—猜想”的方法分析问题.3.情感、态度与价值观:在交流合作中,体会生生交往与师生交往的乐趣;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣.教学重、难点:
重点:认识成比例的线段、连比.难点:比例线段的应用.教学过程:
一、导入新课 复习:(1)什么是比
(2)什么是比例
(3)比例的基本性质
你能用比的知识来解释,芭蕾舞演员跳舞时为什么要踮起脚尖吗?
过度:人的下半身长和身高的比值,也就是红色线段与黄色线段的长度之比是一个特殊值时,就给人以美的感受,这节课我们继续学习比和比例.板书:比和比例
二、探究新知 1.两条线段成比例
概念:在选用同一单位长度表示两条线段的的长度时,它们的量数的比,叫做这两条线段的比.板书:两条线段的比
活动1: 量出线段的长度,求两条线段的比
(1)选用cm为单位长度,用刻度尺分别量线段a 和b的长度,计算a : b.(2)选用mm为单位长度,用刻度尺分别量线段a 和b的长度,计算a : b.(3)由(1)(2)你发现两条线段的比与所选用的单位长度有关吗?
(4)小明同学也在计算线段的比,他是这样算的:c=2厘米,d=30毫米,c:d=2厘米:30毫米=1:15,他算的对吗?为什么
强调:两条线段的比与所选用的单位长度无关,但必须使用同一单位长度.2.成比例线段
概念:刚才求得这两条线段的比
a
:
b
=
c
:
d
那么这四条线段a、b、c、d叫做成比例线段,简称比例线段,a、c、b、d也是比例线段.两条线段的比是两个量的比,比例线段是四个量的比,比例的基本性质也适合于比例线段.板书:ad=bc
活动2:判断下列线段是否成比例:
(1)
a=2厘米,b=3厘米,c=4厘米,d=6厘米
(2)
a=2厘米,b=6厘米,c=3厘米,d=4厘米(多找几个同学说)
强调:判断四条线段是否成比例,要根据定义只要其中两条线段的比等于另外两条线段的比,四条线段就成比例 活动3:例5
3.连比
过度:刚才例题中求得线段的比
AD:DB=15:25=3:5 DB:AB=25:40=5:8 AD :DB :AB =3:5:8 这种形式叫做连比.活动4:已知x:y=2:3,y:z=4:7,求连比x:y:z.解:因为x:y=2:3=8:12 y:z=4:7=12:21 所以x:y:z=8:12:21.总结:把前一个比的后项和后一个比的前项化为相同的数,这个数一般是前一个比的后项和后一个比的前项的最小公倍数.活动5:例6 挑战自我:(1)如果a/2=b/3=c/4(a,b,c都不为),能得a:b:c=2:3:4吗?为什么?
(2)如果a:b:c=2:3:4,能得到a/2=b/3=c/4吗?为什么?(小组讨论)
三、课外延伸 调和数
我们数学上不仅发现了黄金比例、调和数的美,还有很多美的存在,希望同学们能用数学的眼光去探索世界,发现美.四、课堂练习
五、作业
板书: 3.6 比和比例
一、两条线段的比 两条线段长度的比
二、成比例线段
a
:
b
=
c
:
d
三、连比
AD :DB :AB =3:5:8
第五篇:《解比例》教案设计
《解比例》教案设计
教学目标、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点
用比例解决生产生活中的问题。
教学过程
【问题导学】
一、畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!
、交流汇报。
2、运用收获的知识解决问题:将2:80
80:2
5:200
200:5放在天平的两端,使它保持平衡,并说出理由。
3、将比例式子运用比例的基本性质改写成等积式。
0.5:5=0.2:2
0.5×2
=()×()
2/5:1/2=3/5:3/4
2/5×3/4=()×()
8:25=40:x
()×()=()×()
观察上面的三个式子,有什么不同?
引导学生解第三个方程,追问方程是怎样来的?
揭题,导入新知。
【自主探究】、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?
那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?
依据是什么呢?
同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!
2、试做:1.25:0.25=x:1.6
.5/2.5=x/6
与大屏幕比较,提出质疑。
怎样知道解是否正确呢?检验。
小结解比例的方法。
3、即时练习:32页做一做。
4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?
侦探柯南之神秘脚印:一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在案发现场发现了一枚犯罪嫌疑人留下的脚印,根据这枚脚印,柯南很快判断出了犯罪嫌疑人的身高,你们知道,他是怎样判断的吗?科学研究表明:人体身高与脚长的比大约是7:1,柯南在案发现场测得犯罪嫌疑人的脚印长25厘米,请你帮忙算一算:这个犯罪嫌疑人的身高约是多少?
学生解决,如果用比例知识来解,怎样解呢?
教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。
规范写法。
【巩固提升】、出示书35页例2.自己解决,小组交换检查。
2、育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?
【课堂小结】:这节课主要学习了什么内容?