构造比例线段证明线面平行

时间:2019-05-12 17:22:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《构造比例线段证明线面平行》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《构造比例线段证明线面平行》。

第一篇:构造比例线段证明线面平行

1、如图,在四棱锥PABCD中,PAPB,底面ABCD是菱形,且ABC=60°,点M是AB的中点,点E在棱PD上,满足DE=2PE,求证:

(1)平面PAB平面PMC(2)直线PB//平面EMC2、如图,ABD和BCD都是等边三角形,E、F、O分别是AD、BD、AC的中点,G是OC的中

D

点;(1)求证:BDFG;(2)求证:FG//平面BOE。

E

G

C A3、如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.求证:直线MN∥平面PBC;

4、正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.变式.如图,ABCD与ABEF是两个全等矩形,且不在同一平面内,点P、Q分别是对角线AE、BD上的点,当P,Q满足什么条件时,PQ∥平面CBE?说明理由。

F

P A D5、已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面G1G2G3∥平面ABC;(2)求S△G1G2G3∶S△ABC.8、(2009通州第四次调研)在正方体ABCD—A1B1C1D1中,E、F、G分别是AB、A1D1、C1D1的中点(如图)。

(1)求证:B1G⊥CF;(2)若P是A1B1上的一点,BP∥平面ECF,求A1P∶A1B1的值。

D1F A1 1

D

A

第二篇:构造平行四边形证明线面平行

1、已知线段PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点。(1)求证:MN//平面PAD;

(2)当∠PDA=45°时,求证:MN⊥平面PCD;

2、如图,正三棱柱ABC—A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=2.(I)求证:PA1⊥BC;

(II)求证:PB1//平面AC1D;

3、(本题满分14分)如图,平行四边形ABCD中,BDCD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,DF的交点.⑴求证: GH//平面CDE;⑵求证: BD平面CDE.4、如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,ABAE,FAFE,AEF45

(I)求证:EF平面BCE;

(II)设线段CD、AE的中点分别为P、M,求证: PM∥平面

BCE5、(本小题满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(I)求证:AF//平面BCE;(II)求证:平面BCE⊥平面CDE;

6、直棱柱ABCDA1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB2AD2CD2.

(Ⅰ)求证:AC⊥平面BB1C1C;(Ⅱ)在A1B1上是否存一点P,使得DP

与平面BCB1与平面ACB1都平行?证明你的结论. B1CD

B

D C

变题:求证:(1)A1B⊥B1D;(2)试在棱AB上确定一点E,使A1E∥平面ACD1,并说明理由.

7、如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PABC1AD.(1)求证:平面PAC⊥平面PCD;(2)在棱PD上是否存在一点E,使CE//平面PAB?

2若存在,请确定E点的位置;若不存在,请说明理由.8、已知直角梯形ABCD中, AB//CD,ABBC,AB1,BC2,CD1过A 作AECD,垂

足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.(1)求证:

BC面CDE;(2)求证:FG//面BCD;(Ⅲ)在线段AE上找一点R,使得面BDR面DCB,并说明理由.D D C G E A B 2F C

A B

第三篇:构造三角形中位线证明线面平行

1、(本题满分14分)如图,四棱锥P—ABCD中,四边形ABCD为矩形,平面PAD⊥平面ABCD,且E、O分别为PC、BD的中点.求证:(1)EO∥平面PAD;(2)平面PDC⊥平面PAD.E

2、如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB5,AA1=4,点D是AB的中点,(1)求证:

AC⊥BC1;(2)求证:AC 1//平面CDB1;

3、如图,已知四棱锥PABCD的底面ABCD是菱形, PA平面ABCD, 点F为PC的中点.(1)求证:PA//平面BDF;(2)求证:平面PAC平面BDF.P

F

D

B C4、已知矩形ABCD中,AB=2AD=4,E为 CD的中点,沿AE将AED折起,使DB=

O、H分别为AE、AB的中点.

(1)求证:直线OH//面BDE;

(2)求证:面ADE面ABCE.C

B5、如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?

C

1A1 B1

Q

C

A B6、如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.7、(本小题满分15分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

P(Ⅰ)求四棱锥P-ABCD的体积V;

(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;

(Ⅲ)求证CE∥平面PAB. E

F AD

B

C

第四篇:证明线面平行

证明线面平行

一,面外一条线与面内一条线平行,或两面有交线强调面外与面内

二,面外一直线上不同两点到面的距离相等,强调面外

三,证明线面无交点

四,反证法(线与面相交,再推翻)

五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面

线面平行

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。

【平面与直线平行的性质】

定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。

注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

第五篇:线面平行证明

线面平行证明“三板斧”

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面

内找到与已知直线的平行线。

例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

练习:

如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD

第二斧:以平面外的直线作平行四边形

D

例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC

1练习:

如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:

A1E//平面B1CF

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG

练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:

AC1//平面AB1D

B

C

总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。

1.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.P

E

C

A

B

3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;

AA

D

C

B1

C1

4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是

①②③④

6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.A

7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是

A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b

C.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()

A.不存在B.有1条C.有2条D.有无数条

10.如图所示:设P

上的点,AMDN且MBNP

11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.

(1)求证:PQ//平面DCC1D1(2)求PQ的长.

(3)求证:EF//平面BB1D1D.

下载构造比例线段证明线面平行word格式文档
下载构造比例线段证明线面平行.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面平行证明“三板斧”

    线面平行证明“三板斧”线面平行是高考的重点,也是平行关系中的核心。在证明线面平行的过程中,如何快速的找到证明的思路,此文的目的就在于此。将证明的过程程序化,可以帮助学生......

    线面平行证明经典练习题

    1、在底面为平行四边形的四棱锥P—ABCD中,点E是 PD的中点。 求证:PB//平面 AECEBD C2、在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点。 求证:MN//平面PADDB3、在三棱柱A......

    证明线面平行的方法

    证明线面平行的方法线面平行重点难点剖析线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行.本节复......

    线面平行证明的常用方法

    湖北民族学院学报(自然科学版)200812线面平行证明的常用方法摘要:立体几何在高考解答题中每年是必考内容,线面平行的证明经常出现,很多同学总觉得证明方法很多很繁,在这里给大家......

    线面平行教案

    §2.2.1 直线与平面平行的判定【教学目标】(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题; (2)进一步培养学生观察、发现的能力和空间想象能力; (3)让学生了解空间与......

    线面平行证明题

    线面平行证明题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是.A. 异面B. 相交C.平行D. 不能确定2.若直线a、b均平行于平面α,则a与b的关系......

    线面平行练习题

    线面平行练习题11. 三棱柱ABC—A1B1C1中,若D为BB1上一点, M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的中点.求证:PB......

    线线、线面平行垂直的证明

    空间线面、面面平行垂直的证明12.在正方体ABCD-A1B1C1D1中,E、 F分别为AB、BC的中点, (Ⅰ)求证:EF//面A1C1B。 (Ⅱ)B1D⊥面A1C1B。D'3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD......