第一篇:正切和余切教案设计
第一课时
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解 与 成倒数关系,熟记30、45、60角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
1.教学方法:运用类比法指导学生探索研究新知。
2.学生学法:运用类比法主动探索研究新知。
三、重点、难点、疑点及解决办法
1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值。
2.难点:了解的概念。
3.疑点:正切与余切概念的混淆.4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。
四、教具准备
投影机、投影片(自制)、三角板
五、教学步骤
(一)明确目标
1.什么是锐角 的正弦、余弦?(结合下图回答)。
2.互为余角的正弦值、余弦值有何关系?。
3.当角度在0~90变化时,锐角的正弦值、余弦值有何变化规律?
4.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习。
(二)整体感知
正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识。
(三)教学过程
1.引入正切、余切概念
①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?
因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测两直角边的比值一定是。
2.与 的关系
请学生观察 与 的表达式,得结论(或,)这个关系式既重要又易于掌握,必须让学生深刻理解,并与 区别开.3.锐角三角函数
由题,,,把锐角 的正弦、余弦、正切、余切都叫做 的锐角三角函数。
锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。
问:锐角三角函数能否为负数?
学生回答这个问题很容易。
4.特殊角的三角函数。
①教师出示幻灯片
请同学推算30、45、60角的正切、余切值
通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想。
0,90正切值与余切值可引导学生查表,学生完全能独立查出。
5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。
结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即,.练习:1)请学生回答 与 的值各是多少? 与 ? 与 呢?学生口答之后,还可以为程度较高的学生设置问题: 与 有何关系?为什么? 与 呢?
2)把下列正切或余切改写成余角的余切或正切:
(1);(2);(3);(4);(5);(6)。
6.例题
【例1】求下列各式的值:
(1);
(2).解:(1)
;
(2)
=2.练习1.求下列各式的值:
(1);
(2);
(3);
(4);
(5).2.填空:
(1)
(2)若,则锐角
(3)若,则锐角
学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。
(四)总结扩展
请学生小结:本节课了解了正切、余切的概念及 与 关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想.结合 及,可扩展为.六、布置作业
1.看教材P12~P14,培养学生看书习惯。
2.教材P16中习题6.2A组2、3、4、5、6.七、板书设计
第二课时
一、教学目标
1.巩固正、余切概念,学会用正、余切来解决问题.2.通过例题教学,培养学生分析问题、解决问题的能力;通过归纳、概括,培养学生逻辑思维能力。
3.培养学生独立思考、勇于创新的精神及良好的学习习惯。
二、学法引导
1.教学方法:指导探索研究法。
2.学生学法:主动探索研究法。
三、重点、难点、疑点及解决办法
1.重点:用正、余切解直角三角形。
2.难点:灵活运用正切、余切。
3.疑点:学生可能对正切、余切概念掌握不牢,导致出现 之类的错误,教学中应引起重视,使学生熟能生巧。
4.解决办法:通过教师精心引导,学生积极思维,主动研究发现,及练习巩固解决重难点及疑点。
四、教具准备
投影机(或电脑)、自制投影片(或课件)、三角板
五、教学步骤
(一)明确目标
结合图,说出什么是 的正切、余切?
请班级里较差学生回答,以检测其掌握情况.2.与 具有什么关系?
答:(或 或).3.互为余角的正切值与余切值具有什么关系?
答:,3.互为余角的正切值与余切值具有什么关系?
答:,4.在0~90间,正切、余切值随角度变化而变化的规律是什么?
通过以上四个问题,使学生对新学的知识有了系统的认识,便于应用.对概念的巩固最好的途径是配备练习题.因此,教师在引导学生复习有关概念后,应出示练习题(投影片).1.在 中,为直角,、、所对的边分别为。
①若,则,,②若,则
2.比较大小:
① ②
③ ④
3.计算题:
①;
②.(二)整体感知
本课安排在本小节末,运用本小节的知识去解决一个简单问题,再次为本章第二节解直角三角形做好准备.当然,这个问题只用上一小节学过的正弦、余弦也可以解决,不过那样做,就要先求出斜边,解的过程要繁琐一些。
(三)教学过程
1.讲授新课
【例】在 中,为直角,所对的边分别是,已知,求(保留两位有效数字).这个题是本大节知识的综合运用,考查知识点面面俱到,是检查全体学生是否全面达到教学目标 要求有效途径,教学中应引导学生全体参与,积极地探求各种解法,然后加以比较,优选出最佳方法,以培养学生思维的敏捷性、深刻性,形成良好的思维品质。
分析:本题已知 和,求,观察图不难发现,边 恰好是 的对边与邻邦边,因此求 可选用以下两个关系式:(1),(2).请学生比较一下,哪一个关系计算更简便呢?答:若选用,由此得,用 除以含四位有效数字的数,计算比较麻烦;而选用,由此得.用 乘以含四位有效数字的数,计算相对方便.解:,解完例题之后,应引导学生小结:本题显示了除法与乘法在一定条件下可以互相转化,其中条件是 与 互为倒数.认真分析和利用这种转化,有时可使计算简便.2.巩固练习
本节课实际上是对前面课的综合,通过对前面知识的综合运用,以培养学生的比较、分析、概括等逻辑思维能力.因此例题后应安排练习题如下:
在 中,为直角,、、所对的边分别为.(1)已知,求 和.(2)已知,求 和.(3)已知,求.(4)已知,求.(5)已知,求.(6)已知,求 和(保留两位有效数字).教法说明:给学生足够的时间,引导学生讨论、研究,筛选出最佳关系式使计算简便,既培养学生计算能力,巩固所学知识,又能培养学生的思维能力.[参考答案](1),;(2),;(3);(4);(5);(6),.3.对学有余力的学生,可引导其读教材P15想一想.使学生对正弦、余弦间的关系,正切、余切间的关系以及弦、切间的关系有所了解,保证知识的完整性,为高中三角函数的学习打下基础.教师板书
.(四)总结、扩展
引导学生总结:1.要认真分析直角三角形中的各边与角的三角函数关系.2.因为同一个角的可以互相转化,所以在选用关系时昼选择乘法使计算较简便.六、布置作业
1.看教材P1~P17,培养学生看书习惯。
2.教材P17习题A组7、8,学有余力的学生可选做B组题。
七、板书设计
第二篇:九年级数学下册《正切和余切》教案1 新人教版
《正切和余切》教案1
一、素质教育目标(一)知识教学点
使学生了解正切、余切的概念,能够正确地用tgA、ctgA表示直角三角形(其中一个锐角为∠A)中两边的比,了解tgA与ctgA成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力.(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值. 2.难点:了解正切和余切的概念.
三、教学步骤(一)明确目标
1.什么是锐角∠A的正弦、余弦?(结合图6-8回答).
2.填表
3.互为余角的正弦值、余弦值有何关系?
4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律? 5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值.那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其它一些三角函数,本节课我们学习正切和余切.
(二)整体感知.
正切、余切的概念,也是本章的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要.教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切.像这样,把概念、计算和应用分成两块,每块自成一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识.
(三)重点、难点的学习与目标完成过程 1.引入正切、余切概念
①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?
因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是正切和余切.”
②给出正切、余切概念如图6-10,在Rt△ABC中,把∠A的对边与邻边的比叫做∠A的正切,记作tgA.
并把∠A的邻边与对边的比叫做∠A的余切,记作ctgA,2.tgA与ctgA的关系 tgA·ctgA=1)这个关系式既重要又易于掌握,必须让学生深刻理解,并与tgA=ctg(90°-A)区别开. 3.锐角三角函数
弦、余弦、正切、余切都叫做∠A的锐角三角函数.
锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目. 问:锐角三角函数能否为负数? 学生回答这个问题很容易. 4.特殊角的三角函数. ①教师出示幻灯片
三角函数/0°/30°/45°/60°/90°
请同学推算30°、45°、60°角的正切、余切值.(如图6-11)
通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使 学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想. 0°,90°正切值与余切值可引导学生查“正切和余切表”,学生完全能独立 查出.
5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互 为余角的正切值与余切值的关系.
结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值.
即 tgA=ctg(90°-A),ctgA=tg(90°-A).
练习:1)请学生回答tg45°与ctg45°的值各是多少?tg60°与ctg30°?tg30°与ctg60°呢?学生口答之后,还可以为程度较高的学生设置问题:tg60°与ctg60°有何关系?为什么?tg30°与ctg30°呢?
2)把下列正切或余切改写成余角的余切或正切:
(1)tg52°;
(2)tg36°20′;
(3)tg75°17′;(4)ctg19°;
(5)ctg24°48′;
(6)ctg15°23′. 6.例题
例1 求下列各式的值:(1)2sin30°+3tg30°+ctg45°;(2)cos45°+tg60°·cos30°. 解:(1)2sin30°+3tg30°+ctg45°
2(2)cos45°+tg60°·cos30° 2
=2.
练习:求下列各式的值:
(1)sin30°-3tg30°+2cos30°+ctg90°;(2)2cos30°+tg60°-6ctg60°;(3)5ctg30°-2cos60°+2sin60°+tg0°;(4)cos45°+sin45°;
学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力.
(四)总结扩展
请学生小结:本节课了解了正切、余切的概念及tgA与ctgA关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想. 2
2四、布置作业
1.看教材P.20~P.22,培养学生看书习惯. 2.教材P.29中习题6.2A组2、3
第三篇:2018春《余弦和正切》(教学设计)
28.1 锐角三角函数 第2课时 余弦和正切
一、新课导入 1.课题导入
问题:在Rt△ABC中,当锐角A确定时,∠A的对边与斜边的比随之确定.∠A的邻边与斜边的比呢?∠A的对边与邻边的比呢?这节课我们学习余弦和正切.(板书课题)
2.学习目标
(1)了解锐角三角函数的概念,理解余弦、正切的概念.(2)能依据正弦、余弦、正切的定义进行相关的计算.3.学习重、难点
重点:余弦、正切的概念.难点:余弦、正切的求值.二、分层学习
1.自学指导
(1)自学内容:教材P64探究.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.(4)探究提纲:
①∠A是任一个确定的锐角时,形的大小无关,那么
A的对边是一个固定值, 与三角斜边A的邻边A的对边也是一个固定值吗?呢? 斜边A的邻边A的邻边叫做∠A的 余弦,斜边②在Rt△ABC 中,∠C=90°,记作 cosA,即cosA=.③在Rt△ABC 中,∠C=90°,tanA,即tanA=.④锐角A的正弦、余弦、正切都叫做∠A的 锐角三角函数.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:
①明了学情:明了学生是否能弄清正弦、余弦、正切分别表示直角三角形中哪两条边的比.②差异指导:结合图形理解三个三角函数的意义.(2)生助生:小组相互交流、研讨.4.强化:余弦、正切的求值.1.自学指导
(1)自学内容:教材P65例2.(2)自学时间:5分钟.(3)自学方法:完成自学参考提纲.abbcA的对边叫做∠A的 正切,记作
A的邻边
④在Rt△ABC 中,∠C=90°,如果各边边长都扩大到原来的2倍,那么∠A的正弦、余弦和正切值有变化吗?说明理由.∠A的正弦、余弦和正切值没有变化.理由:锐角三角函数值与三角形大小无关.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:
①明了学情:明了学生是否能弄清正弦、余弦、正切分别表示直角三角形中哪两条边的比.②差异指导:根据学情分类指导.(2)生助生:小组内相互交流、研讨.4.强化:
(1)已知直角三角形任意两边长,求其锐角的三角函数值问题:可先由勾股定理求出第三条边长,再按三角函数定义求值.(2)点3名学生板演自学参考提纲第②、③题,点1名学生口答自学参考提纲第④题,并点评.三、评价
1.学生自我评价:这节课你学到了哪些知识?还有什么问题未解决?
2.教师对学生的评价:
(1)表现性评价:从学生学习、交流协作以及回答问题等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的引入采用探究的形式.首先引导学生认知特殊角的余弦、正切,进而引出锐角三角函数的定义.通过作图、猜想论证,配合由浅入深的练习,使学生不但知道对任意给定锐角,它的余弦、正切值是固定值,而且加以论证并会运用.在教学过程中逐步培养学生观察、比较、分析、概括的思维能力,提高学生对几何图形美的认识,感受三角函数的实际应用价值.一、基础巩固(70分)
1.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则下列等式中不正确的是(D)A.a=c×sinA B.b=a×tanB C.b=c×sinB D.c=b cosB2.(10分)如图,将∠AOB放置在5×5的正方形网格中,则cos∠AOB的值是(C)(C)
3.(30分)分别求出下列各图中的∠A、∠B的余弦和正切值.4.(10分)在Rt△ABC中,∠C=90°,BC=5,cosA=tanB的值.解:sinA=512, tanB=.13512,求sinA, 135.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,sinB=.求cosD,tanD的值.35
二、综合应用(20分)
6.(10分)如图,在等腰△ABC中,AB=AC=5,BC=6.求sinB,cosB,tanB的值.解:作AD⊥BC于D.∵AB=AC=5,∴BD=DC=BC=3.∴在4512Rt△ABD3543中,AD=
AB2BD2 =4,∴sinB=,cosB=,tanB=.7.(10分)如图,点P在∠α的边OA上,且P点坐标为(,5).求sinα,cosα和tanα的值.解:sinα=5125,cosα=,tanα=.1313121
2三、拓展延伸(10分)
8.(10分)在Rt△ABC中,∠C=90°,请利用锐角三角函数的定义及勾股定理探索∠A的正弦、余弦之间的关系.
第四篇:2017两角和与差的正切教案
课题:探究两角和与差的正切 教学设计
课标分析
①理解以两角差的余弦公式导出的两角和与差的正弦、余弦、正切公式,了解它们的内在联系;
②能运用上述公式进行简单的恒等变换,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.
教材分析
本节课教学内容是高一(下)第四章4.6节第二课时(两角和与差的正切)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”,起着重要的承前启后的作用。
两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课题是在学习完两角和与差的正弦、余弦公式之后,是三角恒等变形重要组成部分,教材把两角和与差的正切公式从正弦、余弦中分离出来,单独作为一节,这对学生的自主探究学习提供了平台.因为前面学生已经学习了两角和与差的正弦、余弦公式,对其应用学生有了一定的理解,同时对于三角函数变形中,角的变换也有了一定的掌握,因此在本节课的教学中可以充分利用学生的知识迁移,更多地让学生自主学习,独立地推导两角和与差的正切公式,为学生提供进一步实践的机会.也可以说本节并不是什么新的内容,而是对前面所学知识的整合而已.在探究中让学生体验自身探索成功的喜悦感,培养学生的自信心,培养学生形成实事求是的科学态度和锲而不舍的钻研精神.对于公式成立的条件,可以在学生自主推导公式中通过观察、比较、分析、讨论,在掌握公式结构特征的基础上加以讨论解决.在学习两角和与差的正切公式中,要注意公式形式上的特点,引导学生欣赏其结构、变形之美.本节作为两角和与差的三角函数的最后一节内容,教学时可以将两角和与差的三角函数公式作一个小结,从分析公式的推导过程入手,探究问题解决的来龙去脉,揭示它们的逻辑关系,使学生更好地用分析的方法寻求解题思路.学情分析
本节课面对的是高一年级学生,他们的数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。在学习本节课之前,学生已经学习了任意角三角函数的概念、同角三角函数的基本关系式、诱导公式,两角和差的正余弦公式等相关知识,这为他们探究两角和的正弦公式建立了良好的知识基础。
本节课教学时可以通过对两角和与差的三角函数做一个小结,从分析公式的推导过程入手,探究问题的解决的来龙去脉,揭示三角很
等变形的本质,使学生更好地利用分析的方法寻求解决问题的思路,我认为这节课的学习尽可能充分的发生学生的主观能动性。
二、教学重点、难点
两角和与差的正切公式推导及其运用,公式的逆用。
三、课时安排 1课时
四、教学流程
1、复习回顾:
cos()coscossinsin C cos()coscossinsin C sin()sincoscossin S sin()sincoscossin S
可用多种形式让学生回顾(提问,默写,填空等形式)
2、讲解新课: 在两角和与差的正弦,余弦公式的基础上,你能用tan,tan表示出tan()和tan()吗?
如tan15tan(4530),它的值能否用tan45,tan30去计算?
(让学生带着问题展开后面的讨论)
探究一 公式推导及成立条件
利用所学的两角和与差的正弦,余弦公式,对比分析公式CCSS,, )和tan()? 能否推导出tan(其中,应该满足什么条件?(让同学们带着问题展开后面的讨论)
交流、展示 当cos()0时,tan()sin()sincoscossincos()coscossinsin
若coscos0,即cos0且cos时,分子分母同除以coscos
tan()tantan1tantan 得根据角,的任意性,在上面的式子中,用代替,则有
tan()tantan()tantan1tantan()1tantan
由此推得两角和与差的正切公式。简记为“tan()T,T”
tantantantantan()1tantan 1tantan
其中,应该满足什么条件?还依然是任意角吗?
kk由推导过程可以知道:
2(kZ)(kZ)2k2(kZ)
)都有意义。这样才能保证tan,tan及tan(探究二 公式结构特征 分析观察公式T,T的结构特征与正、余弦公式有什么不同?
1)3,(1)求tan(13,3、例题讲解 例1 已知tan2,tan 解: 因为tan2,tan
1tantan37tan()21tantan13所以
2(考察公式正用,关键根据公式的结构特征记准)
2、计算
tan23tan22①1tan23tan22
1tan75②1tan75
分析:①解决本题的关键在于将算式与正切联系起来,逆向应用公式Tα+β
②应能把分子1-tan75°看作为tan45°-tan75°,而把分母1+tan75°
tan45tan75看作为1+tan45°·tan75°,于是原式便可化作1tan45tan75,逆向应用公式,问题便迎刃而解。
解: ①原式=tan(23°+ tan22°)=tan45°=1 tan45tan75②原式=1tan45tan75
=tan(45°-75°)=tan(-30°)33
21tan()tan()5,44,求4 =(备用例题)
1、若tan()解 因为()(4,所以)
tan(4)tan[()(4)]tan()tan()41tan()tan()42154211543222、设,(
,),tan,tan是一元二次方程x233x40的两个根,求22
4、课堂小结
(1)两角和与差的正切公式推导及其运用。(2)六个三角和差公式的逻辑关系。
5、作业
课本习题3-1 A组6、7 效果分析
本课教学应用多媒体教学和学案教学, 有效地增大堂课的课容量,减轻板书的工作量,有更多精力讲深讲透所举例子,提高讲解效率;直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。
本课教学中以讲练结合为主,同时配合使用问题探究式,讨论交流展示、导思点拨等教学方法。极大的提高了学习的主动性和有效性。课堂上还将采用多媒体展示、学生独立回答和集体回答、学生
板演等多种手段,激发学生的学习兴趣,提高课堂复习效率。当然,在学生回答之后,老师要及时给学生一个鼓励性的评价,以增强学生回答的信心,使课堂始终保持一种热烈、积极、主动的学习气氛.本节课的宗旨是着眼于学生的发展。对学生在课堂上的表现,及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。充分发挥学生主体作用,调动学生的学习积极性.学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人.观评记录
课题:两角和与差的正切 主讲人:临朐一中
刘金艳 时间:2015年3月23日星期一
一、自评
本节课课标要求理解以两角差的余弦公式导出的两角和与差的正弦、余弦、正切公式,了解它们的内在联系;并能运用上述公式进行简单的恒等变换.课本内容只有两个公式和两道例题,课后配了少量习题。但这部分内容在高考中有较高的要求,特别对公式的灵活运用考查力度比较大,另外,本节课的学习对后续两角和、差、倍、半角等公式的学习有很大的帮助。我在课堂设计时充分考虑学生的认
知特点,从公式推到、公式变形、习题设置等环节,都是层层递进,由易到难逐步深入。在公式变形时,让学生充分发挥自己的想象力,大胆说出自己的想法,我只是做了必要的启发和引导,学生表现不错。上课前根据学生的认知特点,给了学生充分的展示空间和时间,事实证明这样的调整比较到位。在学生的思维处于兴奋状态时,千万不要扼杀他们的兴趣。我的想法是,学习数学不一定要做多少道题,而是要在做题和思考的过程中不断优化自己的思维品质,提升自己的解题能力,丰富自己的解题经验。
由于课堂时间只有四十分钟,所以感觉时间特别紧,还有几类题型没有涉及到,比较遗憾。通过学生作业反馈,大部分同学掌握比较好,有三位同学两道题没记牢公式,导致计算错误。一节课难免会出现不尽人意的地方,希望各位老师给与批评指正。谢谢!
二、评课 维度一:课程 教学观察人:连瑞成
观察内容:课程中的课程目标与内容 观察总结:
本节课的教学内容为:①会由两角和与差的正弦、余弦公式推导其正切公式,并运用其解决简单的化简问题。②通过公式的推导,提高学生恒等变形能力和逻辑推理能力; 通过公式的灵活运用,培养学生的数学思想方法.本节课是学生在学习了课题是在学习完两角和与差的正弦、余
弦公式之后,的基础上,通过复习两角和与差的正弦、余弦公式及同角三角函数的基本关系的一节课,它即是对和差角的深层认识,更是后期学习三角函数化简及计算等问题的基础与铺垫,因此,不论是内容本身,还是学习方法,都将对今后学生的学习起到重要的基础作用。因此,结合课程标准要求和学生的实际情况,确定的本节课的教学目标是:通过本节课的学习,学生应明确如何由两角和与差的正弦、余弦公式推导其正切公式,并运用其解决简单的化简问题;使学生养成探究、分析的学习习惯,提高三角恒等变形的能力,树立转化与化归的数学思想方法;本节课的主要内容就是两个公式的推导与应用,重点也在于此。
教学预设方面:由于高一(9)班学生的程度相对好,结合课程标准,本节课教师预设的教学内容多,题量大,题型多。
内容的展示上:教师紧扣定义,按照一切从实际出发的原则,通过对基本关系的推导,注重了学生对基本概念学习的良好习惯。教师对问题进行了归纳,分为3个题型,减轻了学生学习的负担,符合学生认知层次,体现了一切从学生实际出发的教学原则。同时,教师在教学过程中也很好地展示了因材施教的教学原则但是在教学过程中,为了让学生能充分地展示学生的思维形成过程与思维的多样性,教学效果好。
课堂观察记录人:李爱玲 指标1:方法
预设的教学方法:本节课是发现结论并活用公式一节课,教学
前预设了启发式、发现法、探究式等方法,基本达到了预设的结果。依据是本节课首先是由图形进一步启发学生研究正、余弦函数,让学生从图形中发现结论,接着在公式的变形中采用探究式,引导学生一边观察,一边同伴合作。即前一个同学对公式的变形发散了其他同学的思维,为后面活用公式解题作铺垫,在探究例4时,由于前面的铺垫,以及题目的条件和式子的结构变换,使得同学应用公式解题方法灵活,同时提高了解题能力,思维更加敏捷,达到了活用的目的。(这是本节课的重、难点,同时也是最精彩的一部分)
预设的教学方法体现本学科的特点:本节课的设计注重了数形结合、化归思想、分类讨论的思想 指标2:资源
本节课预设了多媒体课件及相关练习题。
预设多媒体的出发点在于:多媒体的应用不仅节约时间,容量大,更主要的在于能够通过多媒体的动态演示,使学生容易发现图形中蕴含的更多内容,从而比较容易总结出公式,另一方面,也能够提高学生学习的兴趣和学习积极性。相关练习的设计从易到难,有梯度,有层次,不仅能够检验学生的认知情况,也能为学有余力的学生提供了学习的方向,效果好。
课后反思
两角和与差的正切公式是两角和与差公式的最后一节,所以本节
教案的设计目的既是两角和与差正弦余弦公式的继续,也是两角和差正弦余弦公式的复习巩固。之前我在新旧教材中都讲过这个内容,在这次评优活动中,我又对这一内容进行了设计,重新备课。就之前与之后的教学,我进行了反思。
一、反思教学理念:
新课程理念的灵魂是三个教学目标的整合,关注学生的发展。知识可以通过传授获得,技能可以通过训练掌握。态度和情感价值观需要学生参与获得。这样,课堂教学中,应该本着以学生为主体的原则,让学生充分发挥自己的学习智能,由学生唱好本节的主角.在设计习题上,也是先让学生审题、独立思考、合作探究解法,然后展示,教师在其中只进行必要的点评.重在理清思路,纠正错误,点拨解法,拓展思路,通过训练再进行方法提升,开拓题型.总之,本设计的主旨思想是把本节的学习过程当作提升学生思维、运算能力的极佳载体.二、反思教学过程
一)引课:因为前面学生已经学习了两角和与差的正弦、余弦公式,所以今天学习两角和与差的正切公式学生不会感到突然,因而开门见山的引课方式是比较好的;
二)两角和与差的正切公式的探究过程:因为前面我们推出了公式Cα-β、Cα+β、Sα+β、Sα-β, 所以可以完全让学生自己进行推导Tα-β、Tα+β,教师只是适时地点拨就行了.通过前面的学习学生自然会想到利用同角三角函数关系式化切为弦,通过除以cosαcosβ即可得到,在这一过程中学生很可能想不到讨论cosαcosβ等于零的情况,这时教师不
要直接提醒,让学生通过观察验证自己悟出来才有好效果
三)两角和与差的正切公式的简单应用。除了仿照课本上的例题、习题改编的试一试外,我还补充了合作探究、课堂练习、及课后作业,针对性较强。其中,合作探究是很重要的环节两角和与差的正切公式的变形式在化简求值中经常用到,使解题过程大大简化,同时也体现了数学的简洁美及数学公式的魅力。但课本并没有提及这方面例题,所以让学生探究正切公式的变形使用有助于加深学生对这部分知识的掌握,调动学生的学习积极性.
第五篇:正切函数教案
函数y=Asin(wx+φ)的图象作法 §1.4.2正弦函数余弦函数的性质教案
吴平原
【教材分析】
《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。【教学目标】
1.会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦的值域来求函数和函数 的值域
2.在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.
3.在解决问题的过程中,体验克服困难取得成功的喜悦.
【教学重点难点】
教学重点:正弦函数和余弦函数的性质。
教学难点:应用正、余弦的定义域、值域来求含有的函数的值域
【学情分析】
知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。
心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生考虑问题不深入,往往会造成错误的结果。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】
1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。【课时安排】1课时 【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复习导入、展示目标。
(一)问题情境 复习:如何作出正弦函数、余弦函数的图象?
生:描点法(几何法、五点法),图象变换法。并要求学生回忆哪五个关键点 引入:研究一个函数的性质从哪几个方面考虑? 生:定义域、值域、单调性、周期性、对称性等 提出本节课学习目标——定义域与值域
(二)探索研究
给出正弦、余弦函数的图象,让学生观察,并思考下列问题:
1.定义域
正弦函数、余弦函数的定义域都是实数集(或).2.值域(1)值域
因为正弦线、余弦线的长度不大于单位圆的半径的长度, 所以 , 即
也就是说,正弦函数、余弦函数的值域都是.(2)最值 正弦函数
①当且仅当时,取得最大值 ②当且仅当时,取得最小值 余弦函数
①当且仅当时,取得最大值 ②当且仅当时,取得最小值 3.周期性 由知: 正弦函数值、余弦函数值是按照一定规律不断重复地取得的.定义:对于函数 ,如果存在一个非零常数 ,使得当取定义域内的每一个值时, 都有 ,那么函数就叫做周期函数,非零常数叫做这个函数的周期.由此可知,都是这两个函数的周期.对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,都是它的周期,最小正周期是.4.奇偶性 由
可知:()为奇函数,其图象关于原点对称()为偶函数,其图象关于轴对称 5.对称性 正弦函数的对称中心是 , 对称轴是直线;余弦函数的对称中心是 , 对称轴是直线
(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴(中轴线)的交点).6.单调性
从的图象上可看出: 当时,曲线逐渐上升,的值由增大到 当时,曲线逐渐下降,的值由减小到 结合上述周期性可知: 正弦函数在每一个闭区间上都是增函数,其值从增大到;在每一个闭区间上都是减函数,其值从减小到.余弦函数在每一个闭区间上都是增函数,其值从增加到;余弦函数在每一个闭区间上都是减函数,其值从减小到.三、例题分析
例
1、求函数y=sin(2x+)的单调增区间.
解析:求函数的单调增区间时,应把三角函数符号后面的角看成一个整体,采用换元的方法,化归到正、余弦函数的单调性.
解:令z=2x+,函数y=sinz的单调增区间为[,]. 由 ≤2x+≤得
≤x≤
故函数y=sinz的单调增区间为 [,](k∈Z)点评:“整体思想”解题
变式训练1.求函数y=sin(-2x+)的单调增区间
解:令z=-2x+,函数y=sinz的单调减区间为[,] 故函数sin(-2x+)的单调增区间为[,](k∈Z).
例2:判断函数的奇偶性
解析:判断函数的奇偶性,首先要看定义域是否关于原点对称,然后再看与的关系,对(1)用诱导公式化简后,更便于判断.
解:∵ =,∴
所以函数为偶函数.
点评:判断函数的奇偶性时,判断“定义域是否关于原点对称”是必须的步骤. 变式训练2.)解:函数的定义域为R,=
=== 所以函数)为奇函数.
00例3.比较sin250、sin260的大小
解析:通过诱导公式把角度化为同一单调区间,利用正弦函数单调性比较大小 解:∵y=sinx在[,](k∈Z),上是单调减函数,0000
又
250<260 ∴ sin250>sin260
点评:比较同名的三角函数值的大小,找到单 调区间,运用单调性即可,若比较复杂,先化间;比较不同名的三角函数值的大小,应先化为同名的三角函数值,再进行比较. 变式训练3.cos 解:cos 由学生分析,得到结论,其他学生帮助补充、纠正完成。
五、反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。课堂小结:
1、数学知识:正、余弦函数的图象性质,并会运用性质解决有关问题
2、数学思想方法:数形结合、整体思想。
七、板书设计
正弦函数和余弦函数的性质
一、正弦函数的性质
例1
二、余弦函数的性质
例2 定义域、值域、单调、奇偶、周期对称
例3
八、教学反思
(1)根据学生学习知识的发展过程,在推导性质的过程中让学生自己先独思考,然后小组交流,再来纠正学生错误结论,充分体现了学生的主体性,让学生活起来。
(2)关注学生的表达,表现,学生的情感需求,课堂明显就活跃,学生的积极性完全被调动起来,很多学生想表达自己的想法。这对这些学生的后续学习的积极性是非常有帮助的。(3)判断题、例题的选择都是根据我们以往对学生的了解而设置的,帮助学生辨析,缩短认识这些知识的时间,减少再出现类似错误的人数,在学生学习困惑时给与帮助。