第一篇:解一元一次方程优秀教案设计
一、教学目标
①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.
②学会合并(同类项),会解“ax+bx=c”类型的一元一次方程.
③能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.
④初步体会一元一次方程的应用价值,感受数学文化.二、教学难点
重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.三、教学过程
(一)设置情境,提出问题
(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
出示教科书76页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。前年这个学校购买了多少台计算机?
(二)探索分析,解决问题
引导学生回忆:
实际问题——设未知数列方程——一元一次方程
设问1:如何列方程?分哪些步骤?
师生讨论分析:
① 设未知数:前年购买计算机x台
② 找相等关系:前年购买量+去年购买量+今年购买量=140台
③ 列方程:x+2x+4x=140
设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:
根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x.老师板演解方程过程:
x+2x+4x=140
合并同类项,得
7x=140
系数化为1,得
x=20
设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?
学生讨论、回答,师生共同整理:
“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。
(三)例题讲解
例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3.解:合并同类项,得
6x=-78.系数化为1,得
x=-13.(四)课堂练习
教科书第89页练习
(五)拓广探索比较分析
对于问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x台,得方程
x÷2+x+2x=140
若设今年购买计算机x台,得方程
x÷4+x÷2+x=140
(六)综合应用巩固提高
一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?
学生思考、讨论出多种解法,师生共同讲评。
(七)课堂小结
提问:
1、你今天学习的解方程有哪些步骤,每一步依据是什么?
2、今天讨论的问题中的相等关系有何共同特点?
学生思考后回答、整理:
① 解方程的步骤及依据分别是:合并和系数化为1.② 总量=各部分量的和
(八)课后作业
教科书第93页习题3.2中1、3①②、4、6.
第二篇:解一元一次方程教案
解一元一次方程
(二)——去括号与分母
一、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
二、教学重难点:
重点:去分母解方程。
难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
三、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
四、教学过程:
1、创设情境,提出问题
问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。问题2:解方程5(x-2)=8 解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知(1)情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.问题3:怎样使这个方程向x=a的形式转化呢? 6x+6(x-2000)=150000 去括号
6x+6x-12000=150000 移项
6x+6x=150000+12000 合并同类项 12x=162000 系数化为1 x=13500 问题4:本题还有其他列方程的方法吗? 用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解决)
归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:3x—7(x—1)=3—2(x+3)。解:去括号,得3x—7x+7=3—2x—6 移项,得3x—7x+2x=3—6—7 合并同类项,得—2x=—10 系数化为1,得x=5
3、变式训练,熟练技能(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)2(x+1)+3(x+2)-3=-4(x+3).(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展(1)本节课你学习了什么?(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么? 可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。②主要用到的思想方法是转化思想。
③注意的问题:括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:课本第98页习题3.3第1、2题。(2)选做题:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
五、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
六、板书设计
解方程
3x—7(x—1)=3—2(x+3)。
解:去括号得,3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7 合并同类项,得—2x=—10 系数化为1,得x =5
第三篇:解一元一次方程教案
解一元一次方程(去括号)教学设计
一、本节课的主要内容:
解含有括号的一元一次方程以及运用一元一次方程模型解决实际问题.本节课是在学生会用移项、合并同类项解简单的一元一次方程的基础上,进一步学习利用去括号化简一元一次方程,去括号是今后学习化简代数式、分解因式、配方法等知识的重要环节.二、学习目标:
1.探索含有括号的一元一次方程的解法,掌握解一元一次方程的一般步骤,并体会解方程中的化归思想.2.根据具体问题中的数量关系,列出方程,将实际问题转化为数学问题;
3.增强数学的应用意识,激发学习数学的热情.三、重难点
重点:建立一元一次方程模型以及解含有括号的一元一次方程.难点:如何正确地去括号以及实际问题中的相等关系的寻找和确定.四、教学过程
(一)、复习导入
运用所学知识解下列方程:(1)3X+5=4X+1(2)9-3y=5y+5(学生独立完成后,师生共同交流复习学过的知识)
(二)、探索新知 例
1、解下列方程
(1)3X-7(X-1)=3-2(X+3)(2)2X-(X+10)=5X +2(X-1)思考:怎样解这两个方程,这两个方程与方程 3X+5=4X+1 9-3y=5y+5 有什么不同?
(教师引导学生解决问题的方法,即县去括号,再向X=a形式的方程化归,师生共同回忆去括号的方法)解:3X-7(X-1)=3-2(X+3)3X-7X+7 =3-2X-6 3X-7X+2X=3-6-7-2X=-10 X=5
(三)、练习巩固
教材第95页练习(1)、(2)
(四)、实际应用
问题1:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15 万 kW·h.这个工厂去年上半年每月平均用电是多少?(学生讨论交流解决,然后口述,教师板书)
(五)、小结与作业
小结:本节课你有哪些收获? 作业:习题3.3 第1题、(3)(4)第2题、(3)(4)第8题
(六)、板书设计
解一元一次方程
——去括号
方程中有带括号的式子时,要先去括号化简。即:去括号
移项
合并同类项
系数化为1
第四篇:解一元一次方程教案
解一元一次方程(2)
------------去分母
教学内容:课本第99至第101页。
知识与技能目标:使学生掌握去分母解方程的方法,总结解方程的步骤。
过程与方法目标:经历去分母解方程的过程,体会把复杂转化为简单,把新转化为旧的转化思想。
情感目标:关注学生解方程中的表现,发展学生积极思考的学习态度,进一步认识生活与数学的关系。
教学重点:掌握去分母解方程的方法。
教学难点:求各分母的最小公倍数,以及去分母时,有时要添括号。
教学关键:正确利用等式性质,把方程去分母。
教学方法:自学--------辅学----------导学
教学过程:
一 看一看,说一说
看课本图知:33,.试问这个数是多少?
二 自学
三辅学
解:设这个数为x .由题意,得 2x1 x 1xx 3332742(2x1x1xx)3342
去分母,得28x+21x+6x+42x=1386
合并,得97x=1386.x 1386
答:这个数是 x1386
四导学(做一做,说一说)
3x13x22x
22103
小结
作业:课本:
P102习题3.3第3、14题
教学反思:
第五篇:解一元一次方程教案
解一元一次方程—合并同类项教案
执教人:王杰
执教时间:十月四日
教学目标: 知识与技能:学会合并同类项,会解“ax+bx=c”类型的一元一次方程.过程与方法:能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.情感态度与价值观:经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.教学重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程: 复习回顾 提问导入
(1)怎样将一个实际问题转化为方程问题?(2)列方程的依据是什么?
引导学生回忆并总结用一元一次方程解决实际问题的一般步骤(3)等式的基本性质。
一、设置情境,提出问题
(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?
二、探索分析,解决问题
师生根据用方程解决实际问题的一般步骤讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:(问题1)
前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.问题2:你还能利用不同的设法列出方程吗?
以方程:x+2x+4x=140.为例,怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考: 根据分配律,可以把含 x的项合并,即 x+2x+4x=(1+2+4)x=7x 老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.学生讨论回答,师生共同整理:每一步的根据是什么?
三、例题规范,巩固新知
教师进行典例讲解(1)2x-5x=6-82(2)7x-2.5x+3x-1.5x=-154-63.四、小组讨论,错题质疑
学生利用小组讨论找出题中错误,并改正。学生在找错的同时加深印象,加强团队合作能力,避免犯同样的错误。
五、综合应用,巩固提高
1、解下列方程
x3x(1)5x-2x=9
(2)2 +2 =7
(3)7x-4.5x=2.5×3-5
2、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?
六、课时总结
2.1.今天学习的解方程有哪些步骤? 怎样利用方程解决实际问题?
3. 各部分量的和=总量
七、布置作业