第一篇:火力发电厂的输煤系统和含煤废水处理的管理方式论文
摘要:国内大多数火力发电厂的输煤系统的清扫管理方式可分以下三种:全系统采用水力清扫,全系统采用水力清扫加真空气力清扫,全系统采用真空气力清扫加人工清扫。国内多个大、中型火力发电厂的调查情况表明:70%以上的电厂推荐水力清扫,20%以上的电厂推荐水力与真空清扫相结合,只有少部分电厂推荐采用真空气力清扫加人工清扫,从本人十多年的发电厂的输煤系统清扫实践来看,虽然出真空气力清扫有避免防尘二次污染的优点,但相比之下,水力清扫的管理方式更方便便捷、清扫效率高、对清扫人员要求低,所以还是深受火力发电厂的欢迎,还是目前电厂输煤系统煤尘清扫的主流方式。所以本文对火力发电厂的输煤系统和含煤废水处理从理论和实践相结合的角度来阐述其管理方式选择。
关键词:火力发电厂;输煤系统;废水处理;管理方式
燃煤火力发电厂是那些最早使用工业真空清理系统的用户,最初的系统是采用风机作为动力,用来清理煤粉尘从而减少火灾危害,目前越来越多的火电厂使用定容罗茨真空泵作为动力设备,一般在电厂输煤区域,使用吸尘车并配合管网的,用来清理输送机、输煤廊道、转运站、碎煤机、取样间、卸料输送机等工作场所,移动式吸尘车是比较理想的选择,这是因为,传送带通常超过1英里(1.6KM)长,单一的固定式设备是不现实的,并且多个固定式的价格也非常昂贵。
水力清扫管理系统是指在输煤系统的各转运塔、栈桥、碎煤机室、煤仓间等处设置单独的冲洗母管,并每隔20米左右引出一路支管并接好冲洗器,一般水力清扫水压力要达到0.7MPa左右清扫效果最佳,当系统中的各转运站和栈桥需要清扫时,使用冲洗器对积尘部位进行水冲洗,各转运站均设有积水坑,冲洗水汇入积水坑后,再用污水泵打入煤泥沉淀池,此外,为便于水冲洗,还需对相关的输煤土建结构进行改善,如:楼板和栈桥面的防渗漏,栈桥与转运站接口处的过水措施,楼面空洞四周的护沿和挡水槛设置,地面排水坡度的调整,排水沟道的疏通,墙面的防水处理(贴瓷砖或耐水油漆)等等。
火电厂运煤建筑物地面的水力清扫是目前大多数电厂所普遍采用的除尘方式。此种管理和运行方式与真空气力相比清扫,简单易行,清扫彻底,但是由此产生的含煤废水的一系列问题,这种废水是电厂经常性排放污水中水质条件最差的,由于悬浮物粒径小甚至呈胶体状态,难于处理,又必须处理,在有条件时,可考虑将含煤废水经沉淀处理即排至灰渣泵房前池,送至贮灰场补充除灰水间接起到重复利用的作用,节省处理的投资及运行费用,据试验及实测,动态沉淀池的出水悬浮物可达1000MG/L以上,静止沉淀池的上清水悬浮物可在700MG/L~800MG/L以下,对于拟排放的含煤废水,经初沉、混凝沉淀可望达到排放标准,沉淀池的设置以静止沉淀为宜,静止沉淀池沉淀时间长,容积的利用率高,去除率无疑较平流沉淀池要高,一般常规电厂每次冲洗水量为150T/次,若采用平流沉淀池按流量150T/H计,有效容积亦在150立方左右,排除上清水时应特别注意对沉积煤的搅动避免将沉淀煤泥带走,如何将煤泥移至煤场,有各种方式,各行业应用较多的为抓斗,亦有推土机、刮泥机、泥渣泵,采用何种方式应慎重,应采用简便易行的方式,几个电厂设计曾采用刮泥机配合泥渣泵,因管理不善等原因已拆除,煤泥在沉淀池的沉积厚度不宜过大,超过2米底部即可能板结,特别是含水率低时,抓斗亦难以施展。既应保持一定含水量,又不能沉积太厚。含煤废水进行二级过滤处理,一般处理流量较小,若采用一体化净水器既节约占地,又可以方便操作,电厂含煤废水的产生主要是由于煤场喷淋防尘产生的渗漏水和输煤栈桥冲洗产生的冲洗废水,其废水的主要特点都是浊度、色度都比较高,导致浊度和色度的大幅度升高的主要原因是废水中的高浓度的悬浮物,在含煤废水的处理系统中,处理工艺选择的关键将针对其主要污染因子悬浮物和色度的去除进行设计,设计的处理工艺将保证对悬浮物具有稳定的、很高的去除效率,保证出水水质达到浊度≤10NTU的要求,燃料系统冲洗废水中,颗粒物的比重一般为2.3g/cm3,含煤废水经过预沉池的预沉淀后,大颗粒的煤粉颗粒物均能沉淀下来,剩余的煤粉颗粒悬浮物其颗粒的直径都在50微米以下,根据燃料品种、来源不同、含煤废水的水量变化以及预沉池的沉淀效果不同,一般电厂含煤废水初沉后的悬浮物浓度在2000-5000mg/l,根据物理、化学处理的原理,将直流混凝、离心分离、重力分离、动态过滤、污泥浓缩等处理技术有机地组合集成在一体,使污水的多项净化功能在同一个反应器内快速完成,代替了传统混凝沉淀加过滤工艺的反应池、沉淀池、浓缩池、搅拌机、刮泥机、过滤器等设备,减少了占地面积,且净水水质远远优于传统处理工艺出水水质。设备采用旋流离心分离技术,悬浮物的动态过滤新技术,使滤料不易堵塞,吸附的悬浮物微粒易脱落,因此反冲洗的周期长,一般1~1.5个月左右才反冲洗一次,而且反冲洗的运行实现自动控制,另外滤料使用寿命长,无需更换,净化装置底部的污泥浓缩区在离心力和重力的作用下,污泥得以沉淀浓缩,污泥浓度高,含水率相对较低(90-94%),排泥实现自动定时排放。净化装置的设备本身基本不需要维护和保养,设备运行安全,基本在常压状态下运行。
但是实际上由于生产一体化净水器的厂家很多,质量难以保证,内部结构不尽合理、管理不规范,特别是运煤系统运行管理水平低下,往往难以奏效。因此,选用综合净水器应遵循管理技术成熟便于操作管理原则。目前,含煤废水的处理流程型式较多,除采用一体化净水器外,还有利用微孔陶瓷滤板进行机械过滤、加药混凝利用膜式过滤器直接过滤等处理方式。这些方式在处理效果、运行管理的难易程度和运行成本、初期投资等方面均有差异,设计时需结合工程具体情况,通过技术经济比较后综合考虑确定。
气浮处理法就是向废水中通人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水的目的,气浮系统中核心的装备有三个部分:溶气装置、释气装置和分离装置,溶气装置的功能是将空气快速溶解于水中,释气装置的功能是将溶解于水中的空气转变为微细气泡(直径20-30微米),分离装置的功能是将和气泡结合上浮的浮渣和净化后的水分别排出净化装置。气浮对泥沙浊度的去除去有很好的效果,通常可以将浊度控制在≤10NTU,经一级气浮出水悬浮物可在10MG/L~20MG/L既可以满足排放标准,又可以满足回用除尘的要求,气浮对于含煤水的处理经实践证明是非常适宜的,这种运行和管理方式在实践中非常奏效。
第二篇:火力发电厂输煤程控系统抗干扰措施
火力发电厂输煤程控系统抗干扰措施
【摘要】本文结合我公司输煤程控应用情况,分析了输煤程控在实际应用中存在的各种干扰因素及针对各种干扰因素采取的防范措施。指出造成输煤程控信号干扰的重要原因为PLC外部干扰,同时从硬件和软件两方面提出了对外部设备抗干扰的措施。【关键词】输煤程控
PLC
抗干扰措施
1、前言
大型火力发电厂,特别是建厂较早的火电厂,需用燃煤量大、上煤任务繁重,现场环境恶劣,运行岗位设置定员多,工作效率低。随着国民经济的不断发展和对电力生产需求量的不断提高,大机组不断投入运行,落后的生产方式已越来越难以适应现代化电力生产的需要。应用目前国内、国际先进的程控技术,提高输煤系统自动化水平,对于电厂安全经济运行,改善工作环镜,提高劳动生产率,减人增效,具有重大意义。
作为应用于工业控制的一种自动装置,PLC本身具有一定抗干扰能力,比较适应工业现场环境。尽管如此,但由于火电厂输煤系统运行条件恶劣,各类干扰信号较多,尤其是电磁场的大量存在,使得抗干扰问题成为输煤程控设计、调试及运行中的一大难题。许多电厂输煤程控系统不能长期稳定运行,抗干扰能力差是其最主要的原因。
一般来说,PLC系统故障可分为内部故障和外部故障两大类。内部故障指PLC本身的故障,外部故障指系统与实际控制过程相关连的传感器、检测开关、执行机构等部分的故障。从我公司输煤程控系统缺陷来看,PLC自身故障未发生过,这说明PLC自身的可靠性远远高于外部设备,提高输煤程控系统可靠性的重点应该放在外部设备方面。因此在实际应用中我们从硬件和软件两方面考虑,对外部设备综合运用以下几种抗干扰措施,在实际生产运行中收到了良好效果。2、抗干扰措施分析
(一)硬件措施 1.采用信号继电器隔离
目前在火电厂输煤程控系统中,现场设备与I/O模块之间的开关量信号是否需经继电器隔离,一直是应用中争论的焦点。有观点认为不需经继电器隔离,可将现场信号直接送到I/O模块,理由是I/O模块本身具有一定抗干扰能力,模块内的光电隔离器使信号在其内部、外部电路上完全隔离,再加上阻容滤波电路,便可有效防止干扰的侵入。同时,由于省去了中间继电器,系统接线简化,系统故障点也随之减少。但通过在多年维护管理输煤程控中对输煤系统外部环境、PLC装置内部电路的分析以及实际应用观察,我认为尽管PLC自身有良好的抗干扰性能,但用于输煤控制时采用继电器隔离仍十分必要,理由如下:
1)现场设备至PLC输入模块间的信号电缆较长,阻抗较大,电缆间的分布式电容充放电效应使信号电缆上产生干扰信号,加之输入模块的输入阻抗大(内阻约2.5K欧)、动作功率小(小于0.5W),因此输煤系统中干扰信号易使输入模块误动作。采用继电器隔离后,继电器动作功率较大(大于1W),而现场干扰信号仅有足够的电压而没有足够的电流,难以使继电器动作,从而有效解决了输入回路的抗干扰问题。
2)继电器与PLC输入模块相比,耐过电压、耐电流冲击的能力较强,可避免引入过压、过流信号而损坏PLC模块。迄今为止,国内已有多个电厂输煤程控系统在运行和调试过程中出现过这方面的故障。对于输出模块,采用继电器隔离增加了输出接点容量,可将继电器接点方便地接入设备控制回路中。
3)现场I/O信号经继电器隔离,与PLC系统在电路上分开,切断干扰信号的通道,避免形成接地环路引入的电位差。同时使控制室内、外自成系统,便于检查和维护。
4)程控系统增加继电器隔离并不会增加工程投资。采用继电器隔离后,PLC与继电器之间采用DC24V电源供电,继电器与现场设备间采用AC220V供电,因此PLC系统可选用DC24V、32点I/O模块;而不采用继电器隔离,则需选用AC220V、16点I/O模块。可见选用继电器隔离方式可节省一半I/O模块。对于设备范围广,信号繁多的输煤系统来说,其价值与增加的继电器相当,总投资并不会因此而增加。
我公司输煤程控系统,在重新技改时输入信号回路未采用中间继电器隔离,在实际应用中由于外部回路干扰信号造成了输入模块工作不正常,影响了输煤程控系统正常运行。不得已,只好再次改造,将PLC输入、输出均采用继电器同外界隔离,程控与电控部分各自成系统,通过近年的生产运行,该系统运行稳定、可靠,抗干扰能力比较强。2.电缆接地屏蔽
在程控系统中,良好接地可消除各电路电流经公共地线阻抗时产生的感应电压,避免磁场及电位差的影响,使其形不成环路。接地是抑制干扰,使系统可靠运行的重要方法,和屏蔽结合起来使用即可解决大部分电磁场干扰问题。
在低频电路中,布线和元件间的电感并不是大问题,而接地形成的环路干扰影响却很大,因此通常采用单点接地的方式。PLC控制系统属于低频范畴(1MHZ以下),也应遵循单点接地的原则。为防止不同类型地线之间的干扰,应将系统中的数字地、模拟地、屏蔽地分别相连,然后汇集到总的接地点,接入输煤程控系统单独接地网。
在程控系统中,PLC模块、电源设备、继电器都放在控制柜内,对电磁场的屏蔽较好。电磁干扰主要由传输导线引入,因此对导线采取屏蔽措施也十分必要。对I/O信号应采用完全屏蔽的信号电缆,并且电缆的金属屏蔽层要采用一点接地。若接地点超过一个,接地点之间的电位差将产生感应电流,形成电磁干扰源。3.电缆选择与敷设
信号传输线之间的相互干扰主要来自导线间分布电容、电感引起的电磁耦合。防止干扰的有效方法首先是注意电缆的选择,应选用金属铠装屏蔽型的控制、信号电缆。一方面可以减少电磁干扰,另一方面也增强了电缆的机械抗拉强度。其次,电缆的敷设施工也是一项重要的工作,施工时应注意将动力电缆和控制电缆分开,控制电缆中将强电电缆和弱电电缆分开。同时还要注意尽量把模拟量信号线、开关量信号线、直流信号线和交流信号线分开排列,以减少不同类型信号间的干扰。
(二)软件措施
在PLC控制系统中,除采用硬件措施提高系统的抗干扰能力外,还可以利用PLC运算速度快的特点,充分发挥软件优势,以确保系统既不会因干扰而停止工作,又能满足工程所要求的精度和速度。数字滤波和软件容错是达到这一目的的两种既经济又有效的方法: 1.数字滤波
对于较低信噪比的模拟量信号,常因现场瞬时干扰而产生较大波动,若仅用瞬时采样值进行控制计算,会产生较大误差。为此在输煤程控中通常采用数字滤波的方法。现场模拟量信号经A/D转换后变为离散的数字量信号,然后将形成的数据按时间序列存入PLC内存,再利用数字滤波程序对其进行处理,滤去干扰部分获得单纯信号。在程序设计时将设备工作电流、煤仓煤位等模拟量信号采用平均值滤波的方法进行预处理,对输入信号用10次采样值的平均值来代替当前值,但并不是通常的每采样10次求一次平均值,而是每采样一次与最近的9次历史采样值相加,即:
Yn=1/10Xi其中Yn为滤波值,Xi为采样值
这种方法反映速度快,具有更好的实时性。输入信号经处理后用于信号显示或控制回路调节,可以有效地解决外部信号传输过程中电磁场的干扰。2.软件容错
由于输煤系统现场环境恶劣,干扰信号较多,I/O信号传送距离也较长,电磁干扰常常会使传送的信号出错,这对于程控系统来讲,将会产生设备误动或拒动等十分严重的后果。为提高系统运行可靠性,使PLC在信号出错的情况下能及时发现错误,并能排除错误信号的影响继续工作,在程序编制中还广泛应用了软件容错技术。
1)在目前现场设备信号不完全可靠的情况下,对于非严重影响设备运行的故障信号,在程序中采取不同时间的延时判断,以防止输入接点抖动而产生“假故障”。若延时后信号仍不消失,再执行相应动作。如皮带的打滑、跑偏信号,我们结合公司输煤系统设备运行速度,在程序中分别设定11s和3s的延时。
2)充分利用信号间的组合逻辑关系构成条件判断。这样即使个别信号出现错误,系统也不会因错误判断而影响其正常的逻辑功能。如在程序编制中,皮带的打滑跑偏及拉绳开头等均同皮带运行信号串联使用,即只有皮带启动后才能发挥作用。若单纯发出故障信号将无法启动皮带。这种方法在实际生产运用中具有很大灵活性。
3)原煤仓煤位传感器在配煤过程有误发信号的现象,程序设计时结合配煤的特点,采取顺序配煤、优先配煤方式和余煤配煤方式,并且所有方式只根据设置高、低煤位信号判断进行。尽可能降低煤位信号对配煤方式的影响,可以减少自动配煤对传感器的依赖性。
由于设备安装调试时系统硬件配置已经确定,对其增加和修改都比较困难,而从软件方面入手则无需 增加任何设备,根据具体情况采用不同的容错技术,使用方便、灵活,可作为硬件容错的补充,进一步提高系统抗干扰能力。现场实际应用表明,数字滤波和软件容错技术在程序设计中必不可少,且行之有效。3 结论
以上几种抗干扰措施是在我公司输煤程控实际应用和PLC的应用特点而总结出来的,但对于其它场合的PLC程控系统也同样具有广泛的应用价值。现场实际应用表明,综合运用上述抗干扰措施,基本能够消除现场干扰信号对程控系统的影响,保证程控系统的可靠运行。
【参考资料】
1、《可编程控制实用技术》 王兆义 机械工业出版社
2、《S7-200可编程控制器操作手册》德国西门子公司
3、《自动化技术与SIMATIC S5-115U》德国西门子公司
第三篇:输煤系统检查
输煤系统检查参加人员:
张总、简海挺、杜永成、刘加兴、孟祥杰、贾国平、武林、郭阳
调试杨工
输煤系统检查存在问题:
1、排污泵电气电缆未接,管道未连,液位开关未装;
2、叶轮给煤机(B侧)接线开关未装,线位开关未焊接;
3、电缆槽盒不成直线需调整,槽盒内垃圾未清理、扣盖未进行;
4、输煤皮带构架油漆未完;
5、输煤系统电缆头整理; 6、2号B侧叶轮给煤机轨道中间架有一斜腿未焊;
7、自卸式磁铁器控制柜上部穿电缆开口处未密封;
8、输煤皮带托辊构架螺栓未紧固;
9、叶轮给煤机水泵电机电缆需加软管、支架固定;
10、料流检测器需加固;
11、落煤管与导料槽未焊完,法兰连接处应加密封垫,防止煤尘外泄,落煤斗振打电机未焊完、未接线;
12、#3皮带电机电缆未做接地;
13、#4皮带头部电源控制柜电缆管与角铁焊接,软管紧挨暖气管,需处理;
14、#5皮带头部电机齿轮与伸缩装置齿轮咬合接触过少,需进行调整;
15、#6转运站滚轴筛层平台电缆竖井倾斜;
16、所有电缆与槽盒、控制柜、开关等连接处软连接需重新进行整理;
17、所有桥架上的电缆需重新进行整理、绑扎,重点是拐角、爬坡位置,保证电缆走向并过度自然;
18、#12输煤栈桥多数电缆管与槽钢焊接,未用卡子绑扎,需重新处理;
19、电缆槽盒用火焊切割处需打磨处理; 20、输煤系统施工垃圾较多,无法进行正常试运;
21、冲洗水管道、除尘设备未施工完;(尽快完善,本条不作为考核项目)
22、输煤系统质量问题通知单四份、监理工作联系单1份、监理业主罚款单(CXJL-02DQ-B01-014)未进行回复和交纳,请安装三处尽快落实;
23、输煤系统(#
2、#
3、#
4、#
5、#
10、#
11、#12皮带及碎煤机、滚轴筛)基本单体试转完成,试验记录、安装验评、试运签证尽快报验。
本次检查存在的问题,要求安装三处(机务、电气两专业)逐条进行整改落实,并于15日整改完,项目部将进行检查验收,若整改不完,项目部将按条进行考核并给予加倍罚款处理。
东电四公司济宁项目部质保部
2009.10.12 电气14条;机务5条,完成3条,剩2条厂家配合处理。10.16监理、业主、生产单位检查存在的问题: 1、6KV、400V 配电室开关柜卫生、电缆牌未挂、封堵未完、二次接线工艺差;
2、主控室电缆牌未挂、防火封堵未施工、电缆较乱。3、2号卸煤沟排污泵电缆管整改;槽盒内卫生没清理干净;构架油漆未完;电缆桥架与拉线开关平行,要求槽盒降200mm;电缆软管三通位置未处理;滑线支架两端与墙面过近,只加一道梁;滑线端头电缆软管过短,需用卡子固定;皮带测速电缆未加电缆管固定;除铁器位置跑偏开关需向外挪200mm;开关接地线未连到接地扁铁上,直接焊到电缆管上;头部伸缩装置电机接地线接至电缆管上;MCC控制柜电缆处理、封堵;跑偏开关整改;桥架接地;除铁器护栏没有;头部伸缩装置电机接地未做,电缆管未用管卡子固定。4、3号紧带机构架护栏间隙大,需调整;跑偏开关软连接需处理;电机接地;电动葫芦滑线;冲洗管道角铁较长,需整改;速度开关未穿电缆管,软管连接需重新做;排污泵尽快安装。5、4号皮带电缆桥架横向(穿皮带)太低,需调整;头部电机未接地,电缆未接地;电缆软管与采暖管相碰需处理;电缆管未加卡子;控制箱无接地。6、5号皮带跑偏开关电缆在地面上,需整改,接近开关采用焊接,且施工工艺较差;皮带机控制箱、速度打滑控制箱安装位置影响走人,需挪动;电缆槽盒头部未封堵。7、10号皮带电缆桥架电缆未整理,堵头封堵未做;电缆穿墙用软管需整改;电缆桥架槽钢油漆(防锈漆加银粉漆);盘式除铁器控制箱玻璃坏了,需更换;多余部分电缆管未割除;皮带护栏间隙大,需调整,控制箱电缆软管处理;检修电源箱电缆线未接;设备接地焊到焊到预理铁板上,电机接地连到电缆管子,不符合要求;桥架上电缆未整理;电源箱接地未做;除铁器近线开关电缆需加槽盒;警铃要求18号达到使用条件;控制柜封堵未做,MCC控制柜接地没有,电缆无桥。8、11号皮带打滑检测仪控制箱电缆需整理,没加保护管,犁煤器近线开关全部整改;设备、电机接地整改;皮带、落煤斗上有杂物需清理。9、12号皮带尾部落煤斗倾斜度大,容易堵煤,与监理、业主协商处理;除尘器接地未引上去;电缆管没有打卡子;电缆软管紧挨皮带需重新处理;除尘器控制箱玻璃有坏的需更换;电机电缆接地不规范;电缆桥架用火焊切割处未处理完;跑偏开关电缆软管处理;犁煤器限位开关、控制箱电缆软管整改;电缆桥架(横跨皮带)位置低处需调整;犁煤器控制箱A、B分开便于运行操做;B侧拉线开关松需调整。
上述问题要求安装三处派专人逐条落实整改,所有问题于2009年10月18日前整改完,并达到上煤条件,否则项目部给予加倍进行考核。
东电四公司济宁项目经理部
二零零九年十月十六日 11.08系统检查存在的问题:
1、真空泵汽水分离器疏放水未施工完;
2、真空泵进出、口母管压力表未装(试转前装);
3、送粉管道支吊架多处倾斜,个别位置与管道相碰,影响保温需整改;
4、送粉管道支吊架卡块未焊完,焊接质量较差,需补焊;
5、送粉管道膨胀节位置螺杆割除后未进行打磨,此处不保温,要求打磨干净;
6、热一次风管道法兰与磨煤机连接处缺螺栓,需补充螺栓并紧固;
7、与磨煤机相连的热一次风、火检冷却风管道支吊架需紧固、调整;
8、部分位置风道焊接质量较差,需进行打磨补焊。
第四篇:输煤程控系统设计论文
科 技 学 院
题 目:输煤程控系统设计
系 别: 专业班级: 学生姓名: 指导教师:
2010年11月
动力工程系 自动化07K3班
华北电力大学科技学院本科毕业设计(论文)
输煤程控系统设计
1. 前言
随着工业自动化水平的不断提高,大型火电厂发电机组主机设备均被配备了先进可靠、协调统一、高度自动化的极其完善的控制系统。其良好的人机界面,优越的控制性能,准确的故障诊断与显示,大大提高了机组的运行效率,降低了劳动强度,简化了操作,也提高了故障处理速度。与先进的主机控制系统相比,输煤控制系统则显得较为落后,其自动化水平和工作效率与经济发展的要求不相适应。特别是上个世纪年代及其以前建设的火力发电厂,其输煤控制系统多为强电集中就地控制方式,采用继电器和按钮组成逻辑电路。这种控制方式与程控系统相比:功能差、系统可靠性差,自动化程度低,需要运行人员数量多且劳动强度大。
随着电力体制改革的不断深化,发电市场的竞争将日趋激烈,提高管理水平和工作效率,特别是提高设备的管理水平,提高设备的自动化程度及可靠性程度,从而达到减员增效的目的。火电厂的输煤系统是火电厂的一个重要组成单元,特点是运行情况恶劣,条件复杂,转动机械多,作业线长,设备分散,尤其对运行人员来讲,现场冗员过多且工作强度大,并且粉尘,噪音等影响运行人眼的身心健康。因此,火电厂输煤程控技术是提高输煤系统自动化程度及可靠性程度的必然选择,也是火电厂提高市场竞争能力的必然要求。
可编程控制器(Programmable Logic Controller简称PLC)是80年代发展起来的新一代控制装置,是自动控制、计算机和通信技术相结合的产物,是一种专门用于工业生产过程控制的现场设备,由于控制对象的复杂性,使用环境的特殊性和运行长期连续性,使PLC在设计上有自己的明显特点:可靠性高,适应性广,具有通信功能,变成方便,结构模块化。在现代集散控制系统中,PLC已经成为一种基本控制单元,在工业控制领域中应用前景极其广泛。
随着电力工业的迅速发展,火力发电厂单机容量和装机容量日益增大,输煤系统的规模也愈来愈大,传统的强电集中控制手段已经很难适应。从八十年代引进工程开始,输煤系统逐步采用以PLC为主机的程控技术,实现子自动化控制。PLC在技术上不仅具有控制功能强、能够适应恶劣的工作环境、维护方便、可在线修改等特点。不但能完成复杂的继电器逻辑控制,而且能完成模拟量控制及智能控制,并能实现远程通讯、联网、上位机监控等功能,完全可以适应输煤系统多种功能控制的要求,并为全厂实现计算机控制创造了条件。
华北电力大学科技学院(论文)
2输煤系统工艺流程
输煤控制系统机构图
电厂输煤工艺一般都包括:卸煤流程、堆煤流程、上煤流程和配煤流程几个部分。输煤系统工艺流程如下图所示
输煤系统工艺流程图
卸煤流程主要指将厂外来煤(包括汽车、火车、轮船等途径),通过卸煤设备卸到厂内储煤站,以备使用。
堆煤流程主要是通过堆料机对卸到卸煤站的煤进行整理,以方便输煤系统上煤。上煤流程是输煤系统工艺的关键环节。通过输煤皮带机完成将原煤从煤场输送到原煤
华北电力大学科技学院(论文)
仓的过程,同时通过辅助的碎煤机、筛煤机、除铁器、采样装置、电子皮带秤等设备完成对筛分、计量等处理,以达到使用要求。
配煤流程主要是将从上煤系统输送来的煤按照一定的要求、规律、顺序地分配到机组受煤仓中。
3输煤与配煤系统控制原则
输煤系统控制原则有: 上煤原则 流程预启:进行流程选择,并启动相应流程上的预启动设备,做好启动准备。2 流程启动:接收到流程启动允许信号后系统主设备按逆煤流方向延时顺序启动。3 流程停止:停止指令下达后,系统主设备按顺煤流方向延时顺序停止。4 故障联锁停机:当所选流程上的系统主设备发生故障时,立即联锁跳停设备故障点上游 逆煤流方向的主设备。重故障信号:急停,拉绳,重跑偏,重堵塞,打滑等指令或信号将直接导致系统联锁跳停。
配煤原则 1 顺序配煤:先设定一个尾仓,从第一个原煤仓开始进行配煤。煤斗以相同的时间(或依据煤仓料位)依次配煤,直到尾仓和尾仓前所有煤斗发出高煤位信号为止。顺序配煤时如有煤仓出现低煤位信号,则停止顺序配煤。优先给低煤位配煤。优先配煤:当有煤仓出现低煤位信号时,正常进行配煤的煤斗停止配煤并记忆 先补低煤位仓。直至低煤位消失,再按记忆煤斗的正常顺序把煤仓逐个加到高煤位。当多个仓同时出现低煤位时,对这些仓按从前向后的顺序进行轮换的配煤,直至低煤位消失。余煤配煤:当停机信号发出后,皮带上余煤均匀配给每个仓,直至原煤仓皮带机停止运行。MONDICON可编程控制器 概述
工业生产的各个领域都包含着大量的开关量(又称数字量)和模拟量。在可编程控制器问世以前,数字量和模拟量的控制主要用继电器、接触器或分立元件的电子线路来实现,它取代了原来的手动控制方式,并迅速成为工业控制的主流。这是自动控制的开始,也是以后诸多形式控制设备的基础。
随着生产力的发展和科学技术的进步,工业生产领域对控制系统提出了更高的要求,可编程控制器正是顺应这一要求出现的,它是以微处理器为基础的新兴工业控制装置。可编程控制器技术与CAD/CAM技术、工业机器人技术共同构成了现代工业自动化的三大支柱产业。
在自动控制领域中,目前国内外有许多生产PLC的厂家,而每个生产厂家都有自己的系列化产品,指令兼容,外设容易扩展;但不同厂家生产的PLC,梯形图、指令及各种配件均有一些差异,不利于PLC的普及。本文将以莫迪康公司的Quantum系列可编程
华北电力大学科技学院(论文)
控制器为例介绍有关PLC的一些基本概念。2.Quantum系统硬件模块和编程软件
2.1 CPU模块
Quantum CPU 是位于Quantum本地I/O底板上的一个CPU模板。CPU内含有执行存储器、应用程序存储器、通讯端口状态LED指示灯。LED状态指示灯显示CPU本身及所有通讯端口的工作是否正常,以便及时进行故障检修。
2.2 I/O模块
Quantum系列PLC使用全范围、高性能的I/O模块,符合国际上认可的IEC电气标准,确保恶劣工作环境下的可靠性。Quantum的I/O模块允许带电插拔,这种特性为现场运行维护带来了许多方便。
所有的Quantum PLC I/O模块均可使用编程软件实现软件配置。I/O的软件配置允许用户为每个模块配置I/O地址。软件寻址使现有系统在加入模块或改变I/O配置时,无需从物理上改变应用程序。软件配置的另一个优点是删除空槽,这是由物理地址系统来建立地址映像的限制而造成的。I/O Map 的概念是基于智能模块的扩充,该智能模块需要地址范围以外的额外信息。
2.3 电源模块
Quantum电源模块为Quantum底板提供标准电压和保护系统免受噪声和电源波动的干扰,从而保证系统工作于典型的工厂电气环境。一旦发生意外的电器问题时,它保证系统有足够的时间完成安全、有序的停机。电源模块有24VDC、48/60VDCh和115/230VAC三种,以满足不同的电压需要。电源与使用地点无关,本地与远程等系统结构可使用同一电源。Quantum系列PLC中,有三种类型的电源可供选用:低功率独立型、大功率可累加型和高功率冗余型。
2.4 ASCⅡ模块
Quantum的140ESI06210 ASCⅡ模块是一种通用的ASCⅡ接口,提供与第三方设备通信和交换数据的能力。这些设备是典型的基于工业应用的设备,它们不提供标准通信。该模块多数应用在与打印机、条形码阅读器和扫描仪通信。同样,也有一些设备如称重设备、仪表和其他测量设备使用这种通信方法为简单的点对点ASCⅡ通信方式。该ASCⅡ信息包含在ESI模块中,由Quantum控制器逻辑程序触发。信息离线开发并下装到ESI模块中,利用这些信息,该模块可自主地和ASCⅡ兼容装置进行通信。
2.5 底板
Quantum系列PLC使用公用底板,底板上有2、3、4、6、10和16槽位六种型号可供选择。16槽底板的型号为140XBP01600模块插在底板上,每一个槽位上插一个模块。底板提供控制信号及模块的电源。这个来自系统供电的电源仅仅为模块供电,而不能用于现场供电。底板中每一个槽位的电气特性都是一样的,即任何模块可插入任意一个槽位中,不存在对槽位的依赖关系,也不存在某些模块必须安装在某一特定底板的问题。对底板的限制仅是模块电源容量及寻址空间。所有寻址全通过软件进行,无需经DIP开关来进行模块配置。此外,底板可用于本地I/O、远程I/O和分布式三种系统结构,无须为某种结构选择专门的底板。底板只要选择包含有足够可用的槽位,能安装下需要的模块并留有将来扩展余地即可。
2.6 Concept编程软件
Concept是用于Modicon TSX Quantum 可编程控制器的编程组态工具,适用于Windows操作系统。它包括IEC编程语言功能块图(FBD)、梯形图(LD)、顺序功能流程图(SFC)、指令表(IL)和结构化文本(ST),以及面向Modsoft的梯形图(LL984)。
采用Concept进行可编程控制器编程是以项目(project)、可编程控制器配置(configuration)、程序(program)和区段(segment)分级来完成的。
Concept的设计项目包括下面的主要步骤。
华北电力大学科技学院(论文)
1.2.3.4.5.6.启动Concept。
使用配置器配置硬件。
编程。
项目的保存、下载和测试。
优化和断开。
生成一套完整的Concept文件。
5具体设计流程
5.1输煤系统控制要求
输煤系统有两条输煤线,包括给煤机、皮带机、振动筛、破碎机等共18台设备,在电厂中有着极为重要的地位,一旦不能正常工作,发电就会受到影响。为了保证生产运行的可靠性,输煤系统采用自动(联锁)、手动(单机)两种控制方式,自动、手动方式由开关进行切换。由于输煤廊环境恶劣,全部操作控制都在主厂房的主控制室里进行,仪表盘上设有各个设备的启、停按钮,还有为PLC提供输入信号的控制开关。输煤设备控制功能由PLC实现,设备状态监测和皮带跑偏监测以及事故纪录功能则由上级工业控制计算机完成。
为了保证输煤系统的正常、可靠运行,该系统应满足以下要求:
· 供煤时,各设备的启动、停止必须遵循特定的顺序,即对各设备进行联锁控制;
·各设备启动和停止过程中,要合理设置时间间隔(延时)。启动延时统一设定为12s。停车延时按设备的不同要求而设定,分为10s、20s、30s、40s、60s几种,以保证停车时破碎机为空载状态,各输煤皮带上无剩余煤;
·运行过程中,某一台设备发生故障时,应立即发出报警并自动停车,其前方(指供料方向)设备也立即停车。其后方的设备按一定顺序及延时联锁停车;
·各输煤皮带设有双向跑偏开关,跑偏15度时发出告警信号,跑偏30度时告警并自动停车;
·可在线选择启动备用设备。在特殊情况下可由两条输煤线的有关设备组成交叉供煤方式;
·可在线选择启动备用设备。在特殊情况下可由两条输煤线的有关设备组成交叉供煤方式;
·可显示各机电设备运行状况,并对输煤过程有关情况(报警、自动停机等)做出实时纪录。
5.2 PLC控制系统设计
2.1 PLC选型
根据输煤系统的自控要求,我们选用了德国SIEMENS 公司最新推出的S7-200型PLC,具有可靠性高、体积小、扩展方便,使用灵活的特点。基本CPU单元选用的是CPU214,性能如下:2048程序存储器;2048数据存储器;14点输入,10点输出;可扩展7个模块;128个定时器;128个计数器;4个硬件中断、1个定时器中断;实时时钟;高速计数器;可利用PPI协议或自由口进行通信;3级密码保护。扩展模块选用EM221,8个输入点;EM223,16个输入点,16个输出点。
华北电力大学科技学院(论文)
2.2 系统关系 系统关系如图1所示。
图1 系统关系
在输煤自控系统中,工业控制计算机作为上位机和输煤控制PLC进行通信,对皮带跑偏信号和设备的运行状态进行实时采样,并在屏幕上显示输煤系统仿真画面,可以直观地察看设备的状态。当皮带跑偏(跑偏15度)时,在屏幕上显示报警画面;当设备发生故障或皮带严重跑偏(跑偏30度)时,在屏幕上显示报警画面并向PLC发送事故停车信号。
输煤控制PLC则根据控制开关的输入信号,执行对应程序块,控制电机实现对应的功能:向上级工业控制计算机发送工作组态信息,接收上级工业控制计算机发送的事故停车信号,实现事故停车处理功能并启动报警设备。二者配合共同实现输煤系统的监测和控制功能。
上级工业控制计算机同时实现对电厂其他系统的监控,由工业控制计算机、输煤系统PLC和其他系统的现场设备(PLC、监控仪表)共同构成分布式系统(DCS)。
2.3 运行模式
根据输煤过程的要求,本系统设计了两种运行模式。在一般情况下,采用并行模式,可根据需要单独选用或同时运行输煤一线和输煤二线。交叉模式是由输煤一线和输煤二线的有关设备组成的,仅在特殊情况下选用。
2.3.1并行模式
并行一线:
联锁开车顺序:10#皮带机→8#皮带机→6#皮带机→2#破碎机→2#振动筛→4#皮带机→2#皮带机→2#(3#)给煤机→4#给煤机。
联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。2#、3#给煤机某中一台备用。
并行二线
联锁开车顺序:9#皮带机→7#皮带机→5#皮带机→1#破碎机→1#振动筛→3#皮带机→1#皮带机→1#给煤机。
联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。
华北电力大学科技学院(论文)
2.3.2 交叉模式
交叉线
联锁开车顺序:9#皮带机→7#皮带机→6#皮带机→2#破碎机→2#振动筛→4#皮带机→2#皮带机→2#(3#)给煤机。
联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。2#、3#给煤机其中一台备用。
2.4 PLC程序设计
针对输煤系统的控制要求以及具体控制方案的实现,设计程序流程如图2所示。
图2 主程序流程
2.4.1 程序说明
·子模块0:初始化子程序。在PLC加电时根据各个开关的位置设立标志位。仅在第一个扫描周期执行。
·子模块1:并行一线联锁启停控制程序。根据启动标志位1实现并行一线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。
·子模块2:并行二级联锁启停控制程序。根据启动标志位2和实现并行二线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。
·子模块3:交叉线联锁启停控制程序,根据启动标志位3实现交叉线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。
·PLC的输出信号控制电机的接触器,启动送高电平,停止送低电平。但是,1#破碎机功率达90kW,2#破碎机功率达110KW,需要降压启动,所以启动时PLC送一个正脉冲,停车时PLC送一个负脉冲。
2.4.2 程序特点
华北电力大学科技学院(论文)
·特殊标志位的使用:使用特殊标志位SM0.1,使得初始化子程序(子模块0)仅在第一个扫描周期执行,而在以后的扫描周期不再执行。这样,个别标志位在PLC加电后不受开关变化的影响。例如,并行模式和交叉模式对应标志位仅在关掉主控开关后才能改变。
·内部标志位的使用:在程序中,利用标志位来表示不同的现场情况和程序状态,增加了程序的可靠性和灵活性。
·程序模块化:程序由不同子模块构成,各子模块独立完成各自功能,互不干扰,因而程序结构清晰,便于修改。
·定时器的使用:程序中,利用不同的定时器来设定不同设备的延时时间,可以灵活地根据控制要求进行延时时间的设定。
2.5 部分程序梯形图
图3 部分联锁起停控制梯形图
图3所示为部分联锁启停控制梯形图,T37用于控制设备的启动延时,T40~T46用于控制相应设备的停车延时,接收到停车信号时,经过相应的延时,对应定时器置位从而实现联锁停车。Q0.3是1#破碎机的启动控制输出通道,启动1#破碎机时送出一个宽度为2s的正脉冲。Q0.7、Q1.0分别是2#给煤机、3#给煤机的控制输出通道,M0.1、M0.2 是内部标志位,用于保证2#、3#给煤机始终为一台工作,一台备用。
总之,本系统中,PLC作为现场控制设备,能够可靠、准确地完成控制操作,并且可以通过与上级工控机通信,组成分布式系统共同完成输煤系统的监测、控制要求,是现代工业控制中比较先进的控制方案,应用前景广泛。
华北电力大学科技学院(论文)
附:
参考文献:《PLC 在电厂输煤程控系统中的应用》 葛修军《煤炭技术》28卷第8期
《PLC在输煤程控系统中的应用》
张文红 《湖北电力》33卷第5期
《一种基于PLC控制输煤程控控制系统在发电厂中的应用》 曾海珍 等
第五篇:火力发电厂输煤程控系统抗干扰措施
火力发电厂输煤程控系统抗干扰措施
栗海峰1 尹义梅2(11 三门峡华阳发电有限责任公司燃料部, 河南三门峡472143)(21 唐山市机械技工学校河北唐山063000)[ 摘要] 本文结合三门峡华阳发电有限责任公司输煤程控应用情况, 分析了输煤系统程控在实际
应用中存在的各种干扰因素及针对各种干扰因素采取的技术措施。指出造成输煤程控信号干扰的
重要原因为PLC 外部干扰, 同时从硬件和软件两方面提出了对外部设备抗干扰的措施。
[关键词] 输煤程控 PLC 抗干扰措施
[中图分类号]TP273 [文献标识码]A [文章编号]100620898(2005)0420027203 1 前 言
建厂较早的大型火电厂, 一般燃煤量大、上煤任务繁重, 现场环境恶劣, 运行岗位定员多, 工作效率低。随着国民经济的不断发展和对电力生产需求量的不断提高, 大机组不断投入运行, 落后的生产方式已越来越难以适应电力生产现代化的需要。因此, 应用目前国内、国际先进的程控技术, 提高输煤系统自动化水平, 对于电厂安全经济运行, 改善工作环境,高劳动生产率, 减人增效具有重大意义。故障分析
PLC 作为应用于工业控制的一种核心装置, 本身具有一定抗干扰能力, 比较适应工业现场环境。尽管如此, 由于火电厂输煤系统运行条件恶劣, 各类干扰信号较多, 尤其是磁场干扰大量存在, 使得抗干扰问题成为输煤程控设计、调试及运行中的一大难题。许多电厂输煤程控系统不能长期稳定运行, 抗干扰能力差是其最主要的原因。一般来说, PLC 系统故障可分为内部故障和外部故障两大类: 内部故障指PLC 本身的故障;外部故障指系统与实际控制过程相关连的传感器、检测开关、执行机构等部分的故障。三门峡华阳发电有限责任公司输煤程控系统2002 年~ 2004 年的故障分布 统计情况如图1 所示。
由图1 可知, 系统中只有1% 的故障发生在PLC 内部, 说明PLC 自身的可靠性远远高于外部设备。因 此, 提高输煤程控系统可靠性的重点应该放在外部 设备方面。图1 3 抗干扰措施 311 硬件措施
31111 采用信号继电器隔离
目前在火电厂输煤程控系统中, 现场设备与IöO 模块之间的开关量信号是否需经继电器隔离, 一直 是应用中争论的焦点。有观点认为不需经继电器隔 离, 可将现场信号直接送到IöO 模块, 理由是IöO 模 块本身具有一定抗干扰能力, 模块内的光电隔离器 使信号在其内部、外部电路上完全隔离, 再加上阻容 滤波电路, 可有效防止干扰的侵入。同时, 由于省去 了中间继电器, 系统接线简化, 系统故障点也随之减 少。但通过多年对输煤系统外部环境、PLC 装置内 部电路的分析以及实际应用观察, 尽管PLC 自身有 良好的抗干扰性能, 但用于输煤控制时采用继电器 隔离仍十分必要。理由如下:(1)现场设备至PLC 输入模块间的信号电缆较
长, 阻抗较大, 电缆间的分布电容充放电效应使信号 电缆上产生干扰信号, 加之输入模块的输入阻抗大
(内阻约215 K8)、动作功率小(< 015W), 因此, 输 27 2005 年12 月水力采煤与管道运输第4 期
© 1994-2006 China Academic Journal Electronic Publishing House.All rights reserved.http://www.xiexiebang.comki.net 路调节, 可以有效地解决外部信号传输过程中电磁 场的干扰。
31212 软件容错
由于输煤系统现场环境恶劣, 干扰信号较多, Iö O 信号传送距离也较长, 电磁干扰常常会使传送的 信号出错, 这对于程控系统来讲, 将会产生设备误动 或拒动等十分严重的后果。为提高系统运行可靠性, 使PLC 在信号出错的情况下能及时发现错误, 并能 排除错误信号的影响继续工作, 在程序编制中还广 泛应用了软件容错技术。
(1)在目前现场设备信号不完全可靠的情况下, 对于非严重影响设备运行的故障信号, 在程序中采 取不同时间的延时判断, 以防止输入接点抖动而产
生“假故障”。若延时后信号仍不消失, 再执行相应动 作。如皮带的打滑、跑偏信号, 结合输煤系统设备运 行速度, 在程序中分别设定15 s 和2 s 的延时。(2)充分利用信号间的组合逻辑关系构成条件
判断。这样即使个别信号出现错误, 系统也不会因错 误判断而影响其正常的逻辑功能。如在程序编制中, 皮带的打滑跑偏及拉绳开头等均同皮带运行信号串 联使用, 即只有皮带启动后才能发挥作用, 若单纯发 出故障信号将无法启动皮带。这种方法在实际生产 运用中具有很大有灵活性。
(3)筒仓、原煤仓煤位传感器在配煤过程中有误 发信号的现象, 程序设计时结合筒仓配煤的特点, 采 取顺序配煤、优先配煤方式和余煤配煤方式, 并且所 有方式只根据设置高、低煤位信号判断进行。取消超 高、超低煤位信号对配煤方式的影响, 可以减少自动 配煤对传感器的依赖性。
由于设备安装调试时系统硬件配置已经确定, 对其增加和修改都比较困难, 而从软件方面入手则 无需增加任何设备, 根据具体情况采用不同的容错
技术, 使用方便、灵活, 可作为硬件容错的补充, 进一 步提高系统抗干扰能力。现场实际应用表明, 数字滤 波和软件容错技术在程序设计中必不可少, 且行之 有效。4 结 论
以上几种抗干扰措施是在输煤程控系统中实际 应用而总结出来的, 但对于其它场合的PLC 程控系 统也同样具有广泛的应用价值。现场实际应用表明, 综合运用上述抗干扰措施, 基本能够消除现场干扰 信号对程控系统的影响, 保证程控系统的可靠运行。
参考文献 〔