第一篇:职校数学中如何培养学生思维论文
传统的数学教育是以教师灌输知识技能为主,往往缺乏对学生进行逆向思维的训练。因此,学生解决问题习惯于正向思维,但新课程背景下更注重发展学生的创新思维,培养创新精神,形成全方位、多角度思考问题的额体系,因此如何在数学教学中培养学生的逆向思维能力就被置于一个更加重要的位置。
1创设问题情境,促进智力探索形成氛围
《新课程标准》中指出:数学教学必须要注意从学生的生活经验和感兴趣的事物出发,为他们提供参与的机会,从而对数学产生亲切感,尤其是面对低年级学生,我们更要创设一些有趣的问题情境,激发学生的学习兴趣,从而引发学生的逆向思考。例如:在教学《二项式定理》这一节内容时,教师一开始就写出2(a+b),这时候学生们都会写出它的展开式,然后教师提出n(a+b)中这个n不管是多少我都可以知道它的展开式多少项,分别是多少。这个时候学生就会提出疑问:为什么老师这么快就可以算出来呢,是不是有什么秘诀?这样很自然的就引入了课题。
2注重教学概念、定义的逆向性
定义是对一个名词进行说明,从而使得数学概念和语言紧密联系起来,揭示出事物的本质特征,而概念是反映对象特有属性的思维模式,是构成判断、推理的要素。因此,在教学中除了学生理解概念本身及常规应用以外,还要善于引导启发学生从相反方向思考问题,从而加深对概念的理解和拓展,最终形成推理能力和计算的技能技巧。例如:在教学《奇函数定义及图像》时,首先讲解奇函数的定义:对于函数f(x)的定义域中任意一个x,都有f(x)=f(x),那么函数f(x)就叫做奇函数。针对这个定义要求学生们理解:如果函数满足f(x)=f(x),则函数为奇函数,且函数图像关于x轴对称,而另一方面,如果一个函数的图像时关于x轴对称,则可说明这个函数是奇函数f(x)=f(x)这就是从定义、概念的反方向思考问题。3.3注重教学公式、运算法则的逆向性数学中的公式及运算法则是数学知识体系的最基本的部分,是解决其它数学问题的桥梁。因此,在讲授公式及运算法则的时候,教师要注意训练学生逆用公式、运算法则的基本动。讲完后,要通过一些公式逆用的例子,以此加深学生们对公式、运算法则的理解,给学生一个更为深刻的印象。
3注重教学中定理的逆向性
定理是数学知识的重要组成部分,是判断是非、逻辑推理的依据,是进一步解决数学问题的锐利武器,只有熟练掌握定理的成立条件与内容,才能产生正确的思考方法和形成简洁的解题技巧。要想熟练掌握定理,就必须从正反两个方向去理解定理,虽然每个定理都有逆命题,但并不是每个逆定理都是成立的,经过证明是成立的逆命题就成为逆定理。重视逆定理的运用,不仅可以开拓学生的思维,还可以培养他们严谨的数学思想品质。例如:对于《勾股定理》大家都很熟悉定理内容:如果直角三角形的两个直角边分别为a,b斜边为c,则这个三角形的三条边的边长满足222a+b=c。这个定理的逆命题是,已知三角形的三条边的边长满足222a+b=c,则这个三角形就是直角三角形。通过证明我们发现这个命题是成立的,那么这个命题就是勾股定理的逆定理。
4结语
培养学生逆向思维可以让学生的思维更加敏捷、灵活及深刻,使学生在遇到难题时积极主动地去寻求新的解决途径。这不仅能提高他们的实际解题能力,更重要的是能够改善职业学校学生学习数学的思维方式,有助于他们形成良好的思维习惯,逐步形成创新思维,最终使得整个素质得到很大程度的提高。
第二篇:高中数学教学中数学思维的培养论文
一、高中数学教学现状分析
1.高中数学难度大
中国的教育难度大,其中以数学为甚.经过小学和初中的积累,高中数学在难度上达到了一个转折点,无论代数还是几何,都提高了难度.例如,很多省、市在高二的时候实行文理分科,进一步提高了理科班的数学难度,立体几何、三角函数、数列等内容不仅提升了难度,而且要求高中生充分理解并要拿到高分.数学题难度太大,致使很多学生对数学产生了抗拒、畏惧心理,从此失去了学习数学的信心.
2.高中数学成绩差距大
数学反映在成绩方面的问题是分差特别大.以文科学生为例,很多学生就是因为数学成绩太差所以选择了文科,但是数学依旧是高考的必修科目,而且分值为160分,是所有参加高考的学生都不能避免的,分差大这个问题在文科学生中表现得非常明显,有些学生能达到150分以上,但是有的高中生数学成绩却仅能拿到70分.这样的成绩差足以说明目前高中数学教学的现状之一就是学生数学能力差别过大、成绩分差过大.
二、在高中教学教学中培养数学思维的意义
1.有助于提高学生的逻辑推理能力
数学是一种比较严谨的科学,需要认真仔细地推理每一步运算,才能得出最后的正确结果.因此,培养学生的数学思维也是提高其逻辑推理能力的过程.同时,逻辑推理能力也是学好数学的基础.只有学会推理,才能掌握整门科学的精髓,一知半解是无法学好数学的,要从整体入手,一步一步地认真推理、严密运算.由此可知,培养数学思维可以提高学生的逻辑推理能力.在日常生活中,人们也是离不开逻辑推理的,每个人的一生都会发生一些始料未及的事情,然而推理能力强的人就会瞬间冷静下来,将事情的来龙去脉分析清楚,并推理出接下来的事情发展态势.
2.有助于提高学生的数学成绩
高中数学教学最根本的目的还是要提高高考成绩,而没有数学思维的学生是无法真正取得高分的.以立体几何的解析为例,如果高中生只是会记题型,就只能保证在已经掌握的题型上面得到高分,但是数学题是千变万化的,需要学生真正掌握解题思路,培养数学思维是提高分数的基础.此外,心理学研究表明,高中阶段是人的大脑高速运转的活跃阶段.在高中数学教学中培养数学思维,能够促进学生的大脑活动.真正具有数学思维能力的学生不会生搬硬套数学公式,而是会寻找解题思路,主动解题,将抽象的习题转化成具体的解题模式,从而用推理的方法解决数学问题,各种难题都能够迎刃而解.
3.有助于培养学生的创新能力
数学思维要求学生在解题过程中充分利用已有知识解决数学难题,并形成自己的解题思路,其实这就是创新能力的培养过程,能够让学生在学习中发挥主动性.例如,在遇到数学难题时,一个重要步骤是大胆假设,然后反推已知信息,如果假设成立,这道难题就顺利解开.这种在解题技巧上的大胆假设,其实就是创新的过程.
4.为学生提供锻炼意志品质的机会
在高中数学难度如此大的环境中,解数学题绝非易事,需要长时间的知识积累,才能换来高考时的卷面高分.因此,高中数学教学也是一种对学生意志品质的磨练.例如,高三的数学题往往不是通过一次运算就能够得出结果的,多数习题是多个问题组成的,而每一道小问题也需要复杂的运算.这并不是简单的数字运算,而是在考验高中生的意志力.
三、培养高中生数学思维的方法
1.改善教学环境
如果数学教学单纯以高分为目的,那么教师和学生的关注点就都集中在分数上,而不会注重培养思维能力.为了让高中生都能够具有独立思考、推理分析、创新等能力,就应该彻底改变教学环境.学校为高中生营造一个有利的环境,让学生乐于主动挑战数学难度,能够在解题过程中找到乐趣,而不是以提高成绩为目的强迫学生学习数学.素质教育环境下的数学教学,能够培养学生的数学思维,让学生意识到数学是对自己的一生都有积极意义的基础科学.
2.开展研究性教学
研究性教学主要应该采取启发式的教学方法,教师设置合理的教学情境,让学生全身心投入到数学教学中,充分认识到数学思维的重要性.例如,在一堂难度比较高的数学课上,按照学生已有知识不能很快地得到最终结果,教师就应该首先提出假设,让学生分成小组讨论,以研究形式为主,教师指点学生的讨论结果,引导学生得出最终结论.
作者:赵蕾 单位:江苏省白蒲高级中学
第三篇:初中数学教学论文如何培养学生的数学思维
初中数学教学论文 如何培养学生的数学思维
初中数学教学中,一方面要传授数学知识,使学生具备数学基础知识的素养;另一方面,要通过数学知识的传授,发展智力,培养学生数学能力。钱学森教授曾指出:“教育工作的最终机智在于人脑的思维过程。”思维活动的研究,是教学研究的基础,数学教学与思维的关系十分密切,数学思维的发展规律,对数学教学的实践活动具有根本性的指导意义,因此,在数学教学中如何发展学生的数学思维,培养学生的数学思维能力是一个广泛而值得探讨的课题。
一、精心设计课题引入,吸引学生的注意力,活跃学生的思维。
苏霍姆林斯基说过:“所有智力方面的工作都要依赖于兴趣。”爱因斯坦也曾说过 :“兴趣是最好的老师”。俗话说 :“万事开头难”,良好的开头是成功的一半,精彩的引入能在课堂教学的开始便深深地吸引住学生的注意力。因此几分钟的引入切不可轻视,它关系到四十五分种课堂教学的直接效果。那么引入要怎样做才能做到引人入胜呢? 这是没有定论的,它 要根据教材内容、比如,在学习§2.11有理数的平方时,故事引入:从前,有一个国王为了奖励发明国际象棋游戏的人,承诺要满足这个人的一个要求。这个人提出,只要在这个国际象棋棋盘里的64个格子中,依次放上2颗、4颗、8颗、16颗,…,后一个格子里的数量是前一格子的数量的2倍的粮食就可以了。国王高兴的答应了。但随后令国王惊讶的是,国王并没有办法满足这个人的要求。你知道这是为什么吗?(一下子就把学生的注意了力吸引过来了。)让我们一起来探索其中的奥妙吧!(如何用式子把每一格的数量表达出来呢?)
第一格:2
第四格:2 ×2×2×2=16
第一格:2×2=4
第五格:2×2×2×2×2=32
第三格:2×2×2=8
……
我们发现第2格也能象上面一样列出数学式子进行计算,但显然用这样的式子在表达上很不方便的,那我们能否找到简便的表达方式呢?这就是我们今天要学习的有理数的乘方。
小学时,我们学过:a×a记作 a,读作a的平方(或a的2次方);a×a×a记作 a,读作a的立方(或a的3次方);那么a×a×a×a可以记作什么?a×a×a×a×a呢?a×a×a×a…×a有n个a呢?象这样n个a相乘,记作a,既简单又明确。这样就很自然地把求几个相同因数的乘积的运算介绍给了学生。学生都能在不知不觉中参与教学活动中,学到了新的知识,活跃了思维。
二、在赏识教学中充分调动学生学习积极性,活跃学生的数学思维。
在教学活动中,最被动的莫过于后进生了。素质教育要求面向全体学生,放弃后进生就不能做到,使人人都能学数学用数学。根据后进生基础差、学习习惯不良容易情绪低落,甚至 自暴自弃的特点,本人认为,应从赏识入手,多给后进生一些鼓励和指导帮助。承认学生之间的差异性,降低对后进生在学习上难度的要求,积极发现后进生在课堂中的闪光点,及时调动他们的积极性。
例如§4.1生活中的立体图形的教学中,安排这样一道题:你能用6根火柴组成4个一样大的三角形吗?若能,请说明你的图形。其中,有一个后进生说:“能”,虽然声音不大,却能被老师听到,及时给他一个机会。这个同学说:“图形是棱锥,是三棱锥。”因为之前老师有分析过三棱锥有6条棱,在这一题目中,6根火柴就是6条棱,所以要回答本题并不难。由于该生的特殊性,老师鼓励他说:“你看,你有很好的空间想象能力,在今后的学习中,只要你能像现在一样,你一定会有很大的进步的。”这个同学的积极性马上就有了,其他同学也是深受鼓舞。>当然,不仅仅后进生需要老师、同学的赏识,在学习生活中,每一个同学都渴望能得到理解和肯定,都希望能得到老师和同学的赞赏。我们知道,不是聪明的学生被夸奖,而是被夸奖的学生会变得更聪明。课堂中,赏识的目光象阳光,照到哪里哪里亮,有赏识就有成功,有赏识,学生都愿意动起来。
三、一题多解,合作讨论,发展学生思维的广阔性。
大课堂教学有利于以教师为中心的讲解,但不利于以学生为中心的自主学习。要想让学生在课堂上真正的动起来,就必须积极探索班级、小组、学生个人相结合的组织形式,加强小组研讨的学习方式,为学生提供充分的自主活动的空间和广泛交流思想的机会,引导学生独立探索、用心思考、真诚交流,全身心地投入到学习中。
例如:平行线的识别与特征的复习中,有这样一道题:已知:直线AB∥ CD,直线L 分别截 直线AB、CD于点E、点F两点。并且
∠1=130°,求:∠2 的度数。
问题分析:(1)所求角∠2 与已知角∠1 之间有什么联系?
(2)已知直线AB
∥CD,能帮我们带来哪些结论?
(3)怎样把求∠2 的过程用几何语言表达出来?
学生分组讨论、合作学习,尽可能地从多种角度求出.以提高学生几何题的分析和推理表达能力。
解法1:通过∠2 的内错角与∠1
联系起来;解法2:通过∠2 的同位角与∠1联系起来;解法3:通过∠2的同旁内角与∠1联系起来。这样,通过一道题的多种解法,既复习了平行线的特征的应用,又使得学生在合作学习中,合作讨论中自主地完成对知识的构建;学生不仅对知识点的理解深刻,而且“创造”着解题过程的方法,体验着获取、巩固知识的喜悦。同时在和谐诚恳的交流中,充分展现出学生的个性和才能,使学生在学习中真正地动起来。
四、增加动手操作,增强学生数学思维的直观性。
在传统的教学形态里,教师是权威的代言人,将各种经验、概念、法则与理论强制地灌输给学生,学生完全处于一种被动接受的状态,于是学生的学习兴趣和热情被压抑了,主动性减弱了,很大程度上阻碍了学生个性的发展培养。在初中的数学教学中,要注意挖掘新教材的优势,增加学生动手操作,让学生的学习由被动向主动转变。
例如:§4.3立体图形的展
开图中,对正方体展开图的探索。
1、课前准备:每个学生都有6个一样的正方形硬纸板、剪刀、透明胶布。
2、授课方式:分组合作学习。
3、探索步骤:(1)将6片硬纸板围成正方形,(2)将正方体剪开,与同学对比,得到正方体的平面展开图是否唯一?
(3)讨论正方体的平面是展开图有哪些可能情况?
(4)讨论由6块一样的正方形拼成的图形一定是正方体的展开图吗?哪些情形不是?
发现:通过让学生动手操作、合作学习,学生学习的积极性高涨。虽然现在初一年的学生并不能自主地归纳出正方体展开图的所有可能,但体会其中的几种情况也让他们得到莫大的满足,尤其是对含田字结构形、含凹字结构形、四连两同侧形、五连形、或六连结构形的不能围成正方体可是深有体会。虽然学生在理论上的理解还不深刻,但能让老师感到他们都在愉快的学习中,数学思维得到了锻炼。
新课程教学中,教师是学生学习的合作者、引导者和参与者。教师的职责已由知识的传授转向促进学生发展,要引导学生学会观察、学会思考、学会如何学习、培养终身学习的能力,而在数学课中培养学生的数学思维能力则是教学的根本目的,这需要教师充分利用教材内容,通过数学知识的学习,努力培养和提高学生的数学思维能力。
第四篇:浅谈小学课堂教学中如何培养学生数学思维
浅谈小学课堂教学中如何培养学生数学思维
在课堂教学改革中,我们小学数学教师观念的转变、知识的更新、行动的研究都将体现在每一个教学活动中,才能使教学改革不再是一句空话,才能使小学数学教学产生实质的变化。
我认为,在教学的实践中,应从以下几个方面抓学生的思维能力的培养:
一、发展学生思维,让学生自主参与活动
数学课堂就是教学加活动,课堂上学生是学习的主体,是教学的中心。在小学数学教学中,如何发挥学生的主体意识、合作意识、实践意识,把课堂变为学生学习活动的场所,恰如其分地组织数学活动、发展学生思维,让学生自主地参与生动、活泼的数学教学活动、灵活运用数学知识积极创新,使其个性、潜能得以充分开发,数学能力、数学思想得到充分的发展,是课堂上组织数学活动,发展学生思维能力的主要目标。活动是数学内容的载体和实现教学目标的主要手段,在课堂上要让学生自主地参与活动,通过让学生动手做、动脑想、动口说,使学生在活动中发现问题、探索求新,灵活运用知识解决问题。
二、让“生活”走进课堂,培养学生思维能力
学生为什么要来到课堂上学习数学?这个问题似乎浅显,却值得我们思考。小孩子学习数学无非是为了用,为了能解决实际生活中的具体问题,为了长大后能在社会上生存。因此,我们的数学不能远离生活,不能脱离现实。这也是当前教改的一大精髓,这就要求我们在备每一节课前都要想到这些知识与哪些实际例子有联系,生活中哪些地方使用它。尽量做到能在实际情境中融入数学知识的,就不干巴巴地讲;有学生熟知的喜闻乐见的例子,就替代枯燥的例题;能动手操作发现学习的,就不灌输,不包办代替;有模仿再现实际应用的练习,就引进课堂,与书本练习题配合使用,总之,要从生活中来,到生活中去。让学生自己思考,提高思维能力。
三、组织游戏趣味型数学活动,发展学生思维的自主性。
数学课上,如果老师动得多,那么学生可能就只是一个听众,静的机会多,失去了亲身经历的机会,学生的主体地位很难显现出来。教师应通过一系列的活动转化知识的呈现形式,做到贴近实际、贴近生活,培养学生思维的自主性。例如:排队是学生天天都在经历的生活事例,通过排排坐游戏活动,可以使学生自主地了解基数和序数的知识。学习《人民币的认识》这一课,可以通过创设模拟的商场,让学生在组内进行买卖活动,在充满趣味性的自主活动中,学生不仅认识了人民币,而且也学会了简单的兑换。这样,学生在学习中有着更显的自主性。学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。因此,自主参与活动是帮助学生积极思维,掌握知识的法宝。
四、组织知识拓宽型数学活动,发展学生思维的灵活性。
小学数学新课程标准十分强调学生是数学学习的主体,注意让学生运用所学的知识,灵活地解决生活中的实际问题。诱发学生思维的源头就是课堂,在 组织数学活动过程中,我们要激活学生的思维,鼓励学生标新立异,只有这样,才能真正学活知识,用活知识。例如:教学“两位数减一位数的退位减法”时,李老师创设买玩具的活动情景,让学生用36元钱买一件价值8元的玩具,看看还剩多少元?学生通过活动、交流得出了几种不同的计算方法。有的小组认为可以先用10元减8元,再加上没用的26元得28元;有的小组认为可以先用36减6再减2得28元;还有的小组认为6减8不够减就用16减8得8,再加20得28元„„ 经过讨论,学生争着说在不同的情况下,可以用不同的计算方法。学生通过在生活中去看、去想,在课堂上议一议、算一算,即拓宽了学生知识视野,而使学生对学习内容,喜欢从问题相关的各方面去积极思考,寻根挖底等等。
(四)、在教学练习中培养学生的创新意识
通过一题多解,培养学生的创新能力。在教学中,通过多角度思考,获得多种解题途径,可拓宽学生的思路,使学生感受到数学的奥秘和情趣,培养学生的创新意识。如:某水泥厂去年生产水泥32400吨,今年前五个月的产量就等于去年的产量,照这样计算,这个水泥厂今年将比去年增产百分之几? 解法一:预计今年的水泥产量为:32400÷5×12=77760,今年可比去年增产:(77760-32400)÷32400=140%。
解法二:设去年每月的水泥产量为“1”,则去年的水泥总产量为“12”,今年前5个月的水泥产量即达12,今年的水泥产量应为:×12,因此今年的水泥产量将比去年增加:(×12-12)÷12=140%。或×12÷12-1=140%。
通过一题多解不仅能拓宽学生的思维领域,增加学生的思维空间,同时通过总结,可揭示一些有规律的东西,达到增长学生智能的目的。
总之,数学教学就是开发、培养学生思维品质的过程,是学生以思维的方式去获取知识的过程。注重学生思维品质的锻炼,促进学生思维品质的发展是我们数学教师培养学生数学素养的重要任务之一。
第五篇:在数学实验教学中培养学生的创新思维
在数学实验教学中培养学生的创新思维
年级: 专业:数学教育 学号:姓名:赵侠
【内容提要】《数学课程标准》将实践活动作为数学学习的一个重要组成部分.教学时,我们结合学生的实际经验和已有知识,构建数学实验,设计富有情趣和有意义的数学实践活动,使学生感受数学与现实生活的密切联系,从周围熟悉的事物中学习数学、理解数学.数学实验教学是再现数学发现过程的有效教学途径,它为学生提供了主体参与、积极探索、大胆实践、勇于创新的学习环境,提供了一条解决数学问题的全新思路。
【关键词】数学实验教学动手操作创新思维
《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动.” 数学家欧拉说:“数学这门科学需要观察,也需要实验.”实验是科学研究的基本方法之一,数学也不例外.然而,由于学生所学的数学知识都是前人发现并经过严格论证的真理.因此,过去学生的数学活动大多表现为以归纳和演绎为特征的思维活动,简约了数学的发现过程.传统数学教学常常把数学过分形式化,忽视探索重要数学知识形成过程的实践活动,制约了学生的发展.数学实验教学是再现数学发现过程的有效途径,它为学生提供了主体参与、积极探索、大胆实践、勇于创新的学习环境,提供了一条解决数学问题的全新思路.信息技术与数学课程的整合,更为数学实验教学开辟了无限广泛的前景.
一、数学实验教学的理解与作用
数学实验是根据研究目标创设或改变某种数学情境,在某种条件下通过思考或操作活动,研究数学现象和发现数学规律的过程.让学生在教师的指导下进行实验,可大大增强学生的好奇心,激发其探索和创造的欲望,使学生的学习过程,变为自己动手实验、观察发现、猜想验证、动脑设计的亲身经历.数学实验是让学生在已有的认知结构基础上,去发现、建构新知识,从而主动建构数学概念,探索和验证数学规律,进而培养学 ─1─
生实事求是的科学态度和勇于探索的科学品质.在数学教学中,充分挖掘实验环境,特别是利用计算机为学生创设良好的实验环境进行数学实验,是实施数学素质教育的重要途径.
数学作为一门基础性学科, 它起源于现实, 而现实的需要又推动了数学的发展.“数学实验”对激发学生的学习兴趣, 促进学生将数学知识融入到生活中, 增强数学应用能力, 发展学生学用意识具有无可替代的作用.随着市场经济的不断完善, 数学知识、数学思想、数学语言、数学意识、数学方法等的应用日趋广泛.“数学的生活化、生活中的数学”“让数学回归生活”等理念正逐步为广大教师所接受.因此, 我们在具体的教学中, 应充分考虑数学实验教学.
二、数学实验教学的基本环节
数学实验教学模式的基本思路是:从问题情境(实际问题或数学问题)出发,学生在教师的指导下,设计研究步骤,进行探索性实验,发现规律、提出猜想、进行证明或验证.根据这一思路,教学模式一般包括以下五个环节.
(一)创设情境.创设情境是数学实验教学过程的前提和条件,其目的是为学生创设思维场景,激发学生的学习兴趣.问题情境的创设要精心设计,要有助于唤起学生的积极思维.
(二)活动与实验.这是这种教学模式的主体部分和核心环节.教师根据具体情况组织适当的活动和实验;数学活动形式可根据具体情况而定,最好是以2-4人为一组的小组形式进行,也可以是个人探索,或全班进行.这一环节对创设情境和提出猜想两大环节起承上启下的作用.
(三)讨论与交流.这是开展数学实验必不可少的环节,也是培养合作精神、进行数学交流的重要环节.让学生积极主动地参与到数学实验活动中去,对知识的掌握,思维能力的发展,学业成绩的提高以及学习兴趣、态度、意志品质都具有积极的意义.
(四)归纳与猜想.归纳与猜想这一环节和活动与实验、讨论与交流密不可分,常常相互交融在一起,有时甚至是先提出猜想,再通过实验验证.提出猜想是数学实验过程中的重要环节,是实验的高潮阶段;根据实验观察到的现象进行数据分析,寻找规律,通过合情推理、直觉猜想,得到结论是数学实验的教学目标实现程度的体现,是实验能否成功的关键环节.
(五)验证与数学化.提出猜想得出结论,并不代表实验结束,还需要验证,通常
有实验法、演绎法和反例法.
三、数学实验教学的实施
根据初中生的心理特征,他们喜欢动手操作,喜欢把新的数学知识跟现实生活、自己的经验联系起来,喜欢富有挑战性、新颖性、开放性的问题.笔者在教学实践中发现,在初中数学教学中恰当地引入数学实验是引导学生发现问题、提出猜想、验证猜想和创造性地解决问题的有效途径.在数学教学中让学生动手做数学实验,开启学生“数学的眼睛”,激发学生用数学的眼光探索数学的新知识,是调动学生热爱数学,学好数学,用好数学,发现步入数学殿堂大门的十分有效的数学教学方法.
1、借助数学实验教学,引导学生加深对概念的理解.
通常数学概念教学是教师给出概念,学生加以记忆,但学生往往对其本质属性理解不够,一知半解,更别提运用了.列夫托尔斯泰曾说:“知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识.”新课程理念就要求教师在概念教学中注重知识的生成,引导学生从已有的知识背景和活动经验出发,提供大量操作、思考与交流的机会,让学生经历观察、实验、猜测、推理、交流与反思等过程,进而在增加感性认识的基础上,帮助学生形成数学概念.
案例1:无理数的概念教学
实验准备:课前准备一把剪刀、两张同样大小的正方形纸片(边长视为1)、计算器. 实验要求:1.让学生利用这些工具剪拼出面积为2的正方形;
实验说明:考虑到本节课的特点和随着学生年龄的增长,他们的思维水平也在不断提高,为此,直接提出富有挑战性的问题:“拼得的正方形的面积是多少?”“它的边长是多少?”
?”“能用分数表示吗?”引导学生进行数学实验与探索.在探索了以上几个问题的基础上,学生真实体会到了面积为2的正方形的边长不能用有理数来表示,但它确实存在,切身感受到除有理数外还有一类数,引出概念“无理数”.
实验结果:拼图对学生来说易如反
掌,通过动手操作,班级交流,全班一致
认为最容易、最美观的拼图(如右图).
(1)输入大于
1小于
2的数,平方的结果比2大了,怎样调整?结果比2小呢?(2)我们能否找到一个有限的小数,使得它的平方刚好等于2?(3)大家有没有发现1.4142„出现循环,那你认为
在省略号的背后,有没有可能出现循环?从而引导学生体验到:事实上,„是一个无限的不循环小数.
在动手操作实验和展示结果的过程,增强学生的感性认识、培养合作精神,并从中体验成功的喜悦,加深了对概念的理解.
2、数学实验教学,有助于培养学生发现数学规律
数学规律的抽象性通常都有某种“直观”的想法为背景.作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系.传统数学课堂教学压缩了学习知识的思维过程,往往造成感知与概括之间的思维断层,既无法保证教学质量,更不可能发展学生的学习策略.新课程理念提倡重视过程教学,在揭示知识生成规律上,让学生自己动手实验,发现数学规律,从而理解更深刻.
案例2:初中数学七年级上册教材47页“探究活动”:
1.一张纸的厚度为0.09mm,那么你的身高是纸的厚度的多少倍?
2.将这张纸按图2-14的方法(图略)连续对折6次,这时它的厚度是多少?
3.假设连续对折始终是可能的,那么对折多少次后,所得的厚度可以超过你的身高?先猜一猜:然后计算出实际答案.你的猜想符合实际问题吗?
实验准备:全班每四人一组,每人准备一张A4白纸.
实验要求:让学生将手中的纸按要求对折,并记录每一次对折后纸张的层数,计算出它的高度,寻找出数据变化的规律,并解决上述问题.
实验结果:问题1学生很快就解决了.解决问题2时,学生列出了这样一份表格:
3、通过数学实验,培养学生的创新思维和数学应用能力
学生的创新思维往往来自与学习过程中的思维“偏差”和好奇心.学生在传统的教学模式中,往往表现为随着时间的推移,好奇心越来越弱,越来越顺着老师讲课的思维想问题,思维中的“偏差”越来越少,思维的亮点也越来越少.而实验教学恰恰是提供
学生探索发现、尝试错误和猜想检验的机会,只要教师善于发现学生的闪光点,善于捕捉学生思维“偏差”的契机,恰当引导,有时实验教学会收到意想不到的效果.
案例3:上一案例教学后,一个学生问:“我第7次折就折不起来了,纸这么小,要折到人这么高,该怎么折?”马上有很多学生也积极响应了这一疑问,也有学生说拿很大的纸就能折很多层.学生忽视了题中的“假设”,怎么办?
笔者让学生再用练习本的纸做折纸实验:四人分别用练习本大小的、纸习本一半大小的纸、练习本四分之一大小的纸、两张练习本大小的纸对折,看各自最多能对折多少次?
实验结果:按题中的方法对折,不论纸张大小,第6次对折都能完成;小的纸张第7次对折就比较勉强,第八次对折就难以完成了,大的纸可对折7次,第八次就难以完成.
教师趁机提问:一张纸对折7次后,厚度是原来的多少?而宽度又是原来的多少? 学生再次实验后得出:一张纸对折7次后,厚度是原来的128倍,而宽度则是原来的1,这样就接近了可以对折的极限. 128
实践证明,学生在思维“偏差”的引导下动手实验,学到了教材上学不到的知识,使学生通过学数学而变得聪明起来.又如,在学了一些相关数学知识后,可让学生根据所学知识设计一些作图工具或测量仪器,如制作丁字尺找圆心、制作勾股计算尺等;或让学生制作一些数学模型,如长方体、正三棱柱(锥)等模型;或让学生设计方案并解决“不过河测河宽”、“测操场上旗杆的高度”等问题.如:学校每年要举行运动会,运动会场地可组织学生来画.跑道的线宽、道宽的尺寸一般都有规定的标准,当100m、200m、400m、800m等跑步项目终点位置确定时,其起点位置如何确定?相应的每跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单.通过教师的指导,使学生领悟到跑道上也蕴含着丰富的数学知识.
这种实验式的教和学拓宽了学生的思维活动空间,使他们的思维更有深刻性和批判性.同时,它不仅仅关心学习者“知道了多少”,更关心学习者“知道了什么”、“怎样知道的”.它追求的不仅仅是解决了数学问题,更重要的是理解、发现和创造,是解决问题的数学精神和乐趣.这是一种新的求实精神,因而它更多的是对传统数学教学的矫正,至少也是一种有益的补充.伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和
模式将具有更为广阔的天地、更为重大的作为.
让我们合理运用实验教学,充分发挥其作用.倡导学生主动参与、交流、合作、探究等多种学习方式,改进学习,使学生真正成为学习的主人.从小培养学生科学的研究态度,拓展思路,形成创新意识,最终培育出更多高素质的优秀人才.
参考文献:
[1]《数学课程标准》(修改稿),2006年10月.
[2]陆麒丞.《计算机技术模拟数学实验与实例开发》2007.10
[3]曹一鸣.《数学实验教学模式探究》 《中学数学教与学》,2003年第6期
[4]李世杰.《用发现式实验开启学生的“数学之眼”》《中学数学教育》,2005.11
[5]杨华涛.《走进数学实验挖掘教学亮点》2006.5