第一篇:用配方法求解一元二次方教学反思
本节课的内容来源于北师大版九年级数学上册第二章《一元二次方程》第二节《用配方法求解一元二次方程》第二课时。
学生在学习本节课之前,已经学过了用配方法求解一元二次方程的第一课时。知道了用配方法解方程的步骤,所以学习本节内容不是太困难。
上节课学生用配方法求解的是二次项系数是1的一元二次方程,本节在此基础上提出:二次项系数不为1的方程如何求解的问题,让学生来思考。如何将不是1转化为1,学生快速发现可以两边同时除以二次项系数,问题迎刃而解。
在上课的过程中,我发现学生的运算能力不强,总会出现这样那样的错误。好的地方在于:对学生出现的错误,我在课堂上能及时处理。比如:学生在除以二次项系数时,粗心大意丢三落四,或知道第一项除了二次项系数之后是1,其余的项除以二次项系数后不知道是多少;学生不认真观察所给方程的不同,将上节跟这节内容混淆,直接移项配方,忘了先要除以二次项系数,再移项配方等等。不好的地方在于:有的学生基础不好,对于他们出现的运算方面的问题,我不能及时给以指导,使得他们接受知识的速度较慢。课堂的教学模式还是有点守旧,学生参与课堂不高,因为有的学生上课注意力不集中,对所学的知识掌握程度为零,所以始终无法开展运算。所以,在今后的工作中,我要:
一、改变自己的教学模式,让学生集中注意力,认真听讲。
二、我要多关注基础不好的学生,帮他们解决运算方面的问题。
三、我要培养学生的眼力,做题之前要多观察方程属于我们求解的哪一类,然后在解方程,不要盲目求解。用配方法求解一元二次方程
(第一课时)
教学反思
本节课的内容来源于北师大版九年级数学上册第二章《一元二次方程》第二节《用配方法求解一元二次方程》第一课时。
学生在学习本节课之前,已经学过了完全平方式和如何求一个正数的平方根的运算,所以本节课刚开始就让学生求解一些很简单的一元二次方程。在求解的过程中,让学生寻求解题方法:左边是一个完全平方式或者一个数字的平方,右边是一个大于或等于零的常数,两边可直接开平方,得到方程的根。进而抛出不是上面情形的方程如何用刚才的方法求解的问题,让学生思考如何转化为完全平方式求出方程的根。中间学生完成一个填空,寻找一次项系数和常数项之间的关系,解决转化问题。然后对所学的知识进行相应练习。
在上课的过程中,我发现学生在简单的一元二次方程的求解上完成的很顺畅。在给出不是一个数的平方或不能写成完全平方式的方程后,学生就出现困难。把不是完全平方式的配成完全平方式,就需要给方程两边添项,添项时遵循常数项为一次项系数一半的平方。这一过程如果一次项系数是正数,学生不会错,但如果是负数的话,学生就会出错。在出错的地方,可能我处理的不是很到位,学生在解题时仍无法杜绝错误出现。学生在添项时出现一边加而另一边不加的情况,这跟自己课前没给学生复习等式的基本性质有关。在两边开平方时,问题严重:不是书写错误就是求解错误。说明学生的底子不是很好,前学后忘或者根本没弄明白,在以后的教学中还得加强训练。
所以在上课时,一方面要做好前后知识的衔接,另一方面要寻求解决问题的最佳方法,这样才能杜绝学生运算出现错误,才能提高学生的运算能力。
第二篇:用配方法求解一元二次方程教学设计
第二章
一元二次方程
用配方法求解一元二次方程
(一)一、教学目标
知识技能:学生已经学习过开平方,知道一个正数有两个平方根, 会用开方法解形如(xm)2n(n0)的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程;
过程与方法:经历用配方法求解一元二次方程的过程, 体会转化的数学思想方法
情感态度价值观:提升学生的合作与交流的能力。
二、教学过程
复习回顾
用字母表示因式分解的完全平方公式。
自主探究
你会解下列一元二次方程吗?你是怎么做的?
x25; 2x235; x22x15;(x6)272102。
做一做:(填空配成完全平方式,体会如何配方)
填上适当的数,使下列等式成立。(选4个学生口答)
x212x_____(x6)2 x26x____(x3)2 x28x____(x___)2 x24x____(x___)2
问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2ax的式子如何配成完全平方式?(小组合作交流)例题讲解
(1)解方程:x2+8x-9=0.(师生共同解决)
解:可以把常数项移到方程的右边,得 x2+8x=9 两边都加上(一次项系数8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 开平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.小结及布置作业
总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。
课本39页习题2.3 1题、2题
三、教学反思
课堂上要运用各种启发、激励的语言,帮助学生形成积极主动的求知态度。
第三篇:《用配方法求解一元二次方程》教案
《 用配方法求解一元二次方程第1课时》教案
教学目标:
1.会用配方法解简单的数字系数的一元二次方程. 2.了解用配方法解一元二次方程的基本步骤.
3.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.
教学重点:
运用配方法解简单的数字系数的一元二次方程.
教学难点:
配方过程中,解一元二次方程的要点的理解.
教学过程:
解下列一元二次方程
(1)x25(2)(x2)25
(3)(x6)25(4)x212x365
解方程x212x150
解:x212x15,(常数项移到右边)1212x212x()215()2(这里的二次项系数必须为1)22(x6)251(整理)(x6)51(运用两边开平方)因此方程x212x150有两个根
x1516 x2516(不合题意应舍去)做一做
“读一读”由学生阅读理解. 课堂小结:
本节课重点学习了配方法解一元二次方程.当方程形如(xm)2n(n0)时,可直接用开平方法求解比较简单,但两边同时开平方时,要注意取正负号,不要与求算术平方根混淆.用配方法解一元二次方程首先要注意将方程化成一般形式,如果二次项系数不为1,要先化二次项系数为1再开始配方,配方时应注意两边同时同上一次项系数一半的平方;最后整理出(xm)2n(n0)的形式,而后应用开平方求解.
第四篇:2.2用配方法求解一元二次方程(一)教学设计
第二章
一元二次方程2.用配方法求解一元二次方程
(一)一、学生知识状况分析
学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;
学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《用配方法求解一元二次方程》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:
1、会用开方法解形如(xm)2n(n0)的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程;
2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力; 3、体会转化的数学思想方法;
4、能根据具体问题中的实际意义检验结果的合理性。
三、教学过程分析
本节课设计了五个教学环节:第一环节:复习回顾;第二环节:自主探究;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:复习回顾
活动内容:
1、如果一个数的平方等于4,则这个数是,若一个数的平方等于7,则这个数是。一个正数有几个平方根,它们具有怎样的关系?
2、用字母表示因式分解的完全平方公式。
活动目的:通过前两个问题,引导学生复习开平方和完全平方公式,为学生后面配方法的学习作好铺垫。
实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第二环节:自主探究
(1)你能解哪些一元二次方程?
(2)你会解下列一元二次方程吗?你是怎么做的?
x25; 2x235; x22x15;(x6)272102。
(3)上节课,我们研究梯子底端滑动的距离x(m)满足方程x212x150,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)
活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。
实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x3)264;(x3)248然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成因此大部分同学认为这个方程不能用开方法解,(xm)2n(n0)的形式,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。
第三环节:讲授新课
活动内容1:做一做:(填空配成完全平方式,体会如何配方)
填上适当的数,使下列等式成立。(选4个学生口答)
x212x_____(x6)2 x26x____(x3)2 x28x____(x___)2 x24x____(x___)2
问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2ax的式子如何配成完全平方式?(小组合作交流)
活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。
实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2ax的式子
a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而
2且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。活动内容2:解决例题
(1)解方程:x2+8x-9=0.(师生共同解决)
解:可以把常数项移到方程的右边,得 x2+8x=9 两边都加上(一次项系数8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 开平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解决梯子底部滑动问题:x212x150(仿照例1,学生独立解决)解:移项得 x2+12x=15,两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51 两边开平方,得x+6=±51
所以:x1516,x2516,但因为x表示梯子底部滑动的距离所以x2516 不合题意舍去。答:梯子底部滑动了(516)米。活动内容3:及时小结、整理思路
用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)
活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(xm)2n(n0)形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。由于此问题在情境引入时出现过,因此也达到前后呼应的目的。最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。
实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。
讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。
第四环节:练习与提高
活动内容:解下列方程
(1)x210x257;(2)x214x8;(3)x23x1;(4)x22x28x 活动目的:对本节知识进行巩固练习。
实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为
1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。
第五环节:课堂小结
活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。
第六环节:布置作业
课本39页习题2.3 1题、2、3题
四、教学反思
1、创造性地使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在初
一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。教学中将难点放在探索如何配方上,重点放在配方法的应用上。本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。培养了学生分析问题,解决问题的能力。
2、相信学生并为学生提供充分展示自己的机会
课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。
3、注意改进的方面
第五篇:2.2 用配方法求解一元二次方程(一)教学设计
《用配方法求解一元二次方程
(一)》教学设计
柳树乡初级中学 吴永伟
学生知识状况分析
学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,学生学习了一元二次方程的概念,经历了用估算法求一元二次方程的根的过程,学生自然会产生用简单方法求其解的欲望。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
教学任务分析
这节课是在学习了直接开平方法解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1的一元二次方程。本课《用配方法求解一元二次方程》主要是让学生体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会“转化”的数学思想.教学目标:
1、理解一元二次方程的解法----配方法。2、利用配方法解简单系数的一元二次方程。
教学重点:利用配方法解一元二次方程
教学难点:把一元二次方程通过配方转化为(xm)2p(p0)
的形式
教学方法:自主参与,合作学习,展示交流
教学过程设计:
一.解读学习目标及重难点:
通过对学习目标及重难点的解读,让学生明白本节课的学习目标,使学生
在学习中做到心中有数。
二.教学过程:
(一)预习交流
活动内容:
1、用字母表示因式分解的完全平方公式 活动目的:通过问题,引导学生复习完全平方公式,为学生后面配方法的学习作好铺垫。
2.填上适当的数,使下列等式成立。
x212x_____(x6)2 x26x____(x3)2 x28x____(x___)2 x24x____(x___)2
问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2ax的式子如何配成完全平方式?(小组合作交流)
活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。
(二)探究释疑
(1)解方程:x2+8x-9=0.(根据上面的启示让学生独立解决)
解:可以把常数项移到方程的右边,得 x2+8x=9 两边都加上(一次项系数8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 开平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解方程;x212x150(根据上面的启示让学生独立解决)解:移项得 x2+12x=15,两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51 两边开平方,得x+6=±51 所以:x1516,x2516,2 思考:用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组 合作交流)
活动目的:通过让学生对1题和2题的展示与讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(xm)2n(n0)形式,最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。然后通过引导让学生自己总结用配方法解一元二次方程的步骤。
(三)巩固提升 活动内容:解下列方程
(1)x2-10x+25=7;(2)x2-14x=8
(3)x2+3x=10;(4)x2+2x+2=8x+4
活动目的:对本节知识进行巩固练习,通过练习使学生基本都能用配方法解解二次项系数为1的一元二次方程。
(四)拓展延伸
活动内容: 解方程:x2+px+q=0.(p2-4q≧0)活动目的:教师放手让学生用已经获取的经验去解决难一些的问题,由学生先独立思考然后展示,其他同学发现问题进行补充,达成共识。
(五)总结归纳:谈谈你本节课的收获与大家一起分享?
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。第六环节:布置作业
课本39页习题2.3 1题、2题