学习解答口报减法应用题相关教案[范文模版]

时间:2019-05-15 15:27:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《学习解答口报减法应用题相关教案[范文模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《学习解答口报减法应用题相关教案[范文模版]》。

第一篇:学习解答口报减法应用题相关教案[范文模版]

活动目标:

1.学习看图用三句话编一道减法应用题,继续体验应用题的基本结构。

2.能用简明的语言表述应用题中事物之间的数量关系。

活动准备:

范例图片若干;幼儿操作材料人手一份。

活动重点:

理解三幅图的意思,会看图编减法应用题。

活动难点:

能用简明的语言表述应用题。

教学过程:

一、播放图片。

1.师:这幅图上有什么?谁能用简单的话说一说?(花园里有5只蝴蝶在飞)

2.师:再看这幅图怎么了?(飞走了2只蝴蝶)

3.师:花园里还剩几只蝴蝶呢?你是用什么方法算出来的?(请幼儿列式)

二、出示图片。

1.师:应用题是讲了一件事,2个是已经知道的数,最后提出一个问题。

2.出示蝴蝶图片一套:

老师编应用题,请幼儿找出应用题的三个要求。

3.提问:刚才编的应用题讲了一件什么事?有哪两个已知道的数?还提出一个什么问题?

4.小结:编应用题有三个要求,要说出一件事情,有2个已知道的数,还提出一个问题5.出示小朋友拍球、小鸡吃虫图片:

提问:谁能根据三个要求来编应用题,编得又快又完整?

三、布置与辅导。

1.提出要求:桌上有几种材料,可以看图片、图案、算式来编应用题。看谁能根据一件事、两个已知道的数,提出一个问题,三个要求来编应用题,看谁编得又快又好,并且列出式子,计算出结果。

2.老师巡回指导,倾听幼儿编应用题。

四、活动讲评。

1.请个别幼儿讲述自己编的应用题。

2.师生一起讲评。

第二篇:指导盲生解答应用题

指导盲生解答应用题的“三个着力点”

在我国西部农村教育体系中,视障教育多以盲教育为主。而农村盲生受视觉缺陷和学前教育很差等诸多因素,导致他们在学习中存在着一些明显的学习能力缺陷,如接受新事物、积累知识、分析问题、动手操作、想象力、空间思维等学习能力都较差。因此,盲生在学习中总是顾此失彼、力不从心,对于比较抽象,需要具备一定逻辑思维能力的应用题解答来说,那就更难了。他们通常表现为读不通题目,弄不清题意,理不清思路,找不到方法。从学习能力上分析,他们就是摸读能力跟不上,理解能力和分析能力差,归纳与总结能力缺乏。十年教学实践让我有了针对性解决盲生解答应用题之难的教学研究机会,经过反复实践,我认为要科学、有效地指导盲生正确、快速地解答应用题,应该着力于如下“三点”。

第一点:重视盲生摸读能力培养,着力指导他们从小养成认真摸读的良好学习习惯。

在传统教育理念中,语文老师应该重视的是学生的读写能力,数学老师则重视的是学生的计算能力。其实不是这样的,特别是在盲教学中,语、数教学层层相连、息息相关、互促互进。如果盲生没有很好的摸读能力,别说让他计算,就让他认识1、2、3都是不可能的事。因为他们摸不清就分不清点位,分不清点位就不知道是什么东西,就像我们正常人初次接触盲文一样,分不清东西南北。教学中我还发现很多这样的盲生,如某个学生因摸读能力差,跟不上其他同学的阅读步伐时,他常常是别人怎么读就跟着怎么读,自己根本无法摸读。如果时间长了,这样的学生得不到老师的及时矫正和正确引导,最终他将永远的滥竽充数,丧失学习信心和动力。理所当然,在今后的应用题学习中,你要是让他先摸读题目,弄清题意时,那就是摸马无角、一问三不知。因此,在数学教学中,我们更应该重视学生的摸读能力,哪怕是一个点符、一个声母、一个韵母、一个音节、还是一个标点符号,应当让每一位盲生从开始接触盲文时都要摸得清清楚楚、明明白白,坚决杜绝囫囵吞枣的现象,着力培养孩子养成认真摸读的良好学习习惯。这是盲生学习的基石,只要我们奠定好这一基石,就能更好地激发盲生学习兴趣,更好地解除盲生自闭、自卑心理,科学引导他们成为学习中的佼佼者,真是一举多得!

第二点:重视盲生听、摸、读、口述练习,着力指导他们逐步具有理解题意和分析问题的能力。

在解答应用题时,让学生读通题目是基础中的基础,而真正要解答题目时,我们首先得让学生理解题目、明白题意、分析关系。只有明白了题目的意思,你才能让学生找出题目中所给予的已知条件和未知条件,理清两者之间的关系。因此,培养学生的理解能力和分析能力非常重要。虽然盲生听力超常灵敏,但终因小时独自呆在家里的时间过长,接触外界事物、与人沟通交流的机会太少,加上农村家庭教育、学前教育薄弱,导致他们的理解能力和分析能力相对较低,给学习带来很大的困难。为此,我经常与盲生利用语言交流,鼓励他们广读课外读物,以此增加他们知识的广度和深度,从而提高他们的理解题意和分析问题的能力。比如在交流中,开始用一些通用的、简短的句子,逐渐扩充句子,让句意不断丰富,让问题不断清楚。就好比语文中的扩充句子练习一样。举一个最简单的关于让学生听的例子:小明买来语文练习本和数学练习本(理解:买来什么?)→小明买来3本语文练习本和4本数学练习本(理解:买来几本什么和几本什么?)→小明买来3本语文练习本和4本数学练习本,他一共买来多少个练习本?分析:题目告诉了我们什么?(已知)解答的问题是什么?(未知)已知与未知有什么关系?这样的练习看似简单,但对于帮助刚接触应用题的盲生来说,提高他们理解能力作用。接下来,我们还可以指导盲生口述刚才理解应用题的过程,或鼓励盲生口述出自己是如何理解、如何领会刚才的讲解。通过这样的口述练习,同样可以增强盲生的理解和分析能力。随着盲生理解题意和分析问题能力的提高,我们还可以引导学生多读课外读物等来增加他们的知识面,进一步提高他们的理解题意和分析问题的能力,同时也巩固了学生掌握听、读理解与分析问题的基本技能。

第三点:重视盲生心理疏导,着力指导他们逐步具有归纳、总结问题和解决问题的能力。

盲生心理特征决定了他们在学习时容易出现不自信、没恒心、情绪波动不定、盲目、急功近利的学习现状。这都是因盲生身受视觉缺陷而导致不健康心理的具体行为表现。每当他们在生活和学习中遇到一点小问题退缩不进时,老师应该及时给予心理疏导和鼓励,巧借学生未完全丧失的成功喜悦心情,尽快指导他们归纳和总结解决问题的方法。力求把复杂的东西框架化、简单化,就像电脑里的程序一样,别让盲生满脑子里都是这样或那样的问题,问题多了,就自然击退了盲生的学习动力。因此,在教学实践中,老师应尊重学生,科学面对盲生学习能力和心理健康状况。如果老师不站在专业的角度对待盲生,反而给予盲生更多的“弯路”,那将在很大程度上打击盲生的学习积极性,导致今后的教学效果不是事半功倍,而是事倍功半。如我们教育战线上的老前辈留下来的简单的归纳总结方法:求“一共”用加法;求“一个数比另一个数多多少或少多少”用减法;求“一个 数的几倍”用乘法等。这样的归纳与总结让学生少走“弯路”,永远 保持着成功喜悦的心情去学习。

当然,指导盲生解答应用题的方法固然还有很多。但是,随着盲生学习面不断扩大,其知识的深度和广度将不断增加。作为新时期的特殊教育工作者,为了特殊儿童更好的明天,我们应该继续努力学习,坚持不懈地探究更实用、更合理的教与学的方法,不断提高我们科学指导特殊儿童学习的能力。

第三篇:四年级数学教案:解答应用题

教学目标

1、通过练习,使学生掌握解答应用题的一般步骤,学会凭借线段图分析数量关系,能用综合算式解答三步计算的应用题。

2、通过复合应用题解答,促进学生思维的发展,提高分析问题和解决问题的能力。

教学准备

实物投影仪、投影片、小黑板、米尺。

教学过程

(一)复习准备

1.投影出示准备题。

2.说题,审题。问,要求出问题我们必须知道什么?四年级种的棵数不知道怎么办?

3.学生尝试列式,指名板演:36+36×2

4.问:还有其他方法吗?指名板演:36×(l+2)

5.学生列式计算。校对答案。

(二)新课教学

1、导课

我们如果把准备题的问题改成“五年级种的棵数比三、四年级种的总数少8棵,五年级种树多少棵”应该怎样解答?这就是我们这节课要学习的三步计算应用题。(揭示课题)

2.出示例1,理解题意。

(1)读题后说说题中的条件和问题。

(2)根据题意画线段图。

3.摸索解题思路。

(1)问:要求问题,我们必须知道什么?

(2)学生讨论发言。

(3)小结。

要求五年级种树多少棵,需要知道三、四年级的种树总棵数,就是必须知道三、四年级各种树多少棵。已知三年级种树36棵,因此,必须先求四年级种树多少棵。

4.学生尝试练习,教师巡视,校对答案。

5.教学检验方法。

(1)把得数当作已知数再算一遍,板书36+36×2一100=8(棵)

(2)用倍比法验算,板书36×(1+2)-8=1oo(棵)

6.指导学生看书,并把例1补充完整,7.试一试:

(1)学生尝试练习并说说解题思路。

(2)集体评析、校对。

8.归纳解答应用题的步骤。

(1)学生讨论,指名说说。

(2)教师归纳并请学生填写书本中的方框。

(3))齐读,理解巩固解应用题的四个步骤。

(三)巩固练习

“练一练”第1卫题。

(1)学生读题、审题,分析数量间的关系。

(2)学生列式计算,教师巡视、辅导,校对答案。

(四)课堂总结

今天我们学习了什么,解答应用题一般步骤有哪些?

(五)作业:《作业本》第49页(四十九)

(2)练习十五

第四篇:小学数学应用题分析解答方法

小学数学教学论文:培养学生解答应用题的能力

应用题在小学数学中占有很大的比例,所涉及的面也很广。解答应用题既要综合运用小学数学中的概念、性质、法则、公式等基础知识,还要具有分析、综合、判断、推理的能力。所以,应用题教学不仅可以巩固基础知识,而且有助于培养学生初步的逻辑思维能力。

怎样培养学生解答应用题的能力呢?下面谈谈自己的体会。

一、牢固地掌握基本的数量关系

是解答应用题的基础

应用题的特点是用语言或文字叙述日常生活和生产中一件完整的事情,由已知条件和问题两部分组成,其中涉及到一些数量关系。解答应用题的过程就是分析数量之间的关系,进行推理,由已知求得未知的过程。学生解答应用题时,只有对题目中的数量之间的关系一清二楚,才有可能把题目正确地解答出来。换一个角度来说,如果学生对题目中的某一种数量关系不够清楚,那么也不可能把题目正确地解答出来。因此,牢固地掌握基本的数量关系是解答应用题的基础。

什么是基本的数量关系呢?根据加法、减法、乘法、除法的意义决定了加、减、乘、除法的应用范围,应用范围里涉及到的内容就是基本的数量关系。例如:加法的应用范围是:求两个数的和用加法计算;求比一个数多几的数用加法计算。这两个问题就是加法中的基本数量关系。

怎样使学生掌握好基本的数量关系呢?

首先要加强概念、性质、法则、公式等基础知识的教学。举例来说,如果学生对乘法的意义不够理解,那么在掌握“单价×数量=总价”这个数量关系式时就有困难。

其次,基本的数量关系往往是通过一步应用题的教学来完成的。人们常说,一步应用题是基础,道理也就在于此。研究怎样使学生掌握好基本的数量关系,就要注重对一步应用题教学的研究。学生学习一步应用题是在低、中年级,这时学生年龄小,他们容易接受直观的东西,而不容易接受抽象的东西。所以在教学中,教师要充分运用直观教学,通过学生动手、动口、动脑,在获得大量感性知识的基础上,再通过抽象、概括上升到理性认识。下面以建立有关倍的数量关系为例来说明。

两个数量相比,既可以比较数量的多少,也可以比较数量间的倍数关系。这就是说,“倍”也是在比较中产生的。在教有关“倍”的数量关系时,核心问题是对“倍”的认识。为了使学生理解“倍”的意义,教学中可以这样进行:

第一步从同样多入手。教师在第一行摆了2个△,第二行摆了2个○,启发学生说出○与△的个数同样多。

第二步引出差,使差与比的标准同样多。接着教师在第二行再摆上1个○,这时○比△多1个。然后在第二行再摆上1个○,使学生说出○比△多2个;再引导学生通过观察得出:○比△多的部分与△的个数同样多。

第三步从份数入手建立“倍”的概念。接上面,如果把2个△看作1份,○有这样的几份呢?○有这样的2份,我们就说○的个数是△个数的2倍。

把“倍”的概念理解透了,那么教有关“倍”的数量关系时就比较容易了。例如教“求一个数的几倍是多少”这种数量关系时,可以使用下面这样的应用题:

有3只黑兔,白兔的只数是黑兔的4倍,白兔有几只?

在这道简单应用题中,“白兔的只数是黑兔的4倍”这个条件是关键。通过教具演示和学生动手操作,学生清楚地知道这句话的含意是:把3只黑兔看作1份,白兔有这样的4份。求3只的4倍是多少,就是求4个3只是多少。用乘法计算列式是:3×4=12(只)。从而使学生掌握“求一个数的几倍是多少”,用乘法计算。

如果在建立每一种数量关系时,都能使学生透彻地理解,牢固地掌握,那么就为多步应用题的教学打下良好的基础。

此外,人们在工作和学习中,把一些常见的数量关系概括成关系式,如:单价×数量=总价、速度×时间=路程、工作效率×工作时间=工作总量、亩产量×亩数=总产量,应使学生在理解的基础上熟记,这对学生掌握数量关系及寻找应用题的解题线索都是有好处的。

再有,对一些名词术语的含意也要使学生很好地掌握。如:和、差、积、商的意义,提高、提高到、提高了、增加、减少、扩大、缩小等的意义。否则会在分析数量关系时造成错误。

二、掌握应用题的分析方法

是解答应用题的关键

学生掌握了基本的数量关系后,能否顺利地解答应用题,关键在于是否掌握了分析应用题的方法。可以这样说,应用题教学成败的标志也在于此。

(一)常用的分析方法

分析应用题常用的方法是综合法和分析法。

1.综合法

综合法的解题思路是由已知条件出发转向问题的分析方法。其分析方法是:选择两个已知数量,提出可以解决的问题;再选择两个已知数量(所求出的数量这时就成为已知数量),又提出可以解决的问题;这样逐步推导,直到求出题目的问题为止。

2.分析法

分析法的解题思路是从应用题的问题入手,根据数量关系,找出解这个问题所需要的条件。这些条件中有的可能是已知的,有的是未知的,再把未知的条件做为中间问题,找出解这个中间问题所需要的条件,这样逐步推理,直到所需要的条件都能从题目中找到为止。

以上这两种分析方法不是孤立的,而是相互关联的。由条件入手分析时,要考虑题目的问题,否则推理会失去方向;由问题入手分析时,要考虑已知条件,否则提出的问题不能用题目中的已知条件来求得。在分析应用题时,往往是这两种方法结合使用,从已知找到可知,从问题找到需知,这样逐步使问题与已知条件建立起联系,从而达到顺利解题的目的。以下面这道应用题的分析为例,就可以看出两种分析方法结合运用的过程。

例:某工厂计划全年生产机床480台,实际提前3个月就完成了全年计划的1.2倍。照这样计算,这个厂全年实际生产机床多少台?

分析过程用图64表示如下。

顺便再提一下,如果在分析这个题时,从条件入手分析而不兼顾问题的话,很容易根据“计划全年生产机床480台”这个已知条件,先提出“计划每月生产机床多少台”这个问题,而提出的这个问题与解题是无关的,使分析偏离了所要解决的问题。从而再一次说明,在分析应用题时,一定要瞻前顾后,统观全题。

(二)特殊的分析比较

有些应用题由于结构比较特殊,单纯用综合法和分析法分析还是有困难的,这就需要再掌握一些特殊的分析应用题的方法,这样有助于提高分析解答应用题的能力。常用的特殊的分析方法有以下几种。1.转化法

由于已知条件和问题的不同,转化的方法又可以细分为以下五种。

(1)把一事物转化成它事物

例妈妈买了3千克桔子和4千克苹果,共花了23.4元。每千克苹果的价钱是桔子的1.5倍。每千克苹果和桔子各多少元?

这个题由于桔子和苹果的重量不相等,故而需要转化。“每千克苹果的价钱是桔子的1.5倍”是转化的条件。可以这样分析:买1千克苹果的钱可以买1.5千克桔子,那么买4千克苹果的钱可以买(4×1.5)千克桔子。从而可知,买苹果

和桔子花去的23.4元钱相当于买(3+4×1.5)千克桔子的钱。通过这样的转化,题目就迎刃而解了。

解:23.4÷(3+4×1.5)=2.6(元)

2.6×1.5=3.9(元)

答:每千克苹果3.9元,每千克桔子2.6元。

(2)单位“1”的转化

根据题意,先画出线段图(见图65)。

是不相同的,只有统一了单位“1”才能解题,这就需要进行单位“1”的转化。

答:这箱灯泡共有294个。

此题也可以余下的个数为“1”,用转化法求出总数是余下个数的几倍。这样转化解题的步骤要多,不如上面这样转化解题简便。

(3)运用“同样多”的概念进行转化

例二月份甲的奖金是乙的4倍。三月份甲比上月多得奖金8元,乙比上月少得奖金2元,三月份甲的奖金是乙的6倍。问三月份乙得奖金多少元?

由题意可知,二月份和三月份甲的奖金都是以乙的奖金数为“1”,但二月份和三月份乙的奖金数是不一样的,所以题目中的“4倍”与“6倍”的单位“1”是不相同的,这就需要用转化法统一单位“1”。但是转化的方法与上题不同,为了便于说明,先画出图(见图66)。

已知二月份甲的奖金是乙的4倍,把甲二月份奖金4份中的每一份去掉2元,那么每一份余下的部分就与乙三月份的奖金同样多。这就是说,甲二月份的奖金比乙三月份奖金的4倍多8元。从而可知,乙三月份奖金的6倍比乙三月份奖金的4倍多16元。运用“同样多”的概念,就把“4倍”与“6倍”的单位“1”统一成以乙三月份的奖金为单位“1”了。

解:(2×4+8)÷(6-4)=8(元)

答:乙三月份的奖金是8元。

(4)利用常识进行转化

例一个水塘里有一些龟和鹤,足数共120只,鹤的只数是龟的3倍。问龟、鹤各有多少只?

从题目的已知条件看,鹤与龟足数之和是120只,可倍数关系却给的不是足数之间的关系,这就需要把只数之间的倍数关系转化成足数之间的倍数关系。这种转化是应用常识进行转化的。因为龟有4只足,鹤有2只足,即2只鹤的足数与1只龟的足数相同。所以当鹤的只数是龟的3倍时,鹤的足数只是龟的1.5倍。至此题目就成为一道和倍问题,可以求出龟与鹤的足数,进而就可以求出龟与鹤的只数。

解:120÷(1+3÷2)=48(只)

48÷4=12(只)

12×3=36(只)

答:龟有12只,鹤有36只。

(5)图形的转化

因为本文是谈应用题教学,所以关于图形的转化就不再举例说明了。

综上所述,凡是能用转化法解的题目其本身都必定存在着可转化的条件。用转化法解这种题时,关键是要正确地找出转化的条件。2.假设法

在我国古代数学名著《孙子算经》中载有鸡兔同笼问题,其解题方法应用的就是假设法。假设法应用的范围也是比较广的,请看下面几个题。

例1一件工程,甲独做10天完成,乙独做15天完成,丙独做20天完成。现在三人合做,甲因病中途休息,这样到第6天才完成任务,求甲休息了几天。

这是一道工程问题,一般的解法是:

应用假设法解此题可以这样想:假设甲没有休息,那么甲、乙、丙三人合做6天必然超额完成任务。甲完成超额部分的天数,就是他休息的天数。

答:甲休息了3天。

例2有一批零件,师傅单独加工比徒弟少用3小时。师傅每小时加工10个,徒弟每小时加工8个,这批零件有多少个?

解法一假设师傅加工的时间与徒弟相同,那么师傅可多加工30个零件。由已知条件可知,师傅每小时比徒弟多加工2个零件,根据这两个条件就可求出徒弟加工这批零件所用的时间,进而就可以求出这批零件的个数。

解:8×[10×3÷(10-8)] =8×15 =120(个)

答:这批零件有120个。

解法二假设徒弟加工的时间与师傅相同,那么徒弟就有24个零件没有加工。由已知条件可知,徒弟比师傅每小时少加工2个零件,根据这两个条件就可求出师傅加工这批零件所用的时间,进而也就可以求出这批零件的个数。

解:10×[8×3÷(10-8)]

=10×12

=120(个)

答:同上。

例3甲乙两个仓库内原来共存货物480吨,现在甲仓又运进它所存货物的40%,乙仓又运进它所存货物的25%,这时两仓共存货物645吨。原来两仓各存货物多少吨?

这个题中的百分率40%和25%的单位“1”不相同,但是不具备转化的条件,所以采用假设法来分析。

假设两仓都运进所存货物的40%,那么可知共运进货物480×40%=192吨。而实际两仓共运进货物645-480=165吨。从而可知多算了192-165=27吨,为什么多算了27吨呢?就是因为乙仓实际运进了所存货物的25%,而也当做运进所存货物的40%计算了。从而可知,乙仓原来所存货物的40%与25%的差相当于27吨,于是可知乙仓原来存货物的吨数。

解:480×40%=192(吨)

645-480=165(吨)

192-165=27(吨)

27÷(40%-25%)=180(吨)

480-180=300(吨)

答:原来甲仓存货物300吨,乙仓存货物180吨。

此题也可以假设两仓都运进所存货物的25%,其思路可以仿照上面所述,这里就不多谈了。

用假设法解题的思考方法是:先根据解题的需要对已知条件做出假设,通过假设引出矛盾,然后分析产生矛盾的原因,把原因分析清楚了,题目就可以解答出来了。3.对应法

用对应法解答的应用题,主要是求平均数问题和分数、百分数应用题。

例1同学们分成三个组糊纸盒,第一组15人,1.5小时共糊了405个;第二组12人,2小时共糊了384个;第三组10人,2.5小时共糊了500个。问:①平均每组糊纸盒多少个?②三个组平均每人糊纸盒多少个?③三个组平均每小时糊纸盒多少个?

①求平均每组糊纸盒多少个,这是求简单平均数问题。需要用三个组共糊纸盒数除以3.也就是三个组共糊纸盒数与组数要相对应。即:

②求三个组平均每人糊纸盒多少个,就需要用三个组糊纸盒总数除以三个组的总人数。也就是纸盒的总数与糊纸盒的总人数相对应。即:

③求三个组平均每小时糊纸盒多少个,就需要用三个组糊纸盒的总数除以三个组用的总时间。也就是纸盒总数与糊纸盒用的总时间相对应。即:

第②③两问都属于求加权平均数问题。求加权平均数的关系式一般写作:总数量÷总份数=平均数。其中总数量与总份数要相对应。学生在学习这种应用题时,容易出现的错误恰恰是总数量与总份数不相对应。教这类应用题时,如果在讲清算理的基础上,概括出解题的关系式,并突出讲清总数量与总份数的对应关系,那么学生解题时就不会出现上述不对应的错误了。

例2加工一批零件,甲独做需18小时,乙独做需15小时。两人合做,完成任务时甲比乙少做了90个。这批零件共有多少个?

这是一道工程问题与分数问题相复合的应用题。学生解答这个题最容易

分数应用题中的“量”与“率”的对应关系没掌握好。怎样找它们的对应关系呢?可以通过下面的两条途径。

求出这批零件的总数。

答:这批零件共有990个。

上面解法中的最后一步很充分地体现出了“量”与“率”的对应关系,简单地概括成一句话就是:1小时的量差与1小时的率差相对应。

对应关系,就可以求出零件的总数。

答:同上。

为了提高学生解答分数应用题的能力,除了要正确确定单位“1”,选择正确的算法外,掌握“量”与“率”的对应关系是关键,学生出现错误往往是在这个地方。所以在教学中要突出“量”与“率”的对应关系。

4.消去法

应用消去法解答的应用题的结构一般是:在两组(或几组)相关联的量中,只知道两种(或几种)物品的数量和总价之和,而问题是求每类物品的单价。解这类题目的基本思想,是应用消去法消去一些未知数,使题目中只含有一个未知的数。

例 小明请小红代买5支铅笔和8个练习本,按价钱交给小红2.04元。结果小红却买了8支铅笔和5个练习本,找回0.18元。求一支铅笔多少元。

先把已知条件排列出来。

5支铅笔——8个练习本——共2.04元

8支铅笔——5个练习本——共(2.04-0.18元)元

解这个题的难点在于两组相关联的量中,同类量的数量是不相等的。既然题目的问题是求一支铅笔多少元,可以用扩大倍数的办法,使练习本的数量相同,于是得到下式:

25支铅笔——40本练习本——共10.2元

64支铅笔——40个练习本——共14.88元

练习本的数量相同,那么所花的钱也相同。14.88元比10.2元多的钱数就是(64-25)支铅笔的钱数。至此问题就解决了。

解:[(2.04-0.18)×8-2.04×5]÷(8×8-5×5)

=[14.88-10.2]÷(64-25)

=4.68÷39 =0.12(元)

答:每支铅笔0.12元。

用消去法解的题还可以有很多变化,但其基本的解题思想是不变的,所以就不再举例了。5.图示法

图示法就是用线段图(或其它图形)把题目中的已知条件和问题表示出来,这样可以把抽象的数量关系具体化,往往可以从图中找到解题的突破口。图示法解题的面是很宽的,无论是整数和小数应用题,还是分数和百分数应用题,以及几何初步知识方面的应用题,都可以采用这种方法。前面在讲其它解题方法时,有些题目就已经使用了图示法。所以图示法既可以单独使用,也可以与其它解题方法结合使用。

例1 有大、小两个正方形,边长相差3厘米,面积相差63平方厘米。这两个正方形的面积各是多少?

这是一道几何初步知识方面的应用题,题目要求两个正方形的面积各是多少,这就需要求出其中一个正方形的边长。但正方形的边长、边长之差、面积之差等之间的关系抽象地分析是不容易找出它们之间的联系的。为此可用图示法帮助解决这个难点。这个题宜画几何图形(见图67)

把小正方形放在大正方形内,再添加两条辅助线,于是边长之差与面积之差都反映出来了。又清楚地看出,面积之差是由三部分组成的:Ⅰ是边长为3厘米的正方形,Ⅱ和Ⅲ是两个面积相等的长方形,它们的长就是小正方形的边长,宽就是边长之差。通过图示法,把题目的已知条件与问题之间的联系都找出来了,按照图提供的解题思路就可以顺利解题了。

解:(63-3×3)÷2÷3=9(厘米)

9×9=81(平方厘米)

81+63=144(平方厘米)

答:大正方形的面积是144平方厘米,小正方形的面积是81平方厘米。

例2 有三堆棋子,每堆棋子数一样多,并且都只有黑白两色棋子。第

把这三堆棋子集中在一起,问白子占全部棋子的几分之几?

这个题是第一届华罗庚金杯少年数学邀请赛复赛中的一个题。此题在理解题意上就有一定的困难,解题的线索在哪里更不容易找出来了,为此可以采用图示法。此题宜画示意图,用三个一样大的长方形代表三堆数目相等的棋子,用阴影部分代表黑棋子。

从图68中我们可以看出,把第二堆里的黑子与第一堆里的白子对换,第

以下应用转化法就可以求出全部黑子占全部棋子的几分之几,问题也就迎刃而解了。

下面再看一道第一届华罗庚金杯少年数学邀请赛复赛中的试题。

例3 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,甲 的人数的几分之几?

这道题很抽象,如果不画图,简直不知从何处下手解答。画图时可以这样考虑:用两条一样长的线段表示两班人数,把甲班参加天文小组的与乙班没参加天文小组的分别画在两条线段的同一端,这样有助于反映出数量之间的关系,如图69示。

等。找到了这个重要的线索,应用转化法就可以解题了。

画图分析应用题是一种能力,这种能力需要在整个应用题教学过程中逐步培养。在低年级可以先培养学生看懂图,从中年级开始可逐步培养学生画图。画图的过程就是理解题意和分析数量关系的过程,从这个意义上讲,画图能力的强弱也反映了解题能力的高低。所以在应用题的教学过程中,要注意培养学生画图分析应用题的能力。

三、加强训练是提高学生解

答应用题能力的途径

学生掌握了解答应用题的基础知识,也学习了分析应用题的思考方法,是不是学生就能很顺利地解答应用题了呢?回答是“不见得”。打个比喻,一个游泳运动员掌握了游泳的理论,而不下水刻苦练习,也是游不出好成绩的。游泳是如此,解应用题也是如此。因此,加强训练是提高学生解答应用题的能力不可缺少的一环。怎样训练呢?下面谈谈个人的看法。

(一)要训练学生能用流利的语言叙述解题思路

应用题教学的目的是培养学生有根有据的、有条有理的、前后无矛盾的分析问题和解决问题的能力,即《大纲》要求的逻辑思维能力。

有些学生虽然能把题目正确地解答出来,但不一定能把思考过程说得清清楚楚。教学中,有些教师也只满足于学生会解题,而忽视让学生叙述解题思路,这是不够的。让学生叙述解题思路有以下几点好处:

第一,有利于培养学生的口头表达能力。第二,教师可以了解学生的思维状况。思维是畅通的呢,还是不畅通的;若思维不畅通,症结在什么地方,教师可以有的放矢地进行帮助。第三,节约时间。一节课的时间是个常数,如果只有等学生把题目做出得数来才能判断他们是否分会析应用题(在解题过程中还要进行大量的计算),那么一节课做不了几个题。且学生做题有快有慢,等慢的同学做完题,快的同学要白白浪费许多时间。如果让学生口头分析应用题,可以节约大量时间,练习的题量会大大增加。

学生用语言叙述应用题的分析过程,开始时往往语言噜嗦,层次不够清楚,因果关系说得不确切等,这时,教师不妨给学生一个分析过程的固定模式。即:用分析法分析时,这样说:要求××××问题,就得知道××××和××××;用综合法分析时,这样说:已知××××和××××,就可以求出××××。例如:

东风服装厂原计划18天生产服装1800件,实际提前3天完成了任务,平均每天实际比计划多生产多少件?

用综合法分析:已知原计划18天生产服装1800件,就可求出原计划1天生产服装的件数。已知原计划用18天,实际提前3天完成任务,就可以求出实际完成任务的天数。已知要生产服装1800件,又知实际完成任务的天数,就可以求出实际1天生产服装的件数。已知实际1天和计划1天生产服装的件数,就可求出平均每天实际比计划多生产的件数。

用分析法分析:要想求平均每天实际比计划多生产多少件,就得知道实际每天生产多少件和计划每天生产多少件。要想求计划每天生产多少件,就得知道要生产服装多少件和计划用几天完成,这两个条件都是已知的。要想求实际每天生产多少件,就得知道要生产服装的件数和实际用几天完成。生产服装的件数是已知的;要想求实际用几天完成,就得知道计划用几天和实际比计划提前了几天,这两个条件都是已知的。分析完毕。

(二)要训练学生看到两个有联系的已知条件,能提出可以解答的问题;看到一个问题,能够想到与问题有联系的已知条件

这样训练的目的,既可使学生牢固地掌握数量关系,也可以提高学生分析解答应用题的能力。这种训练方式各年级都可使用。例如:

已知:小明有8支铅笔,小红有4支铅笔。

可以提出的问题:

(1)小明和小红共有几支铅笔?

(2)小明比小红多几支?

(3)小红比小明少几支?

(4)小明给小红几支后两人铅笔同样多?

(5)小明的铅笔支数是小红的几倍(或百分之几)?

(6)小明的铅笔支数比小红多百分之几?

(7)小红的铅笔支数是小明的几分之几(或百分之几)?

(8)小红的铅笔支数比小明少百分之几?

(9)小明与小红铅笔支数的比是几比几?

……

又如:

问题是:每支铅笔多少元?

可以想到与问题有直接联系的已知条件:

(1)买铅笔的支数和一共所花的钱数;

(2)买一支铅笔和一块橡皮(或其它文具,以下略)共花的钱数和一块橡皮的价钱;

(3)一块橡皮的价钱和一支铅笔比一块橡皮多多少元(或少多少元);

(4)一块橡皮的价钱和一支铅笔的价钱是一块橡皮的几倍(或几分之几);

(5)一块橡皮的价钱和一块橡皮比一支铅笔多多少元(或少多少元);

(6)一块橡皮的价钱和一块橡皮的价钱是一支铅笔的几倍(或几分之几);

(7)买一支铅笔和一块橡皮共花的钱数和铅笔的价钱占共花钱数的几分之几(或百分之几);

(8)一支铅笔与一块橡皮一共多少元和铅笔与橡皮价钱的比;

……

以上谈到的问题与已知条件搭配的练习,可以根据学生掌握知识的多寡适当增减内容。另外,练习的形式可以多种多样,不必仅仅局限于上述一种形式。

(三)要训练学生会把一道简单应用题扩展为多步应用题

这种训练的目的,是使学生看清怎样把一个与问题有直接联系的已知条件隐蔽起来,变为间接条件;看清一道多步应用题是怎样在简单应用题的基础上演变而来的。学生看清这一过程后,在分析应用题时,就能顺利地把隐蔽条件找出来,并转化为已知条件,这样必将能提高学生解答应用题的能力。

例 服装厂计划做660套衣服,已经做了375套,还剩多少套没做?(一步)

扩展题:

(1)服装厂计划做660套衣服,已经做了5天,平均每天做75套,还剩多少套没做?(两步)

(2)服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的要3天做完,平均每天应做多少套?(三步)

(3)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天做95套,还需几天完成?(三步)

(4)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,还需几天完成?(四步)

(5)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,做完这批衣服共用了多少天?(五步)

(6)服装厂计划做一批衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,又做了3天正好做完。这批衣服共有多少套?(四步)

做扩展题目的练习时,题目的变化都要围绕着基本题,可以从不同的角度变化已知条件或问题。这样,题目虽多而条理清晰。

(四)要训练学生能多角度地思考问题

同一个问题从不同的角度去分析,可以得到几种不同的解题方法,即一题多解。这种训练的目的,既可以加深学生对数量关系的理解,掌握知识间的内在联系,使学到的知识融会贯通,也可以使学生思路开阔,有助于培养学生灵活的解题能力。

例1 张华和李明买同样的练习本,张华买5本用去1.8元,李明用去2.88元。李明比张华多买了几本练习本?

解法一

思路分析,先求出一本练习本的价钱,再求出李明买了几本,就可求出他们买练习本的差。

解: 2.88÷(1.8÷5)-5

=2.88÷0.36-5

=8-5

=3(本)

答:李明比张华多买了3本练习本。

解法二

思路分析:李明比张华买练习本多花的钱数里包含有几个一本练习本的价钱,就是李明比张华多买练习本的本数。

解:(2.88-1.8)÷(1.8÷5)

=1.08÷0.36

=3(本)解法三

思路分析:李明买练习本所花的钱数是张华的几倍,即李明

买练习本的本数也应是张华的同数倍,从而求出李明买练习本的本数,进而可求出他们买练习本的差。

解: 5×(2.88÷1.8)-5

=5×1.6-5

=8-5

=3(本)

解法四

思路分析:把张华买练习本的本数看做1倍,先求出李明买练习本所花的钱数比李明多的倍数,即李明买练习本的本数比张华多同数倍。用多的倍数去乘1倍数的实际数量,即可求出李明比张华多买练习本的本数。

解: 5×(2.88÷1.8-1)

=5×0.6

=3(本)

这是一道整、小数应用题,虽然四种解法都是三步,但是思考问题的角度是不相同的。下面再看一道涉及到百分数的复合应用题。

例2 孙师傅加工一批机器零件,原计划每天加工40个。由于任务紧迫,需12.5天完成,这就需要比原计划每天多加工零件20%。问原计划多少天完成?

解法一

思路分析:先求出实际每天的工作效率,进而可求出零件的个数,最后就可求出原计划多少天完成。

解: 40×(1+20%)×12.5÷40

=48×12.5÷40 =15(天)

答:原计划15天完成。

解法二

思路分析:把加工一批零件的个数看做“1”,那么实际每天加工这批

量“1”除以原计划每天的工作效率,就可求出原计划完成的天数。

解法三

思路分析:根据题意可写出下面的数量关系式:

工作效率×工作时间=工作总量。

由题意可知,工作总量是一定的。根据“因数的变化引起积的变化规律”

间从而就可以求出原计划完成的天数。

解:12.5×(1+20%)=15(天)

解法四

思路分析:因为工作总量是一定的。所以根据原计划的工作效率乘以原计划的工作时间与实际工作效率乘以实际工作时间的等量关系,可以用方程解。

解:设计划x天完成。根据题意列方程,得

40x=40×(1+20%)×12.5 40x=600 x=15

进行一题多解后,教师要引导学生比较几种解法的优劣。以上题为例,解法一是最常用的解法,解法三由于思路巧妙,故而解法最简捷。从而使学生懂得,在解应用题时,要尽可能地选用最简捷的方法。

培养学生解答应用题的能力所涉及到的问题是很多的,以上就这个问题谈了三点个人的体会,仅供老师们教学中参考。

第五篇:谈学生解答应用题的策略

谈学生解答应用题的策略

长期以来,我国的小学数学,无论从教材或从教学来说,对应用题教学是重视的,但是也存在不少问题,主要是偏重内容的教学,轻视能力的培养,加之教材的选择和编排不尽合理,教学的方法不尽适当,以致花的力量很大,收的效果较小。因此,如何提高学生解应用题能力,又使学生负担较轻,是一个值得认真研究探讨的问题。一 培养学生解答应用题能力的重要性

关于培养学生解答应用题能力,《九年义务教育全日制小学数学教学大纲(试用)》中没有明确提出,但是在教学目的中讲到了使学生“能够运用所学的知识解决简单的实际问题”,这实质上包含了培养学生解答应用题的能力,当然在小学还是初步的。可以说,培养学生解答应用题的能力是使学生能够运用所学数学知识解决简单的实际问题的基本内容和重要途径。因为应用题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用到不同的数学知识来解决。通过解答应用题,促使学生把所学的数学知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。另外数学作为一门工具学科,也应该把它用于解决实际问题作为教学的一个重点。这一点越来越多地被各国数学教育工作者所认识。例如,美国在80年代初就提出“解问题是80年代学校数学的重点;”在为90年代拟订的中小学数学课程标准中,再一次强调数学教育的目标之一是使学生成为“具有解数学问题能力的人”,“有效地应用数学方法解问题的人”。当然,培养学生解应用题能力的重要意义远不止于此,还可以发展学生的逻辑思维能力,培养学生良好的思维品质(如思维的灵活性、创造性)和道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民所必须具备的能力和品质。

二 解答应用题教学的改革趋势

近年来,国内外一些数学教育工作者和有经验的教师对解答应用题的教学,特别是如何培养能力进行了一些改革的尝试,取得了一些有益的经验。主要有以下几个发展趋势。

(一)应用题的内容趋于扩大

首先是加强联系实际的问题。不仅限于课本中编好的现成应用题,而是从实际生活中收集材料和数据,进行一些计算。例如,美国在进行加减计算时,让学生分类收集一些数字材料,然后进行统计和计算。英国在教学时给学生一张火车时刻表,不仅让学生能看懂某次车始发和到达的时刻,而且进行各种计算。通过一些实际作业使学生知道数学的概念和思想就存在于人们的活动当中,并且能够运用数学知识解决生活中的实际问题。我国有些教师也很注意实际生活中的数学问题。例如,一位教师出了这样一个题目:“某车间用一块长90分米、宽60分米的铁皮剪成半径是10分米的圆形铁片,该怎样下料才能使铁皮的利用率最高?”

2结果多数学生列成下式:90×60÷(3.14×10)≈17个;部分学生通过画图(左下图)得到答案是12个;还有一部分学生通过操作(如右下图)

得到答案是13个。通过讨论,使学生认识到最后一种下料方法利用率高,而第一种计算方法是脱离了这块铁皮的实际的。通过这样的问题使学生初步体会到在解决实际问题时绝不能生搬硬套所学的计算知识,还要注意对实际问题进行具体分析。

其次,运用数学知识所解的问题不限于实际生活中遇到的,还包括一些有助于培养学生运用数学知识进行探究能力的问题。例如,在下面的○里填上合适的数,使每相邻两个○里的数的和等于它们中间□里的数。让学生不仅写出不同的答案,而且找出填写的规律,并回答出能不能使开头和末尾的○里的数相同。由于解题的范围较广,很多国家不用“应用题”这个名称,直接叫做“问题”,日本原来叫做“应用题”,现改称“文章题”,以体现其范围的扩展。

(二)应用题的难度趋于降低

这个问题在多数国家已经得到解决。如日、美、英等国,解问题的面较广,较联系实际,但是难度较小。如日本课本中的文章题大多是两步计算的。有少数国家,如俄罗斯,原来应用题的难度较大,步数较多,后来难度已有所降低或适当后移。特别是在把小学三年制改为四年制以后,随着算术内容教学时间的延长,相应地应用题的教学时间也拉长了,应用题的难度也进一步降低。香港地区编订的《数学科学习目标》中规定整数四则应用题,“每题运算次数不超过两次”,分数、小数限解简易应用题。许多国家或地区采取这些措施,使应用题教学更适合小学生的年龄特点,无疑会有利于减轻学生的学习负担,更好地激发学生对解应用题的兴趣和积极性。我国在解应用题方面一直存在着偏难偏多的问题,特别是升学考试为了便于择优录取,往往出现超过大纲、课本范围的题目,给教学带来很大的压力和负担。近年来实施义务教育以后,强调全面提高民族素质,应用题教学开始注意适当降低难度,是一个可喜的现象。

(三)重视培养学生掌握解题的一般策略

这是培养学生解应用题能力的重要条件之一。它与应用题的教学目的和作用是紧密联系着的。长期以来,无论在国内或国外,都或多或少地把在小学数学课中要教会学生解答某些类型的应用题作为教学的最终目的。从这一看法出发,把教给学生应用题类型,记结语或公式作为基础知识。结果形成学生套公式的习惯,没有真正培养起解题能力。近些年来,越来越多的数学教育工作者认识到,应用题教学的最终目的,应是通过一些有代表性的问题的解答,使学生掌握解问题的一般策略或方法,从而达到真正培养学生解决简单的实际问题的能力。例如,日本伊藤武说过,过去解应用题,安于形式地机械地进行,把应用题分成若干类型,每一个类型都有一种确定的解法,结果容易使学生对确定的一些问题会解,而没学过的应用题就不会解了。前苏联弗利德曼著《中小学数学教学心理学原理》中说:“形成和发展学生解任何数学题(包括实用题)的一般技能,这是数学教学的基本职能之一”。1988年第六届国际数学教育会议也强调教学生学会使用解题的一般策略。有的代表指出,传统的教学解问题的方法往往是由教师给出一个范例,让学生模仿;教师不仅没有给学生准备真实的问题情境,也没有教给学生一般的解题策略,这样既不能提高学生解问题的能力,也不能提高他们解问题的积极性。有代表提出解数学问题的一般策略有:联系、分析、分类、想象、选择、作计划、预测、推论、检验、评价等。美国新拟订的《中小学数学课程和评价标准》中,每个学段的第一条标准就是学习和应用解问题的策略,只是要求的水平不同,体现逐步提高。目前美国的小学数学课本大都编入解题的一般策略,作为正式的教学内容。例如,一本五年级课本中出现以下一些内容:用图解,检验,有多余条件或缺少条件的,编题,多步题的解题步骤,估算得数,用表解。

近年来,我国一些数学教研人员和教师也开始注意研究如何教给学生一般的解题思路和方法,特别重视分析题里的数量关系。有的实验教材中也加强理解题意,摘录应用题条件,补充应用题的条件,检验应用题的解答等的训练。这对于提高学生解答应用题能力有很大的帮助。

(四)加强方程解法使之与算术解法相辅相成数学教育现代化运动开始,许多国家的小学数学增加了简易方程和列方程解应用题。但是列方程解应用题教学的起始期以及深度、广度,差异很大。例如,前苏联教学方程解法从小学二年级就开始了,而且有两步的应用题要求用方程解。这就涉及算术解法与方程解法之间的关系问题。近年来逐渐趋于一致。一方面,较多的国家或地区,如日本、俄罗斯、香港等,小学教学列方程解应用题限两、三步计算的,另一方面是在用算术方法解应用题有了一定基础再逐步出现列方程解应用题,这样可以使两种解法起到相辅相成的作用。

实践表明,增加简易方程和列方程解应用题,的确有助于发展学生的抽象思维,减少解应用题的难度,培养学生灵活解题的能力,并有利于中小学数学的衔接。但是在实际教学时还存在着不同的处理方法。特别是涉及分数除法应用题的教学,很多教师把用方程解作为向算术解法的过渡,最后还是强调算术解法,忽视方程解法。这样仍不能达到降低难度减轻学生负担的目的。近年来有些改革实验,强调算术解法与方程解法并重,相辅相成,取得较好的效果。

下载学习解答口报减法应用题相关教案[范文模版]word格式文档
下载学习解答口报减法应用题相关教案[范文模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    解答乘除两步应用题教学设计

    《解答乘除两步应用题》教学设计 教学内容: 教学解答乘除两步应用题。课本第31页得例题4. 教学目标: 1.进一步理解除法应用题的数量关系,初步学会解答乘除两步运算的应用题。......

    浅析小学生解答应用题的难处

    浅析小学生解答应用题的难处 向阳学校 黄成康 摘要:应用题是小学数学教学的难点,也是发展学生思维能力的重要工具。分析小学生解答应用题困难的原因,有利于改进教学方法,提高教......

    《列综合算式解答文字题和应用题》教案(精选)

    教学目标(一)正确使用中括号,进一步提高学生列综合算式解答应用题和文字题的能力。(二)通过观察比较,提高学生分析问题和解决问题的能力。教学重点和难点重点:提高学生列综合算......

    公文写作应用题解答注意事项[五篇模版]

    综合应用题解答注意事项 1.认真阅读题目要求和所给材料,将能够用到的语句画出来。 2.注意题目要求的文种,千万不要搞错了。一般考试涉及的文种有通知、函、通告、请示等。 3.......

    小学数学应用题及解答方法大全

    小学数学应用题及解答方法大全 超人资讯 百家号06-0921:40 小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所......

    列方程解答含有两个未知数应用题五篇

    列方程解答含有两个未知数应用题 教学内容: 教科书第70页,练习十三第4~8题 教学目标: 1.理解实际问题中有关和、差、倍的数量关系,初步学会设一个未知数,列方程解答含两个未知数的......

    20以内减法应用题教案 Microsoft Word 文档(优秀范文五篇)

    用数学 ——解决简单减法问题 执教者:古媛 教学内容:用数学 (P19:例3)完成相应的做一做 教学要求: 1、通过本节课的教学,培养学生认真观察的好习惯。2、培养学生收集信息和整理信......

    三位数减法教案

    三年上册数学《三位数减法》第一课时教案 南孙庄小学:杨欢欢 课时目标: 1、结合具体情境,使学生进一步体会减法的意义,理解笔算减法中连续退位的算理,并能正确的计算。 2、通过自......