第一篇:出中国一年级有理数的减法教案
有理数的减法
【教材分析】:《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章五节的内容.“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.学生小学阶段关于整数、分数(包括小数)的减法运算,并且刚刚学习了正负数、相反数、有理数的加法运算,通过对有理数的减法运算的学习,使学生对减法运算有进一步的认识和理解,对今后正确熟练地进行有理数的混合运算,解决实际问题、初二学习实数减法运算、高中学习复数的减法运算的学习都有十分重要的作用
【知识与技能目标】 经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.
【过程与方法目标】 经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.
【情感态度价值观目标】 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习.使学生了解加与减两种运算的对立统一的关系,培养探究分析数学知识方法的兴趣。
【教学重点】 有理数减法的法则 【教学难点】有理数减法的计算 【教学过程】
一、情景设置,引入课题
展示温度计,今天的最高温度是26摄氏度,最低温度是18摄氏度,问最高温度比最低温度高多少?
乌鲁木齐今天的最高温度是4摄氏度,最低温度是-3摄氏度,那么温差最高温度比最低温度高多少?
(设计意图:生活中的实物带入课堂,学生更易理解。同时也让他们体会到,数学在生活中处处存在)
二、自主学习,小组寻疑
学生用3分钟的时间迅速、认真的阅读文本内容,寻找不明白的地方,然后深入思考,比一比哪个小组谁发现的问题多。教师巡视,指导学习习惯不好的同学自学。
(设计意图:自主学习,同时限定小组。增加竞争,激发学生的积极性。同时也培养他们合作交流的能力)
三、交流学习,解决疑难 教师指导小组长组织本组成员积极提出自己发现的问题让小组的成员帮忙解决,仍然解决不了的问题,最为小组发现的问题,教师引导学生做好记录。然后教师组织全班同学积极提出 本组发现的问题,用心倾听、思考、解决其他小组提出的问题。
(设计意图:学生自主解决问题,培养他们严谨的态度)
四、预设问题,理论定义
(1)、怎样理解有理数的减法法则? 教师引导学生思考课本62页减法法则上面的几组式子,观察分析,探索总结出减法与加法的关系,然后引导学生用自己的语言叙述。(2)、在减法转化转化成加法的运算中,什么发生了变化? 注意:减法在运算时有 2 个要素要发生变化。
1、减号变加加号
2、减数变相反数 然后用大屏幕展示一个例子,加深学生的理解。
3、运用减法法则运算的格式是什么? 教师运用大屏幕出示几个例子,学生思考后展示答案,规范学生的运算步骤。
4、运用有理数减法能解决生活中的哪些问题? 引导学生思考、叙述生活中的实际问题,教师在出示一个例子,引导学生思考后解答,规范学生的答题步骤。(设计意图:通过预设的问题,引出有理数减法的运算法则,更利于学生的接受)
五、课堂实练,实用运算
(5)
(设计意图:在给出运算法则后,进行演练,巩固知识,增强运算能力。题目有简单,逐渐复杂,锻炼学生耐心解题的能力)【课堂小结】
学生自我总结学到了什么,然后发言
(设计意图:培养学生回顾反思的学习习惯。也锻炼他们概括、语言表达的能力)【作业布置】 课后习题P24-25习题 [拓展延伸]部分,选做。
第二篇:有理数减法教案
第二章 有理数及其运算
5.有理数的减法
时间:2017.09.20 备课组:数学组
一、学习目标:
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
二、学习重点:有理数减法法则和运算.
三、学习难点:有理数减法法则的推导.
四、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
五、课前准备:课件 三角尺
六、教学过程设计:
(一)创设情境,引入新课
1、计算(口答)
(1)7+(-3);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3).
2、用算式表示下列情境.
先请同学读出右图的第一支温度计所示温度.学生口答为 5℃,现上升15℃(演示动画,让学生仔细观察这一过程),到20℃处停止.学生通过观察口答表示这一情境的算式:5+15=20(此举进一步揭示加法在实际中的应用).第二支温度计上温度为15℃,现下降10℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答用加法表示这一情境的算式:15+(-10)=5.你能从图中观察出15℃比5℃高多少吗?你是怎样得出结论的?能用算式表示吗?得:15-5=10.这是一个小学里就已经学过的减法问题. 再观察第三支温度计,它显示的温度是-10℃,现上升15℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答表示这一情境的算式:(-10)+15=5;温度又从5℃下降到-10℃(继续演示动画),你能从图中看出哪个温度更高些吗?高多少?你是怎样得出这个结论的?能用算式表示吗?
学生讨论后,尝试给出算式5-(-10)=?是15吗?这个算式该如何计算呢?这就是我们今天要学的内容.
这是一个具体实例,教师创设问题情境,激发学生的认知兴趣,渗透了数形结合的思想,把具体实例抽象成数学问题,从而点明本节课的课题――有理数的减法.
(二)师生共同探索新知
活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。
问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?
先请同桌两位同学相互讨论交流,然后请2~3个学生发言.
问题2:如何计算4-(-3)呢?
先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数。如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.即X+(-3)=4,因为7+(-3)=4,所以4-(-3)=7(+4)-(-3)=+7(+4)+(+3)=+7 让学生比较上面这两个算式并讨论后得出:(+4)-(-3)=(+4)+(+3)
再给出以下算式:
减法 加法
(+5)-(+2)=+
3(+5)+(-2)=+3 继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)问题3:请同学们想一想,4十?=7? 请学生回答,教师板书:4+(+3)= 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:
4-(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?
学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:
(1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
(2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么?
请小组代表全班汇报,教师在此基础上归纳: 有理数减法法则:减去一个数,等于加上这个数的相反数.
问题4:你能够用字母把法则表示出来吗?
a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号(减法============加法)
例1.计算 :(1)(-3)-(-5);
(2)0(-4.8);(2)(-3 -2)-5 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米? 活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。
(四)尝试反馈,巩固练习
教科书练习题1、2 学生活动:1题找学生口答,2题指名学生板演,其他同学做在练习本上.
我编你答.应用课件随机出题,学生抢答.(五)、课堂小结:通过本节课学习你学到了什么?
(六)布置作业
1、选做题习题1.6第1、2、3题中的奇数题;
2、必做题:第4、5题中的偶数题
七、板书设计
课题
1、有理数减法法则
3、练习
2、例1
八、课后反思
本案例从数学知识的形成过程设计问题,使得学生的认知能力与知识的形成不分离,达到结伴而行的目的。主要方法与效果有以下几点:
(1)以问题情境为导引。为学生提供丰富的感性材料,这有助于学生积极参与,调动学生的积极性,树立学习的自信心。
(2)调动学生动手实验,动脑思考,教学中很多知识的形成要借助于数学实验来发现。
第三篇:有理数减法教案
有理数的减法
教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算; 2.培养学生观察、分析、归纳及运算能力. 教学重点
有理数减法法则 教学难点
有理数减法法则 教学过程
(一)、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0. 2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3). 3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
(二)、师生共同研究有理数减法法则
问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则: 减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.
减数变号(减法============加法)
(三)、运用举例 变式练习例1 计算:
(1)(-3)-(-5);(2)0-7. 例2 计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数. 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?
(四)、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8; 2.计算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190(6)(-112)-98;(7)(-131)-(-129);(8)341-249. 3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
第四篇:有理数减法教案
一、课题2.4有理数的减法
二、教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.
三、教学重点
有理数减法法则
四、教学难点
有理数减法法则
五、教学用具
三角尺、小黑板、小卡片
六、课时安排
1课时
七、教学过程
(一)、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
(二)、师生共同研究有理数减法法则
问题1(1)(+10)-(+3)=______ ;
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;
(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)
(三)、运用举例变式练习
例1计算:
(1)(-3)-(-5);(2)0-7.
例2计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?
阅读课本63页例3
(四)、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
(五)、课堂练习
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.计算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.
3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理数减法解下列问题
4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?
八、布置课后作业:
课本习题2.6知识技能的2、3、4和问题解决1
九、板书设计
2.5有理数的减法
(一)知识回顾
(三)例题解析
(五)课堂小结
例
1、例
2、例3
(二)观察发现
(四)课堂练习练习设计
十、课后反思
第五篇:有理数的减法 教案
有理数的减法 教案
教学目标
1.使学生掌握有理数减法法则
2.熟练地进行有理数减法运算,培养学生观察、分析、归纳及运算能力.
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教学评价:通过环节一、二评价目标一的达成情况
通过环节三评价目标一的达成情况
课堂教学过程设计
一、从学生原有认知结构提出问题 1.计算:
(1)(-2.6)+(-3.1);
(2)(-2)+3;
(3)8+(-3);
(4)(-6.9)+0. 2.化简下列各式符号:
(1)-(-6);
(2)-(+8);
(3)+(-7);
(4)+(+4);
(5)-(-9);
(6)-(+3).
3.填空:
(1)______+6=20;
(2)20+______=17;(3)______+(-2)=-20;
(4)(-20)+______=-6. 在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
二、师生共同研究有理数减法法则
1、出示幻灯片二: 如图:
这是2006年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?(+10)-(+3)=7 再计算:(+10)+(-3),师让学生观察两式结果,由此得到:(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?(教师发挥主导作用,注意学生的参与意识)
三、运用举例
变式练习例1 计算:
(1)(-3)-(-5);
(2)0-7. 例2 计算:
(1)18-(-3);
(2)(-3)-18;
(3)(-18)-(-3);
(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3 计算:
(1)(-3)-[6-(-2)];
(2)15-(6-9).
例4 15℃比5℃高多少? 15℃比-5℃高多少? 课堂练习1.计算(口答):
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8);
(4)(-4)-9;
(5)0-(-5);
(6)0-5.
2.计算:(1)15-21;
(2)(-17)-(-12);
(3)(-2.5)-5.9;
四、小结
1、谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
五、课堂检测(包括基础题和能力提高题)
1、-9-(-11)2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
六、课后作业
课本
板书设计:
2.6有 理数的减法 有理数减法法则:
(+10)-(+3)=(+10)+(-3)(-10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数.