第一篇:九年级数学24.2与圆有关的位置关系1教案
24.2与圆有关的位置关系(第1课时)
【学习目标】
1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d 2.理解不在同一直线上的三个点确定一个圆并掌握它的运用. 3.了解三角形的外接圆和三角形外心的概念. 4.了解反证法的证明思想. 【学习过程】 一、温故知新: (学生活动)请同学们口答下面的问题. 1.圆的两种定义是什么? 2.圆形成后圆上这些点到圆心的距离如何? 3.如果在圆外有一点呢?圆内呢?请你画图想一想. 二、自主学习: 自学教材P97-----P99,思考下列问题: 1、点与圆的三种位置关系:(圆的半径 r,点P与圆心的距离为d)点P在圆外 点P在圆上 点P在圆内 2、自己作圆:(思考) (1)作经过已知点A的圆,这样的圆能作出多少个? (2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点? (3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆? 3、什么叫三角形的外接圆?三角形的外心及性质? 4、教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(教师讲解) 三、典型例题: 例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心. (圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心). 四、巩固练习: 教材P100练习 1、作图: 2、3题直接做在教材上。第4题口答 5、(教材P110习题24.2第1题) 五、教学反思: 【拓展创新】 1、A,B,C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是() A.可以画一个圆,使A,B,C都在圆上; B.可以画一个圆,使A,B在圆上,C在圆外; C.可以画一个圆,使A,C在圆上,B在圆外; D.可以画一个圆,使B,C在圆上,A在圆内 2、(07年湖南株洲)已知△ABC的三边长分别为6cm、8cm、10cm,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示) 3.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A、B、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址. ACwww.xiexiebang.com 【布置作业】 教材 P110习题24.2第2、3题 B 《直线与圆的位置关系》教案 教学目标: 根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会 (1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点: 从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程 一、引入: 1、判断直线与圆的位置关系的基本方法: (1)圆心到直线的距离 (2)判别式法 2、回顾予留问题: 要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题: (1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程: 教师引导学生要注重的几个基本问题: 1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题 1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题 2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题 3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结: 1、问题变化、发展的一些常见方法,如: (1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目: 下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算? ②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程? ⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为 2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程? ⑨求y=的最值.圆锥曲线的定义及其应用 [教学内容] 圆锥曲线的定义及其应用。 [教学目标] 通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。 1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。 2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。 3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。 4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。 [教学重点] 寻找所解问题与圆锥曲线定义的联系。 [教学过程] 一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。 1.由定义确定的圆锥曲线标准方程。 2.点与圆锥曲线的位置关系。 3.过圆锥曲线上一点作切线的几何画法。 二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。 例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。 (1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。 (2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。 (3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。 (4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg (5)当a=2, b=最小值。 时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。 (1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。 (2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。 (3)当b=1时,椭圆求ΔQF1F2的面积。 +y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证: (1)以|AB|为直径的圆必与抛物线的准线相切。 (2)|AB|=x1+x2+p (3)若弦CD长4p, 则CD弦中点到y轴的最小距离为 2(4)+为定值。 (5)当p=2时,|AF|+|BF|=|AF|·|BF| 三、利用定义判断曲线类型,确定动点轨迹。 例4.判断方程=1表示的曲线类型。 例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。 备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2 2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。 第23章《圆》 第5课时 点与圆的位置关系 初三()班 学号 姓名年月日 学习目标: 1、理解点与圆的位置关系由点到圆心的距离决定; 2、理解不在同一条直线上的三个点确定一个圆; 3、会画三角形的外接圆,熟识相关概念 学习过程 一、点与圆的位置三种位置关系 生活现象:阅读课本P53页,这一现象体现了平面内点与圆的位置关系. ...如图1所示,设⊙O的半径为r,A点在圆内,OAr B点在圆上,OBr C点在圆外,OCr 图1 反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点: .....若OA>r,则A点在圆; 若OB<r,则B点在圆; 若OC=r,则C点在圆。 二、多少个点可以确定一个圆 问题:在圆上的点有多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备: 1、圆的确定圆的大小,圆确定圆的位置; 也就是说,若如果圆的和确定了,那么,这个圆就确定了。 2、如图2,点O是线段AB的垂直平分线 上的任意一点,则有OAOB 图2 / 4 ABo画图: 1、画过一个点的圆。 右图,已知一个点A,画过A点的圆. 小结:经过一定点的圆可以画个。 2、画过两个点的圆。 右图,已知两个点A、B,画过同时经过A、B两点的圆. 提示:画这个圆的关键是找到圆心,画出来的圆要同时经过A、B两点,那么圆心到这两点距离,可见,圆心在线段AB的上。 小结:经过两定点的圆可以画个,但这些圆的圆心在线段的上 3、画过三个点(不在同一直线)的圆。 提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在 线段BC的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C 三点的圆. 小结:不在同一条直线上的三个点确定个圆. ..... 三、概括 我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点. / 4 BAAABCA如图:如果⊙O经过△ABC的三个顶点,则⊙O叫做△ABC的,圆心O叫 O做△ABC的,反过来,△ABC叫做 ⊙O的。 △ABC的外心就是AC、BC、AB边的交点。 四、分组练习(A组) CB1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为() A.在圆上 B.在圆外 C.在圆内 D.不确定 2、任意画一个三角形,然后再画这个三角形的外接圆.3、判断题: ① 三角形的外心到三边的距离相等………………()② 三角形的外心到三个顶点的距离相等。…………() 4、三角形的外心在这个三角形的() A.内部 B.外部 C.在其中一边上 D.以上三种都可能 5、能过画图的方法来解释上题。 在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形) / 4 6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为 7、若点O是△ABC的外心,∠A=70°,则∠BOC= (B组) 8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm 9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明./ 4 教学目标: 1.使学生理解直线和圆的相交、相切、相离的概念。 2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。 3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。 重点难点: 1.重点:直线与圆的三种位置关系的概念。 2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。 教学过程: 一.复习引入 1.提问:复习点和圆的三种位置关系。 (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系) 2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。 (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力) 二.定义、性质和判定 1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。 (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。 (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。 (3)直线和圆没有公共点时,叫做直线和圆相离。 2.直线和圆三种位置关系的性质和判定: 如果⊙O半径为r,圆心O到直线l的距离为d,那么: (1)线l与⊙O相交 d<r (2)直线l与⊙O相切d=r (3)直线l与⊙O相离d>r 三.例题分析: 例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。 ①当r= 时,圆与AB相切。 ②当r=2cm时,圆与AB有怎样的位置关系,为什么? ③当r=3cm时,圆与AB又是怎样的位置关系,为什么? ④思考:当r满足什么条件时圆与斜边AB有一个交点? 四.小结(学生完成) 五、随堂练习: (1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。 (2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。 ①当d=5cm时,直线L与圆的位置关系是; ②当d=13cm时,直线L与圆的位置关系是; ③当d=6。5cm时,直线L与圆的位置关系是; (目的:直线和圆的位置关系的判定的应用) (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是() (A)d=3(B)d≤3(C)d<3 d=""> 3(目的:直线和圆的位置关系的性质的应用) (4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是() (A)相离(B)相切(C)相交(D)相切或相交 (目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维) 想一想: 在平面直角坐标系中有一点A(—3,—4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况) 六、作业:P100— 2、3 4.2.2圆与圆的位置关系 教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系 教学难点:用坐标法判断两圆的位置关系 教学过程: 一、复习准备 1. 两圆的位置关系有哪几? 2.设两圆的圆心距为d.当dRr时,两圆 ,当dRr时,两圆 当|Rr|dRr 时,两圆,当d|Rr|时,两圆 当dRr|时,两圆 3.如何根据圆的方程,判断两圆之间的位置关系?(探讨) 二、讲授新课: 1.两圆的位置关系利用半径与圆心距之间的关系来判断 例1.已知圆C1:x2y22x8y80,圆C2:x2y24x4y20,试判断圆C1与圆C2的关系? C2方法 (一)(配方→圆心与半径→探究圆心距与两半径的关系)方法 (二)解方程组 探究:相交两圆公共弦所在直线的方程。 2. 两圆的位置关系利用圆的方程来判断 方法:通常是通过解方程或不等式和方法加以解决(以例1为例说明) AOBC1图1例2.圆C1的方程是:x2y22mx4ym250圆C2的方程是: x2y22x2mym230, m为何值时,两圆(1)相切.(2)相交(3)相离(4)内含 思路:联立方程组→讨论方程的解的情况(消元法、判别式法)→交点个数→位置关系) 练习:已知两圆xy6x0与xy4ym,问m取何值时,两圆相切。 例3.已知两圆C1:x2y24x2y0和圆C2:xy22y40的交点为A、B,(1)求AB的长;(2)求过A、B两点且圆心在直线l:2x4y10上的圆的方程.22222 3.小结:判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定.(2)依据连心线的长与两半径长的和r1r2或两半径的差的绝对值的大小关系.三、巩固练习: 22221.求经过点M(2,-2),且与圆xy6x0与xy4交点的圆的方程 2.已知圆C与圆x2y22x0相外切,并且与直线x3y0相切于点Q(3,-3),求圆C的方程.22x3y24xy13.求两圆和的外公切线方程 2四、作业:P133习题4.2A组9第二篇:直线与圆的位置关系教案
第三篇:点与圆的位置关系教案
第四篇:直线与圆的位置关系教案
第五篇:高中数学圆与圆的位置关系教案