圆锥曲线与直线相切的条件教案

时间:2019-05-15 03:34:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《圆锥曲线与直线相切的条件教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆锥曲线与直线相切的条件教案》。

第一篇:圆锥曲线与直线相切的条件教案

圆锥曲线与直线相切的条件教案

教学目的(1)掌握圆锥曲线与直线相切的条件及圆锥曲线切线的定义;

(2)使学生会用初等数学方法求圆锥曲线的切线;

(3)应用相切的公式解题,从而培养学生综合应用能力.

教学过程

一、问题提出

1.有心的二次曲线包括哪些?无心的二次曲线包括哪些?

(答:有心的二次曲线是圆、椭圆及双曲线;无心的二次曲线是抛物线.)

(由教师启发下,让学生共同讨论.)

(1)当α>0,β>0且α=β时,方程表示为圆;

(2)当α>0,β>0且α≠β时,方程表示为椭圆;

(3)当α、β为异号时,方程表示为双曲线.

因此,这个方程可以统一表示有心的二次曲线.

3.圆锥曲线与直线的相切的条件是什么?

设直线l′与圆锥曲线相交于P、Q两点(图1),将直线l′绕点P旋转,使点Q逐渐靠近点P,当l′转到直线l的位置时,点Q与点P重合,这时,直线l叫做圆锥曲线在点P的切线.也就是圆锥曲线与直线l相切.根据这个定义,于是圆锥曲线方程

f(x,y)=0

与直线方程

y=kx+m

组成的方程组应有两个相同的实数解.实系数一元二次方程有两个相同的实数解的充要条件是判别式Δ=0,根据条件转化为求Δ=0.

(启发学生回答,由教师归纳,然后板书课题.)

今天我们要研究“圆锥曲线与直线相切的条件”.

二、讲述新课

根据上面分析,得

由②代入①,化简、整理得(αk2+β)x2+2αkmβ+α(m2-β)=0.③

当αk+β≠0时(二次项系数),Δ=4αkm-4α(αk+β)(m-β)

=4α2k2m2-4α2k2m2+4α2k2β-4αβm2+4αβ2

=4αβ(αk2+β-m2).

(启发学生讨论.)

由于α、β均不为零,因此当Δ=0时可知有心二次曲线与直线y=kx+m相切的充要条件为

m2=αk2+β,(αk2+β≠0)④

这里αk2+β恰是方程③的二次项系数.

(引导学生对结论④,在圆、椭圆、双曲线各种情况下变化规律进行讨论,教师边归纳,边板书.)

(1)对于圆x2+y2=γ2,可写成

222

222

即有α=β=γ2,于是相切条件为m2=γ2(k2+1).

(2)对于椭圆(焦点在x轴上)

即有α=a,β=b,于是相切条件为m=ak+b.

(3)对于椭圆(焦点在y轴上)

即有α=b2,β=a2,于是相切条件为m2=b2k2+a2.

(4)对于双曲线(焦点在x轴上)

即有α=a2,β=-b2,于是相切条件为m2=a2k2-b2.

(5)对于双曲线(焦点在y轴上)

即有α=-b2,β=a2,于是相切条件为m2=a2-b2k2.

[应用有心曲线统一公式,这样就不必从圆、椭圆、双曲线一个一个地去求,可避免一个一个冗长复杂的计算,使问题的解决变得简捷.]

2.无心的二次曲线y2=2px与直线y=kx+m相切的条件

根据上面的分析,得

由②代入①,化简整理,得

(kx+m)2=2px,k2x2+(2mk-2p)x+m2=0.

当二次项系数k2≠0时,Δ=(2mk-2p)2-4k2m2=4p2-8mkp

=4p(p-2mk)=0.

无心的二次曲线x2=2py与直线y=kx+m相切的条件,应为

(让学生独立完成.)

三、巩固新课

(让学生直接对照上述结论,设所求公切线的斜率为k,截距为m,再根据椭

解 设所求的公切线斜率为k,截距为m,根据相切条件有

由②代入①,化简整理,得

81k4+36k2-5=0,(9k2-1)(9k2+5)=0,∵9k2+5≠0,∴9k2-1=0,代入②,得m=±5.

因此,所求的公切线方程为

x+3y+15=0或x-3y+15=0.

求双曲线的两条互相垂直的切线交点的轨迹方程.

(帮助学生分析解题的几个要点,然后由学生上黑板解,教师巡视指点.)

y=kx+m,则由相切条件,可知m2=a2k2-b2.

(2)设两切线交点为P(x0,y0),则切线方程为

y-y0=k(x-x0),即

y=kx+(y0-kx0).

(3)y=kx+m,y=kx+(y0-kx0)表示同一直线,就有

m=(y0-kx0),∴(y0-kx0)=ak-b.

整理得

(4)k1k2=-1,用韦达定理从方程①求得k1k2,即

因此,点P的轨迹方程为

x+y=a-b.

这里a>b,点P的轨迹是一个实圆;

a=b,点P的轨迹是一个点圆;

a<b,点P无轨迹(虚圆).

解略.

法,不难得出轨迹方程为圆方程

x+y=a+b;

这题若改为求抛物线y=2px的两条互相垂直的切线的交点的轨迹方程,方法也类似,不难得出轨迹方程为

即点P一定在准线上.

[这样改变一下题目,可让学生开拓思路,举一反三.]

四、练习

1.已知l为椭圆x+4y=4的切线并与坐标轴交于A、B两点,求|AB|的最小值及取得最小值时切线l的方程.

2解 如图2,设切线方程为

y=kx+m,根据相切条件有m2=4k2+1,即①

|OA|2=4k2+1.

在y=kx+m中,令y=0,得

于是得

代入m=4k+1,求得 2

因此,所求的切线共有四条(图3),它们的方程为

求四边形ABCD的最大面积.

则由相切条件,知

m2=a2k2+b2,故两切线方程为

两切线间的距离

∴四边形ABCD的最大面积为

五、补充作业

轨迹方程.

2.求出斜率为k的圆锥曲线的切线方程.

教案说明

这一节课的指导思想是:根据现代教育理论,强调在教学的过程中培养能力,特别是思维能力.数学思维结构与科学结构十分相似,学习数学的过程,就是从一种思维结构过渡到另一种思维结构的过程,数学知识只是进行思维结构训练的材料.二次曲线与直线相切的条件若从上述结构进行训练,就是使学生形成完整的思维结构,使对数学的认识有新的突破.这一点已成为我在课堂教学中进行探索和研讨的课题.

这节课的整个教学过程中,着重于讲解——启导——探究,培养学生的分析能力.讲解时,突出重点:“相切条件”,并以此为中心,达到举一反

三、触类旁通.其中也穿插了自学讨论,而不是教师满堂灌.

在练习中,注意到了再现性练习、巩固性练习,同时也留有发现性练习,使学生以新带旧,巩固新知,发展智力,反过来从思维结构上形成完整体系,以认识数学本身.

第二篇:怎样证明直线与圆相切?

怎样证明直线与圆相切?

在直线与圆的各种位置关系中,相切是一种重要的位置关系.

现介绍以下三种判别直线与圆相切的基本方法:

(1)利用切线的定义——在已知条件中有“半径与一条直线交于半径的外端”,于是只需直接证明这条直线垂直于半径的外端.

例1:已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.

求证:PA是⊙O的切线.

证明:连接EC.

∵AE是⊙O的直径,∴∠ACE=90°,∴∠E+∠EAC=90°.

∵∠E=∠B,又∠B=∠CAP,∴∠E=∠CAP,∴∠EAC+∠CAP=∠EAC+∠E=90°,∴∠EAP=90°,∴PA⊥OA,且过A点,则PA是⊙O的切线.

(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一公共点(即为切点),但没有半径”,于是先连接圆心与这个公共点成为半径,然后再证明这条直线和这条半径垂直.

例2:以Rt△ABC的直角边BC为直径作⊙O交斜边AB于P,Q为AC的中点. 求证:PQ必为⊙O的切线.

证明 连接OP,CP.

∵BC为直径,∴∠BPC=90°,即∠APC=90°.

又∵Q为AC中点,∴QP=QC,∴∠1=∠2.

又OP=OC,∴∠3=∠4.

又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°,∴∠OPQ=90°.

∵P点在⊙O上,且P为半径OP的端点,则QP为⊙O的切线.

说明:要证PQ与半径垂直,即连接OP.这是判别相切中添辅助线的常用方法.

(3)证明“d=R”——在已知条件中“没有半径,也没有与圆有公共交点的直线”,于是过圆心作直线的垂线,然后再证明这条垂线的长(d)等于圆的半径(R).

例3:已知:在△ABC中,AD⊥BC与D,且AD=BC,E、F为AB、AC的中点,O为EF2的中点。

求证:以EF为直径的圆与BC相切.

证明:作OH⊥BC于H,设AD与EF交于M,又AD⊥BC,∴OH∥MD,则OHDM是矩形.

∴OH是⊙O的半径,则EF为直径的圆与BC相切.思考题:

1.AB是⊙O的直径,AC是弦,AC=CD,EF过点C,EF⊥BD于G.

求证:EF是⊙O的切线.

提示:连接CO,则OC是⊙O的半径,再证OC⊥EF.

2.DB是圆的直径,点A在DB的延长线上,AB=OB,∠CAD=30°.求证:AC是⊙O的切线.

提示:∵AC与⊙O没有公共点,∴作OE⊥AC于E,再证OE是⊙O的半径.

第三篇:直线与圆锥曲线练习2

直线与圆锥曲线练习

一、选择题

1.过点P(0,2)与抛物线y2=2x只有一个公共点的直线有().

A.0条B.1条C.2条D.3条

xy2.已知点F1,F2-1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的ab直线与双曲线交于A,B两点,若△ABF2为正三角形,则该双曲线的离心率是().

A.2B.C.3D.3

3.(2010·辽宁)设抛物线y=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|=().

A.4 B.8C.8 D.16

14.已知抛物线C的方程为x2,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,2

则实数t的取值范围是().

A.(-∞,-1)∪(1,+∞)B.-∞,-2222 ∪,+∞22C.(-∞,-2∪(2,+∞)D.(2)∪(,+∞)

5.(2011·杭州模拟)过点M(-2,0)的直线l与椭圆x+2y=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于().

11A.- B.-2C.D.2 22

二、填空题

6.已知以原点为顶点的抛物线C,焦点在x轴上,直线x-y=0与抛物线C交于A,B的两点.若P(2,2)为AB 中点,则抛物线C的方程为________.

x227.(2011·中山模拟)设F1,F2为椭圆y=1的左、右焦点,过椭圆中心任作一直线与椭圆4

→→

交于P,Q两点,当四边形PF1QF2面积最大时,PF1·PF2的值等于________.

8.(2011·浙江金华十校模拟)斜率为的直线l过抛物线y2=4x的焦点且与该抛物线交于A,B的两点,则|AB|=________.三、解答题

9.在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.求直线A1N1与A2N2交点的轨迹M的方程;

第四篇:数学直线与圆锥曲线教学反思

数学直线与圆锥曲线教学反思

本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,这为本节复习课起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》复习的第一节课,着重是教会学生如何判断直线与圆锥曲线的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。这节复习课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。

根据上述教材结构与内容分析,考虑到学生已有的认知心理特征,制定如下教学目标:

1、知识目标:巩固直线与圆锥曲线的基本知识和性质;掌握直线与圆锥曲线位置关系的判断方法,并会求参数的值或范围。

2、能力目标:树立通过坐标法用方程思想解决问题的观念,培养学生直观、严谨的思维品质;灵活运用数形结合、分类讨论、类比归纳等各种数学思想方法,优化解题思维,提高解题能力。

3、情感目标:让学生感悟数学的统一美、和谐美,端正学生的科学态度,进一步激发学生自主探究的精神。

本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥曲线中常见的弦长问题、中点问题、对称问题等。

我设计了:(1)提出问题——引入课题(2)例题精析——感悟解题规律(3)课堂练习——巩固方法(4)小结归纳——提高认识,四个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

接下来,我再具体谈谈这堂课的教学过程:

(一)提出问题

课前我预先让学生先动手解决两个学生熟知的问题:直线与圆、直线与椭圆有两个公共点的问题。让学生自己归纳解决的方法。对直线与圆既可以用几何法也可以用代数法,而直线与椭圆只能用代数法。通过问题的设置一方面巩固旧知,又总结归纳新知:直线与圆与椭圆公共点的个数等于方程组的解的个数。

(二)例题精析

接着引导学生自然过渡到直线与抛物线、直线与双曲线的位置关系的判断。对于例1,师生共同完成,特别关注两次分类讨论,一次设直线方程时对斜率存在与否进行讨论,另一次消去一个变量y后得到一个方程,是否为二次方程进行再次分类讨论,求出三条直线方程后,引导学生在图形中画出。引导学生从数和形两方面加以类比分析。再对题目进行变式,使学生感悟直线与抛物线的公共点个数问题常可通过图形进行定性分析,但易出错,可通过定量分析进行论证。对于例2,由学生板演,学生自主探究,师生共同归纳。

(三)课堂练习——巩固方法

(四)类比归纳——提高认识

由学生总结本节课所学习的主要内容,以及收获,通过数学思想方法的小结,使学生更深刻地了解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。

第五篇:证明直线与圆相切的常见方法(定稿)

证明直线与圆相切的常见方法

学习了直线与圆的位置关系,常会遇到证明一条直线是圆的切线的题目,如何证明一条直线是圆的切线,一般会出现以下三种情况.一、若证明是圆的切线的直线与圆有公共点,且存在连接公共点的半径,此时可根据“经过半径的外端并且垂直于这条半径的直线是圆的切线”来证明.简记为“见半径,证垂直”.例1如图1,已知AB为⊙O的直径,直线PA过点A,且∠PAC=∠B.求证:PA是⊙O的切线.图 1分析:要证明PA是⊙O的切线,因为AB是⊙O的直径,所以只要证明AB⊥AP.可结合直径所对的圆周为直角进行推理.证明:因为AB为⊙O的直径,所以∠ACB=90°,所以∠CAB+∠B=90°,因为∠PAC=∠B,所以∠CAB+∠PAC=90°,即∠BAP=90°,所以PA是⊙O的切线.二、若给出了直线与圆的公共点,但未给出过这点的半径,则连结公共点和圆心,然后根据“经过半径外端且垂直这条半径的直线是圆的切线”来证明.简记为“作半径,证垂直”.例2如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.

求证:DE是⊙O的切线.

证明:连接OC,则OA=OC,所以∠CAO=∠ACO,因为AC平分∠EAB,所以∠EAC=∠CAO=∠ACO,所以AE∥CO,又AE⊥DE,所以CO⊥DE,所以DE是⊙O的切线.

三、若直线与圆的公共点不明确时,则过圆心作该直线的垂线段,然后根据“圆心到直线的距离等于圆的半径,该直线是圆的切线”来证明.简记为“作垂直,证相等”.例3如图3,已知,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F.求证:CD与⊙O相切.

图3

分析:要识别“CD与⊙O相切”,由于不知道CD经过圆上哪一点,所以先过点O作:ON⊥CD于N,再证明ON是⊙O半径。易知OM是⊙O的半径,只要证明:OM=ON即可.证明:连结OM,作ON⊥CD于N,因为 ⊙O与BC相切,所以 OM⊥BC.因为四边形ABCD是正方形,所以 AC平分∠BCD.所以OM=ON.图 4

所以CD与⊙O相切.总结: 切线判断并不难,认真审题是重点;直线与圆有交点,连接半径是关键,推得垂直是切线;若没明确是切点,作过圆心垂线段,半径相等得切线.

下载圆锥曲线与直线相切的条件教案word格式文档
下载圆锥曲线与直线相切的条件教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    教案7:直线与圆锥曲线的位置关系(2课时)

    直线与圆锥曲线的位置关系(一) 教学目标 1、知识教学点:使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.2、能力训练点:通过对点、直线与圆锥......

    例析直线与圆锥曲线的综合应用

    龙源期刊网 http://.cn 例析直线与圆锥曲线的综合应用 作者:管永建 来源:《高考进行时·高三数学》2013年第02期 直线与圆锥曲线的知识在直线与圆关系的基础上展开,是高考中的......

    圆锥曲线教案

    与圆锥曲线有关的几种典型题 一、教学目标 (一)知识教学点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关......

    直线与方程教案

    平面解析几何 第一讲 直线方程 知识归纳: 一、直线的倾斜角与斜率 1、确定直线的几何要素是:直线上两不同的点或直线上一点和直线的方向两个相对独立的条件 注意:表示直线方向......

    圆锥曲线教案 对称问题教案

    圆锥曲线教案 对称问题教案 教学目标 1.引导学生探索并掌握解决中心对称及轴对称问题的解析方法. 2.通过对称问题的研究求解,进一步理解数形结合的思想方法,提高分析问题和解决问......

    线段、直线与射线教案

    线段、射线、直线教案 一、教学目标1、使学生进一步认识线段,认识射线和直线,知道三者之的和别。 2、使学生认识角和角的表示方法,知道角的各部分名称。 3、培养学生关于线段......

    文峰中学高三数学专题-直线与圆锥曲线的位置关系[合集]

    直线与圆锥曲线的位置关系 一.知识网络结构: 几何角度(主要适用于直线与圆的位置关系)直线与圆锥曲线的位置关系代数角度(适用于所有直线与圆锥曲线位置关系) 1.直线与圆锥曲线......

    直线的倾斜角与斜率教案

    8.1.2倾斜角与斜率 张汉雷 一、教学目标 1、知识技能目标: (1)初步了解直线倾斜角的概念,并会判直线的倾斜角。(2)会用利正切求直线的斜率,理解直线斜率的几何意义。(3)掌握两......