第一篇:教案新人教版七上1.5 近似数和有效数字-
更多资料请访问http://www.maths.name
1.5近似数和有效数字
葛水芳 施晓华 葛美红
一、教学任务分析
教学目标
知识技能:
1、了解近似数和有效数字的概念
2、会按精确度要求取近似数
3、给一个近似数,会说出它精确到哪一位,有几个有效数字 解决问题:会求一个近似数
情感态度:通过师生合作,联系实际,激发学生学好数学的热情。重点和难点:精确度和有效数字的概念
二、教学流动安排
活动1 问题引入 活动2 学习习近平似数的概念 活动3近似数概念的应用 活动4 有效数字的概念 活动5近似数和有效数字的巩固 活动6 巩固概念
三、课前准备
教具:电脑、课件
四、教学过程设计
活动1 让学生用刻度尺量数学课本
由学生的结果差异提出问题
由学生思考,可以激发学生探究的热情 活动2 学习习近平似数概念
活动3 按四舍五入法对圆周率∏取近似数 有∏≈3(精确到个位)
∏≈3.1(精确到0.1,或叫做精确到十分位)
∏≈3.14(精确到0.01,或叫做精确到百分位)
∏≈3.142(精确到0.001,或叫做精确到千分位)
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name
∏≈3.1416(精确到0.0001,或叫做精确到万分位)
师生共同活动
活动4 由活动3引入并讲解有效数字的概念
活动5 例6:按括号内的要求,用四舍五入法对下列各数取近似值(1)0.0158(精确到0.001)(2)30435(保留3个有效数字)(3)1.804(保留2个有效数字)(4)1.804(保留3个有效数字)通过练习对近似数和有效数字有初步认识,师生共同活动,巩固所学知识。活动6 巩固练习教科书P56练习
课堂小结 通过小结,进一步巩固所学知识,使学生所学知识系统化。
作业:P56 4(2)(4)5 6
更多资料请访问http://www.maths.name
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
第二篇:近似数和有效数字
凤凰数学网(www.xiexiebang.com)
苏科数学八上教学案
2.6近似数与有效数字
班级 姓名 学号 学习目标:1了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用
2能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数
学习难点:按要求用四舍五入法取一个数的近似数 教学过程:
(一)情境创设
李宇春以3528308条短信获得冠军
周笔畅以3270840条短信获得亚军 张靓颖则以1353906条短信获得季军
今年22岁的夏洛特·凯利4年前生出詹尼弗和简孪生姐妹,今年7月30日又生出鲁思和艾米丽两位可爱的孪生小姐妹。艾米丽出生时体重约为8.12磅,鲁思出生时的体重则为约7.20磅。
(设计说明:让学生自己搜集生活中与数有关的信息,从中进一步感受数的意义)
(二)讲授新课
近似数
实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。
(设计说明:通过交流生活中近似数的例子,使学生认识到生活中存在近似数,感受近似数在生活中的作用,体会数学与生活的关系)
取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.例如,圆周率=3.1415926„
取π≈3,就是精确到个位(或精确到1)取π≈3.1,就是精确到十分位(或精确到0.1)取π≈3.14,就是精确到百分位位(或精确到0.01)取π≈3.142,就是精确到千分位位(或精确到0.001)
有效数字
对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
例如:上面圆周率π的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,江苏省泰州中学附中 凤凰数学网(www.xiexiebang.com)
苏科数学八上教学案
4,2.(三)例题教学
例1 小亮用天平称得罐头的质量为2.026kg,按要求取近似数,并指出每个近似数的有效数字:(1)精确到0.01kg;
(2)精确到0.1kg;
(3)精确到1kg.(设计说明:简单应用上面所学知识,先四舍五入取近似值,再确定近似数的有效数字,应注意提醒学生不能随便将小数点后的0去掉.)例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示.(1)地球上七大洲的面积约为149480000(保留2个有效数字)(2)某人一天饮水1890ml(精确到1000ml)(3)小明身高1.595m(保留3个有效数字)
(4)人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)
(设计说明:通过讨论使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字)
(四)课堂练习基础训练
书p78 1,2 2 创新探究
(2)张娟和李敏在讨论问题。
张娟:如果你把7498近似到千位数,你就会得到7000.李敏:不,我有另外一种解答方法,可以得到不同的答案。首先将7498近似到百位得7500,接着把7500近似到千位,就得到8000。张娟:„„
你怎样评价张娟和李敏的说法呢? 3 研究性学习练习
(1)有一个四位数x,先将它四舍五入到十位,得到近似数m,再把四位数m四舍五入到百位,得到近似数n,再把四位数n四舍五入到千位,恰好是2000,你能求出四位数x的最大值与最小值吗?
(设计说明:通过练习,进一步巩固所学知识,发展能力)
(五)课堂小结
举出生活中的近似数,指出它们精确到哪一位?各有几个有效数字? 五 教后反思:
江苏省泰州中学附中 凤凰数学网(www.xiexiebang.com)
苏科数学八上教学案
【课后作业】
班级 姓名 学号
一、精心选一选
⒈圆周率π=3.1415926„精确到千分位的近似数是
()
A.3.14
B.3.141
C.3.142
D.3.1416 ⒉近似数3.14×104的有效数字有
()A.1个
B.2个
C.3个
D.4个
⒊2004年某市完成国内生产总值(GDP)达3466.53亿元,用四舍五入法取近似值,保留3个有效数字,并用科学记数法表示,其结果是
()A.3.47×103亿元
B.3.47×104亿元 C.3.467×103亿元
D.3.467×104亿元
⒋对于近似数10.08与0.1008,下列说法正确的是
()A.它们的有效数字与精确位数都不相同
B.它们的有效数字与精确位数相同 C.它们的精确位数不同,有效数字相同
D.它们的有效数字不同,精确位数相同
二、细心填一填
⒌近似数1.69万精确到
位,有
个有效数字,有效数字是
. ⒍小明的体重约为51.51千克,如果精确到10千克,其结果为
千克;如果精确到1千克,其结果为
千克;如果精确到0.1千克,其结果为
千克.
⒎2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返
江苏省泰州中学附中 凤凰数学网(www.xiexiebang.com)
苏科数学八上教学案
回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约为60万km,则神舟五号载人飞船绕地球平均每圈飞行
km(用科学记数法表示,结果保留3个有效数字).
三、用心做一做
⒏计算:⑴3+2-3(保留两个有效数字)
⑵
32(精确到0.01)
⒐以下问题中的近似数各精确到哪一位?各有几个有效数字? ⑴我国人口约为13亿人; ⑵π的近似值是3.14;
⑶某厂2004年的产值约为2000万元,约是1998年的6.8倍. ⒑用四舍五入法,,按要求对下列各数取近似值,并用科学记数法表示:
⑴太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12200000000km(保留2个有效数字);
⑵2005年6月5日是世界第34个世界环境日,目前全球海洋总面积约为36105.9万km2(保留3个有效数字);
⑶光年是天文学中的距离单位,1光年大约是9500000000000km; ⑷某市全年的路灯照明用电约需4200万kw·h(精确到百万位).
江苏省泰州中学附中
第三篇:教案新人教版七上1.5.3近似数和有效数字-
更多资料请访问http://www.maths.name
1.5.3近似数和有效数字
教学目标:
1、理解精确度和有效数字的意义
2、要准确
更多资料请访问http://www.maths.name
(4)1.804≈1.80 注意:(2)不能写成30 400,这样是有5个有效数字,像这样的数保留几位有效数字一般要用科学计算法,或3.04万
例2 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;(3)2.40万精确到百位,共有3个有效数字2、4、0.注意 由于2.40万的单位是万,所以不能说它精确到百分位.注意(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
课堂练习
1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪写是近似数?(1)东北师大附中共有98个教学班;(2)我国有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673
(精确到0.01);
(3)0.03097(保留三个有效数字);(4)75460
(保留一位有效数字);(5)90990
(保留二位有效数字).4.下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)54.8;(2)0.00204;(3)3.6万.课堂练习答案
1.略.2.(1)精确值;(2)近似值.3.(1)0.65148 ≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;(5)90990≈9.1×104.4.(1)精确到个十分位,有3个有效数字;(2)精确到千万分位,有3个有效数字;(3)精确到千位,有2个有效数字.课后作业
教科书P57-6 课后选作题
1.下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?(1)32;
(2)17.93;
(3)0.084;
(4)7.250;(5)1.35×104;
(6)0.45万;
(7)2.004;
(8)3.1416.2.23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值? ①23.04
②23.06
③22.99
④22.85 课后选作题答案
1.(1)精确到个位,有两位有效数字;(2)精确到百分位,有四位有效数字;(3)精确到千分位,有两位有效数字;(4)精确到千分位,有四位有效数字;
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
更多资料请访问http://www.maths.name(5)精确到百位,有三位有效数字;(6)精确到百位,有两位有效数字;(7)精确到千分位,有四位有效数字;(8)精确到万分位,有五位有效数字.2.②和④.更多资料请访问http://www.maths.name
http://www.maths.name给全国数学老师提供一个交换教学资源的平台
第四篇:教案设计:近似数与有效数字
课题:2.6近似数与有效数字
课时:共1课时 教材版本:苏科版
章节:八年级上册 第二章第6节 教材内容分析:
本节从生活中的一些数据的准确度引入近似数,使学生认识到生活中存在着近似数,并知道测量的结果都是近似的。教学中时,可以让学生分组运用不同单位的测量工具实际测量同一个物体,获得直观的体验,了解测量结果是近似的这一事实,使学生认识到生活中还有不少情景中也用到近似数,并分析原因,有时是因为客观条件无法或难以得到精确数据,有时是实际问题无需得到精确数据。对数据进行比较是培养数感的一个重要方面,在选择近似数时,一般数据要四舍五入到同一数位,以免误差出现太大现象。本节内容共一课时,主要内容是认识近似数和精确数,并较熟练地根据精确度和保留近有效数字的要求,求近似数。
教学思路:
1、考虑到学生的实际情况,本节课将从生活实际入手,把教材中的“进一法”和“去尾法”结合问题情境,与前面的精确数、近似数做为问题情境导入,以激发学生学习兴趣,顺利、自然地导入新课。
2、精确度与有效数字的概念在学生预习的基础上结合例题进行分析、交流。
教学方法:启发式教学方法
教学目标:
1、了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用.。
2、能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数。
教学重点、难点:
重点:精确度及有效数字的概念的理解。
难点:根据精确度和保留近有效数字的要求,求近似数。
教学过程: 【情景与创设】
(1)从早晨起床到上学,你从你的生活环境中获得哪些数的信息?(2)生活中,有些数据是准确的,有些是近似的,你能举例说明吗?
【探索活动】
(一)近似数
实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。
在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。
取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.例如,圆周率=3.1415926„
取π≈3,就是精确到个位(或精确到1)
取π≈3.1,就是精确到十分位(或精确到0.1)
取π≈3.14,就是精确到百分位位(或精确到0.01)
(二)有效数字
对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
例如:上面圆周率π的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,4,2.【例题赏析】
例1 按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.016 9(精确到0.001);
(2)3 435 324(保留3个有效数字);(3)6.805 468(保留3个有效数字);(4)2.004(保留3个有效数字)。解:(1)0.015 8≈0.017;
6(2)3 435 324≈3.44×10;(3)6.805 468≈6.81;(4)2.004≈2.00(注意:(2)不能写成3 440 000,这样是有7个有效数字.像这样的数保留几位有效数字一般要用科学计算法,或3.04百万。
(4)不能写成2,这样就只有1个有效数字.像这样无论后有几个0都不能省略。因为2与2.00精确度不同.)
例2 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4;(2)0.0653;(3)2.302万
解:(1)852.4精确到十分位(精确到0.1),共有4个有效数字8、5、2、4;(2)0.0653精确到万分位(精确到0.0001),共有3个有效数字6、5、3;(3)2.300万精确到十位,共有4个有效数字2、3、0、0.例3现有某溶液56.4毫升,按下列要求其取近似数,并指出每个近似数的有效数字。(1)四舍五入到1毫升;(2)四舍五入到10毫升
解:(1)四舍五入到1毫升,就得到近似数56毫升,这个数有两个有效数字,分别是1,7;
(2)四舍五入到10毫升,就得到近似数6×10毫升,这个数有一个有效数字,是2.例4小亮用天平称得罐头的质量为2.026kg,按下列要求取近似数,并指出每个近似数的有效数字:
(1)精确到0.01kg;
(2)精确到0.1kg;
(3)
精确到1kg.解:(1)2.03 kg.有3个有效数字2、0、3;(2)2.0 kg.有2个有效数字2、0;(3)2 kg.有1个有效数字2.(按四舍五入取近似数时,不能将小数点后的0去掉,比如,第(2)题)【拓展延伸】
将25个底面半径为4.2㎝,高是50㎝的圆柱形铁熔化后浇铸成长方体,如果长方体底面是正方形,边长4㎝,长方体高9㎝,问不计损耗,共浇铸成多少个这样的长方体?(л 取3.14,精确到十位)。
(学生要认真思考,结合以前所学知识,尝试用已知方法解决问题,并进行分组讨论。教师给出指导意见)
【归纳小结】
1、理解近似数的概念。
2、生活中常常要用到近似数,要根据实际需要或按精确度的要求来决定近似数。
3、有效数字的概念:是从左边的第一个不是0的数字起到末位数字为止的所有的数字。
4、根据近似数的特点,准确指出其有效数字。
(师生互动,学生交流完成小结。)
【基础检测】
1.截止2005年1月,超过250 000的人在2004年12月26日的印度洋海啸中遇难.•这个数据用科学记数法表示,其结果为________. 2.近似数0.120 3的有效数字是_______. 3.近似数1.023的有效数字是().
(A)2,3
(B)1,0,2,3
(C)1,2,3
(D)0,2,3 4.2004年某市完成国内生产总值(GDP)达3 466.53亿元.•用四舍五入法取近似值,保留3个有效数字,并用科学记数法表示,其结果为().
(A)3.47×10(B)3.47×104
(C)3.467×103(D)3.467×104 5.小王的身高约为1.712m,请按下列要求取近似值:(1)精确到0.01m;(2)保留3个有效数字.
6.用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示:
(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000km(保留2个有效数字);
2(2)2005年6月5日是第34个世界环境日,目前全球海洋总面积约为36 105.9•万km(保留3个有效数字);
(3)光年是天文学中的距离单位,1光年大约是9 500 000 000 000km(•精确到亿位);
(学生独立完成,用时约10分钟,完成后,小组相互交流讨论,教师巡回指导。)
作业:课本P64习题2.6 第1~3题
教学反思
求近似数与有效数字是人们日常生产、生活中经常遇到的问题,我们必须要很好的去掌握。本节课通过两个问题情境,探索并激发学生学习的兴趣;通过本节课的认真探索,使学生理解近似数的奥秘,体验新知识的发生和发展过程,并从中学会对信息做出合理的分析和推断,获得学习数学的方法与乐趣。
第五篇:3.2近似数和有效数字
§3.2近似数与有效数字(2)班级:___________ 姓名:___________ 学号:___________
课程引入
有效数字的概念是建立在近似数和精确位概念基础之上的,要想掌握有效数字的概念,必须首先搞清楚近似数精确到哪一位,这一点在上节课用四舍五入法取近似数时已经有所接触,你能判断近似数中的有效数字吗?会根据有效数字的要求保留近似数吗?
课前预习
※自主阅读
一、课前预习: 阅读课本P93-95页,完成练习:
止,所有的数字都叫这个数的有效数字。如0.0080920的有效数字有 个,它们分别是___________.二、课前检测:
1.中国是世界面积第3大国;中国有世界第一高峰珠穆朗玛峰,海拔8844米;中国共划分34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,人口约12.9533亿,占世界人口的21.2%;共有56个民族,少数民族人口最多的是壮族,有1600万人。
回答问题:你能找出这篇报道中的精确数和近似数吗?它们的有效数字分别有多少个?
※质疑问难
____________________________________________________________________________________________________________________________________。对于一个近似数,从
起,到
课堂研习
※知识理解 1.精确度:
2.有效数字:
※典例剖析
例1.按要求取右图中溶液体积的近似数,并指出每个近似数的有效数字.(1)四舍五入到1毫升;(2)四舍五入到10毫升.例2.据中国统计信息网公布的2000年中国第五次人口普查资料表明,我国的人口总数为1 295 330 000人.请按要求分别取这个数的近似数,并指出近似数的有效数字.(1)精确到百万位;(2)精确到千万位;(3)精确到亿位;(4)精确到十亿位.※反馈练习
1.某种纸一张的厚度为0.008905 cm,请按下面的要求分别取这个数的近似数,并指出近似数的有效数字:(1)精确到0.001 cm;(2)精确到0.0001 cm;(3)精确到0.00001 cm.2.下面各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?
(1)珠穆朗玛峰海拔高度是8848.13米;
(2)某种药王一粒的质量为0.280克.※小结提炼
谈谈你对有效数字的理解?
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________.课后复习
※分层作业 A、必做题
1.下列说法不正确的是()A.0.03精确到百分位,有一个有效数字 B.1423精确到个位,有四个有效数字 C.87.4精确到十分位,有三个有效数字 D.5.670×10精确到百分位,有三个有效数字 2.下列各近似数精确到万位的是()
A.35000 B.4亿5千万 C.3.5×104 D.4×104
3.0.03296精确到万分位是,有 个有效数字,它们是.4.近似数0.8050精确到 位,有 个有效数字,是.5.近似数4.8×105精确到 位,有 个有效数字,是.6.近似数5.31万精确到 位,有 个有效数字,是.7.一箱苹果的质量为10.90㎏,按下面的要求分别取值:
(1)精确到10㎏是 ㎏,有 个有效数字,它们是 ;(2)精确到1㎏是 ㎏,有 个有效数字,它们是 ;(3)精确到0.1㎏是 ㎏,有 个有效数字,它们是.8.下面各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?
(1)某运动员百米跑了10.30秒;
62(2)我国的国土面积为9.6×10千米;(3)小明的身高为1.605米.B、选做题
1.1990年,美国人口为248,709,873人, 这里有四种用四舍五入法得到的近似数:
①200,000,000; ②250,000,000;
③249,000,000; ④248,700,000.(1)世界上人口总数大约57亿,如果你要比较美国人口和世界人口,你将选择数据___, 它四舍五入到_____位;
(2)1980年,美国人口大约为226,000,000,如果你要比较1990年和1980年美国人口据,你将选择数据____,它四舍五入到____位.2.世界上最大的沙漠——非洲的撒哈拉沙漠可以粗略的看成是一个长方体,撒哈拉沙漠的长度大约是5 149 900m,沙漠的深度大约是3.66m.已知撒哈拉沙漠中沙的体积约为3 345km3.(1)将沙漠的沙子的体积表示成立方米,并保留两个有效数字;(2)撒哈拉沙漠的宽度是多少?(保留三个有效数字).