《15.2乘法公式》教学案

时间:2019-05-15 05:55:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《15.2乘法公式》教学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《15.2乘法公式》教学案》。

第一篇:《15.2乘法公式》教学案

《15.2乘法公式》教学案

一、教学设计思想

因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演。所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解。乘法公式有平方差公式和完全平方公式两部分。

首先通过计算知道了这些乘法具有特殊形式,从而结果是特殊的,真正体会到公式中由“展开”到合并的全过程。观察算式及结果,发现其中规律,这一环节鼓励学生大胆表达意见,积极与小组同伴合作,讨论,交流然后统一意见,师生共同总结出公式内容,分析公式结构。再通过探究公式的几何背景进一步认识公式。最后给出例题使学生对公式的含义有更进一步理解,从而对公式的掌握和运用达到灵活和准确。

二、教学目标

(一)知识与技能:

1、熟记平方差公式、完全平方公式,并能说出它们的几何背景;

2、能运用乘法公式进行计算;

3、提高发现问题、探索规律的能力。

(二)过程与方法:

1、经历乘法公式得出的过程,小组讨论,真正体会到公式中由“展开”到合并的全过程。

(三)情感态度价值观:

1、体会从一般到特殊,再从特殊到一般的思想方法;

2、感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣。

三、教学重点和难点

1、重点:平方差公式、完全平方公式.

2、难点:①对公式中字母a、b的广泛含义的理解及正确运用.②平方差公式、完全平方公式的综合应用。

3、关键:准确的找出因式中哪个式子是a,哪个式子是b,然后把原式写成公式所具备的结构,再按公式进行运算

四、教学方法

学生探索归纳与教师讲授结合

五、教学准备 投影仪

六、课时安排

3课时

七、教学过程设计 第一课时

15.2.1平方差公式

(一)自学探究

1.叙述多项式与多项式相乘的法则。2.计算。

(1)(3a+2)(a-1);(2)(2x+1)(2x-1)

(二)合作释疑 1.探究

计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)=_______________;(2)(m+2)(m-2)=_______________;(3)(2x+1)(2x-1)=_____________.谈一谈:上面各式中,相乘的两个多项式之间有什么特点?它们相乘的结果有什么规律?

学生活动:动脑、动笔进行探讨,然后小组交流,发表自己的见解.

(每个算式都是两个数的和与这两个数的差相乘,运算结果是这两个数的平方差)由学生计算式子(a+b)(a-b)。

总结大家的讨论结果,得出平方差公式:(a+b)(a-b)=a-b。两个数的和与这两个数的差的积,等于这两个数的平方差。(板书)

2.认识公式的结构特征

(1)公式左边是两个二项式相乘,这两个二项式中有一项是完全相同,另一项互为相反数,右边是相同项的平方减去相反数的平方。

(2)公式中的字母a和b可以是数,也可以是式(包括单项式、多项式等),只要符合平方差的结构特征,就可以运用公式。

为了帮助学生认识平方差公式特点,给出下列三个变形,从中学会确定相同与相反项,并正确表示运算结果。体会平方差公式中a,b的含义,准确地找出因式中哪个式子是a,哪个式子是b。

(-a+b)(-a-b)=()-()(b+a)(-b-a)=()-()(b-a)(-b-a)=()-()

学生活动:总结结构特征,对上述三个变形进行计算,从而加深对平方差公式的认识 3.用图形进一步验证平方差公式 给出下图,提出下列问题让学生思考:(1)请你表示图10—4中阴影部分的面积。

(2)如果将阴影部分拼成一个长方形(如图10—5),这个长方形的长和宽分别是多少?你能表示出它的面积吗?

(3)比较(1)和(2)的结果,你能验证平方差公式吗?

学生活动:分组讨论,了解公式的几何背景,进一步认识公式。

(三)精讲示范

例1运用平方差公式计算:(1)(3x+2)(3x-2);(2)(b+2a)(2a-b);(3)(-x+2y)(-x-2y).分析:在(1)中,可以把3x看成a,2看成b,即

解:(1)(3x+2)(3x-2)=(3x)-2=9x-4.(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)-b=4a-b.(3)(-x+2y)(-x-2y)=(-x)-(2y)=x-4y.(1)题教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.

(2)题教师引导学生发现,只需将(b+2a)中的两项交换位置,就可用平方差公式进行计算.

(3)题计算时把-x看成一个数,把2y看成另一个数,直接写出(-x)-(2y)后得出结果.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

例2计算(1)102×98;

(2)(y+2)(y-2)-(y-1)(y+5).解:(1)102×98=(100+2)(100-2)=100-2=10000-4=9996.(2)(y+2)(y-2)-(y-1)(y+5)=y-2-(y+4y-5)=y-4-y-4y+5 =-4y+1 这是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.

(四)训练巩固 课本153页的练习。

(五)总结提升 1.什么是平方差公式? 2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

(六)教学反思

根据学生实际,灵活采用教法,学生易于理解、掌握。二课时

15.2.2(1)完全平方公式

(一)自学探究 1.计算导入,求得公式

(1)叙述平方差公式的内容并用字母表示;(2)用简便方法计算 ①103×97 ②103×103(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果. 学生活动:编题、解题,然后两至三个学生说出题目和结果.

2222

222

要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘法公式”.

(二)合作释疑 1.探究

计算下列各式,你能发现什么规律?

(1)(p+1)=(p+1)(p-1)=_______________;(2)(m+2)=________________;

(3)(p-1)=(p-1)(p-1)=______________;(4)(m-2)=______________.谈一谈:上面各式中,相乘的两个多项式之间有什么特点?它们相乘的结果有什么规律?

学生活动:动脑、动笔进行探讨,然后小组交流,发表自己的见解. 由学生计算式子(a+b),(a-b)。

学生活动:计算(a+b),(a-b),两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

22222(ab)2a22abb2(ab)2a22abb2

或合并为:(ab)a2abb 教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 2.结合图形,理解公式 222

根据图形完成下列问题: 如图:A、B两图均为正方形,(1)图A中正方形的面积为,(用代数式表示)图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为。(2)图B中,正方形的面积为,Ⅲ的面积为,Ⅰ、Ⅱ、Ⅳ的面积和为,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积。

222(ab)a2abb分别得出结论:

(ab)2a22abb2

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

(三)精讲示范

1.运用完全平方公式计算(x3y)

22(x3y)(x2y)教师讲解:在中,把x看成a,把3y看成b,则就可用完全平方公

2式来计算,即

(x3y)2x22x3y(3y)2x26xy9y2          (a b)2a22abb2【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

1(abmc)22(4a3b)32.运用完全平方公式计算:(1);(2)

学生活动:学生独立在练习本上尝试解题,2个学生板演.

【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例题中(2)的计算,可对照公式直接计算,也可变形成(4a3b)2(4a3b)(4a3b)2学过的知识的能力.

2,然后再进行计算,同时也可训练学生灵活运用

小组讨论

(a+b)与(-a-b)相等吗?(a-b)与(b-a)相等吗?(a-b)与a-b相等吗?为什么?

3.运用完全平方公式计算:(1)102;(2)99。解:(1)102

=(100+2)=100+2×100×2+2=10000+400+4=10404.(2)99 =(100-1)22 222222

2=100-2×100×1+1=10000-200+1 =9801 这是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.

(四)训练巩固 课本155页的练习。

(五)总结提升 1.学习了完全平方公式.

2.引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

(六)教学反思

讲的再好、再精,训练还是主线,而训练学生的思维才是真正的核心。第三课时

15.2.2(2)添括号法则

(一)自学探究:

运用乘法公式计算,有时需要在式子中添括号,同学们回忆第二章中我们已学过的括号法则。

1.括号法则

a+(b+c)=a+b+c; a-(b+c)=a-b-c.2.添括号法则: 小组讨论:

1.根据括号法则,我们怎样得到添括号法则呢? 2.如何用文字来表述? 通过讨论可得出 a+b+c=a+(b+c); a-b-c=a-(b+c).即:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

(二)合作释疑

33(x2y)(x2y+)22 计算:有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.总结出易犯的错误。

33(x2y)(x2y)22 甲的计算过程是:原式39(x2y)2()2x44xyy224

33x(2y)x(2y)22 乙的计算过程是:原式39(x)2(2y)2x24y6y24

33x(2y)x(2y)22 丙的计算过程是:原式33(x)2(2y)2x2(4y26y)22

33x(2y)x(2y)22 丁的计算过程是:原式3(x)2(2y)22

99x2(4y2)x24y244

(三)精讲示范

例题5运用乘法公式计算:

(1)(x+2y-3)(x-2y+3);(2)(a+b+c).解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)] =x-(2y-3)2222

2=x-(4y-12y+9)=x-4y+12y-9(2)(a+b+c)=[(a+b+c)]22 222=(a+b)+2(a+b)c+c=a+2ab+b+2ac+2bc+c22222=a+b+c+2ab+2ac+2bc 先引导学生分析题目的形式,看看通过如何加括号,可凑成乘法公式的形式。避免那些容易出现的错误。

(四)训练巩固 课本156页的练习。

(五)总结提升

引导学生总结本节的主要知识点。

(六)教学反思

舍弃授之以鱼,更应授之以渔,这样的实践才能教育的双重目的。

第二篇:乘法公式(完全平方公式2)

课题:乘法公式(完全平方公式2)一.测验讲解

利用乘法公式计算: 1.99

2.(2x5)2(2x1)(12x)

二.教学目标:

1.掌握完全平方公式的推广,学会利用换元思想进行转化; 2.掌握添括号和去括号的法则,并会灵活运用; 3.能根据题目特点选择适当的公式进行计算。

三.指导自学:

问题1:计算(abc)2;

问题2:将(abc)2中的ab看作一个整体,你会计算吗?结果有规律吗? 问题3:你能利用前面所学的知识灵活计算(x2y3)(x2y3)吗?

四.教师讲解:

归纳公式:(abc)2等于每一项的平方和加上每两项乘积的2倍。例.1.(x2yz)2.(xy1)(xy1)3.(3mnp)(3mnp)

五.当堂训练:

1.(3x5y1)(x2y)(x2y)2.(x2y3z)(x2y3z)六.落实检测:

计算:(a2b3)(a2b3)(2ab1)

小结:1.熟练掌握乘法公式及其推广; 2.注意运算中的符号问题。

布置作业

2222

第三篇:乘法公式教案

14.2.1 乘法公式--平方差公式

教学目标

1.理解平方差公式,能运用公式进行计算.

2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.

教学重、难点平方差公式 教学过程设计

一、创设情境,激发兴趣

在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?

(1)

=

(2)

=

;(3)

=

二、知识应用,巩固提高

上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?

你能对发现的规律进行推导吗?

(a+b)(a-b)=a前面探究所得的式子

2-b2为乘法的平方差公式,你能用文字语言表述平方差公式吗?

两个数的和与这两个数的差的积,等于这两个数的平方差.

你能根据图中图形的面积说明平方差公式吗?

例1 运用平方差公式计算:

(-x+2y)(-x-2y)(3x-2)(1)(3x+2);

(2)

从例题1和练习1中,你认为运用公式解决问题时应注意什么?

(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反;(4)公式中的字母a ,b 可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”. 例2 计算:

(-y+2)(-y-2)-(y-1)(y+5)(1);

(2)102×98.

三、应用提高、拓展创新

教科书108页练习1、2

四、归纳小结

(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么

14.2.2乘法公式--完全平方公式

教学目标

1.理解完全平方公式,能用公式进行计算.

2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.

教学重、难点 完全平方公式.

教学过程设计

一、创设情境,激发兴趣 问题1 计算下列各式:

22(p+1)=______;(m+2)=______;(1)22(p-1)=______;(m-2)=______.(2)

你能发现什么规律?

二、知识应用,巩固提高

问题2 你能用式子表示发现的规律吗? 完全平方公式:

问题3 你能用文字语言表述完全平方公式吗?

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 公式特点:(1)积为二次三项式;

(2)积中两项为两数的平方和;

(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?

三、应用提高、拓展创新

例1 运用完全平方公式计算:

(4m+n);

(2)(1).(y-例2 运用完全平方公式计算:

2210299(1)

;(2)

. 212)2问题5 思考:

(a+b)与(-a-b)相等吗?

(1)(a-b)与(b-a)相等吗?

(2)(a-b)与 a(3)222222-b2相等吗?为什么?

问题6 添括号法则

去括号

a+(b+c)= a+b+c;

a-(b+c)= a-b-c.

a+b+c =a+(b+c);

a-b-c = a-(b + c).

添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.

四、归纳小结

(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?

第四篇:乘法公式教案

1.教学设计学科名称

乘法公式(人教版八年级数学上册第15章)2.所在班级情况,学生特点分析

学情分析:学生已有七年级上册所学习数的运算、字母表示数、合并同类项、去括号等内容,通过类比他们会产生“式是否也有相应的运算,如果有的话该怎样进行”等问题.为此本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,让学生经历“特例→归纳→猜想→符号表示”的知识发生过程,并有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用。3.教学内容分析

本节课关注学生对公式的探索过程,有意识的培养学生的推理能力,鼓励学生经历根据特例进行归纳、建立猜想、用符号表示,有条理地表达自己的思考过程,培养学生的数感和符号感,真正理解公式的来源、本质和应用,为今后的学习打下坚实的基础.4.教学目标

⑴.经历探索平方差公式的过程,进一步发展符号感和推理能力。⑵.会推导平方差公式,并能运用公式进行简单计算。⑶.认识平方差及其几何背景,使学生明白数形结合的思想。⑷.在合作、交流和讨论中发掘知识,并体验学习的乐趣。⑸.培养学生灵活运用知识、勇于探求科学规律的意识。5.教学重、难点分析

教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算。6.教学课时:1课时 7.教学过程

一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15cm),并用多媒体课件与正方形纸板显示正方形。

师:在一块45cm的正方形纸板上,因为工作的需要,中间挖去一块边长为15cm的正方形(如图),请问剩下部分的面积有多少平方厘米?

师:计算剩下部分的面积可以有哪些方法? 小组讨论:

1.可以用大正方形面积减去小正方形面积得到。2.可以把剩下的部分切割成几个矩形来计算。

师:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗?

或许有学生能迅速列出算式,得出答案是1800平方厘米。

师:为了容易理解,我现在把小正方形放在大正方形的角落(如图)。师:刚才我们说过计算面积的方法不止一种,我们现在试着用分割的方法来计算面积。请参照老师的做法,先在你们的纸上画一条虚线,然后把刚才画的小正方形剪下来(或撕去),就像要挖去这部分一样,再沿虚线把小长方形剪下来,并把小长方形拼到大长方形的一边,刚好又变成一个新的长方形(如图)。

师:若按照我们刚开始的题目要求,现在新的大长方形的长、宽各是多少?它的面积又是多少呢?

生:大长方形的长是(45+15)cm,宽是(45-15)cm。长方形的面积=(45+15)×(45-15)=60×30=1800(平方厘米)。师:还记得两种方式的列式吗? 生:第一种方法的式子是 452-152,第二种方法的式子是(45+15)×(45-15)。

师:两个式子都能求出剩下的面积,它们之间有什么关系呢? 生:相等。

二、交流对话,探求新知。看谁算得快:(1)(x+2)(x-2)(2)(1+3a)(1-3a)(3)(x+5y)(x-5y)(4)(-m+n)(-m-n)师:你们能发现什么规律?

师:再想想看,如果今天的题目换成:“在一块边长为a厘米的正方形纸板上,因为工作的需要,中间挖去一块边长为b厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示?

生:我们可以用a2-b2来表示剩下的面积。师:还有没有别的方法?

生:也可以用(a+b)(a-b)来表示剩下的面积。

师:今天我们除了要找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a+b)(a-b)= a2-b2这个性质。上一节课我们已经学过多项式的乘法,你能利用计算多项式乘法的方法,把(a+b)(a-b)的答案计算出来吗?

师:为了节省计算时间,我们(a+b)(a-b)= a2-b2作为公式来运用,把这个公式称为“平方差公式”。

平方差公式:(a+b)(a-b)= a2-b2

师:哪一位同学能用语言叙述一下平方差公式? 生:两数和与这两数差的积,等于它们的平方差。

三、运用新知,体验成功。1.例1 计算:(1)(a+3)(a-3)(2)(2a+3b)(2a-3b)(3)(1+2c)(1-2c)(4)

解:(1)原式=a2-32=a2-9

(2)原式=(2a)2-(3b)2=4a2-9b

2(3)原式=12-(2c)2=1-4c2

(4)原式= 2.巩固深化,拓展思维。计算:

(1)(2x+3)(2x-3)(2)(-2x+y)(2x+y)(3)(-x+2)(-x-2)(4)(y-x)(-x-y)

说明:在练习时,要特别注意公式的变式训练。讲解时要紧扣公式的特征,找出相等的“项”和符号相反的“项”,然后用公式。

3.例2 计算:1998×2002。

分析:这是一个数字计算问题,让学生分组讨论如何利用平方差公式进行计算。

在本例教学时不能仅仅着眼于应用公式的化简与计算,要让学生感受构造数学“模型”的乐趣。

4.练习,简便计算:

(1)498×502(2)999×1001 5.例3 街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米。问改造后的长方形草坪的面积是多少?

(首先要列出表示面积的代数式。)解:(a+2)(a-2)= a2-4 答:改造后的长方形草坪的面积是(a2-4)平方米。6.练习

用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域面积最大,而小亮认为不一定。你认为如何?

四、课堂小结。

1.通过本节课的学习活动,你们认识了什么?是否还有不明白的地方?

2.什么样的式子才能使用平方差公式?记住公式的特点。8.作业安排

必做:习题15.2第1题(1)、(2)、(3)选作:习题15.2第1题(4)、(5)、(6)9.自我问答

通过引导学生亲自动手参与活动﹐培养学生解决实际问题.初中生以形象思维为主,试图达到数与形的结合.动手操作又是一个手脑并用的过程,是解决数学知识抽象性与初中生思维形象性之间矛盾的一个有效方法,同时,探索过程中的丰富情感体验可让学生由“要我学”的被动性转变为“我要学”的主动性.通过实验操作,促进学生变抽象为具体,培养了学生“用数学”的意识.通过本节课的设计实现教学目标,并培养学生了学生创造、归纳、演绎、数学建模的数学素质。

第五篇:乘法公式教案

《乘法公式》练习题

(一)一、填空题

1.(a+b)(a-b)=_____,公式的条件是_____,结论是_____.2.(x-1)(x+1)=_____,(2a+b)(2a-b)=_____,(13x-y)(13x+y)=_____.3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m-n)(_____)=m2-n

24.98×102=(_____)(_____)=()2-()2=_____.5.-(2x2+3y)(3y-2x2)=_____.6.(a-b)(a+b)(a2+b2)=_____.7.(_____-4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y2

8.(xy-z)(z+xy)=_____,(56x-0.7y)(56x+0.7y)=_____.9.(14x+y2)(_____)=y4-1216x

10.观察下列各式:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

根据前面各式的规律可得

(x-1)(xn+xn-1+…+x+1)=_____.二、选择题

11.下列多项式乘法,能用平方差公式进行计算的是()

A.(x+y)(-x-y)

B.(2x+3y)(2x-3z)

C.(-a-b)(a-b)

D.(m-n)(n-m)

12.下列计算正确的是()

A.(2x+3)(2x-3)=2x2-9

B.(x+4)(x-4)=x2-4

C.(5+x)(x-6)=x2-30

D.(-1+4b)(-1-4b)=1-16b2 13.下列多项式乘法,不能用平方差公式计算的是()

A.(-a-b)(-b+a)

B.(xy+z)(xy-z)

C.(-2a-b)(2a+b)

D.(0.5x-y)(-y-0.5x)

14.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算()

A.-4x2-5y

B.-4x2+5y

C.(4x2-5y)2

D.(4x+5y)

215.a4+(1-a)(1+a)(1+a2)的计算结果是()

A.-1

B.1

C.2a4-1

D.1-2a16.下列各式运算结果是x2-25y2的是()

A.(x+5y)(-x+5y)

B.(-x-5y)(-x+5y)

C.(x-y)(x+25y)

D.(x-5y)(5y-x)

三、解答题

17.1.03×0.97

18.(-2x2+5)(-2x2-5)

19.a(a-5)-(a+6)(a-6)

20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)21.(13x+y)(13x-y)(19x2+y2)

22.(x+y)(x-y)-x(x+y)

23.3(2x+1)(2x-1)-2(3x+2)(2-3x)

24.9982-4

25.2003×2001-20022

《乘法公式》练习题

(二)1.(ab)2a2b2--()

2.(xy)2x22xyy2---()3.(ab)2a22abb2--()4.(2x3y)22x212xy9y(2 5.(2x3y)(2x3y)4x29y2()

6(2x3y)(3xy)______________;

7.(2x5y)2_______________;

8.(2x3y)(3x2y)______________;

9.(4x6y)(2x3y)______________;)10(x2y)________________ 1222.化简求值:(2x1)(x2)(x2)2(x2)2,其中x11 211.(x3)(x3)(x29)____________;

12.(2x1)(2x1)1___________;

13。(x2)(________)x24; 14.(x1)(x2)(x3)(x3)_____________; 15.(2x1)2(x2)2____________;16.(2x______)(______y)4x2y2;

17.(1x)(1x)(1x2)(1x4)______________; 18.下列多项式乘法中不能用平方差公式计算的是()

(A)

(a3b3)(a3b3)

(B)

(a2b2)(b2a2)(C)

(2x2y1)(2x2y1)

(D)

(x22y)(2xy2)19.下列多项式乘法中可以用平方差公式计算的是()(A)(ab)(ab)

(B)(x2)(2x)(C)(1xy)(y133x)(D)(x2)(x1)20.下列计算不正确的是()

(A)

(xy)2x2y2

(B)

(x1)2x21xx2(C)

(ab)(ba)a2b2

(D)

(xy)2x22xyy2 21.化简:(ab)(ab)(bc)(bc)(ca)(ca)

23.解方程:

(13x)2(2x1)213(x1)(x1)

24.(1)已知x(x1)(x2y)2,求

x2y22xy的值;(2)如果

a2ab15,b2ab6求a2b2和a2b2的值

下载《15.2乘法公式》教学案word格式文档
下载《15.2乘法公式》教学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《表内乘法一》教学案

    《表内乘法一》教学案 一、学习目标: 1、在具体情境中,学会2、3、4的乘法口诀,进一步理解乘法的意义。 2、培养学生的抽象概括能力。 二、预习学案 1、5×2= 口诀:( )2×2= 口诀:( )......

    陈情表教学案2

    《陈情表》导学案 预习案 课前预习1、填写并识记《金榜》知识,了解文章中部分实词、虚词。 2、初步了解作家生平及写作背景。 3、阅读全文,结合注释,熟悉文章大意。 教学案......

    公输2教学案

    天华学校“和美教育”导学案 9年级下语文学科 课题:《公 输》 第 2 课时 主备人:万江 审稿人: 一、学习目标 探究墨子止楚攻宋成功的奥秘,体味墨子的劝说艺术,品读课文。 二、学......

    送行2教学案

    科目: 语文编写人: 审核人:姓名:年级 班组长:九、送行(第二课时)教·学案 【 教学目标】 知识与能力1、学习铺垫手法,了解这种手法的作用。2、讨论理解文中勒罗受雇送别的感情问题,体......

    乘法公式教学反思

    上周我们学习了“乘法公式”,乘法公式在简化多项式乘法运算、因式分解及以后的数学学习中有着广泛的应用,乘法公式教学反思。根据课标的规定主要学习两个最基本的乘法公式,留出......

    9.4乘法公式教案

    淮安市北京路中学七年级下学期数学教案(21)主备:阮燕审核: 把关领导:日期:2018.3.27 9.4乘法公式(3) 【教学目标】 1.运用完全平方公式、平方差公式进行综合计算. 2.通过图形面积的......

    乘法公式教学反思

    乘法公式教学反思 乘法公式教学反思1 新课标要求我们在教学中不只是传授学生基本的知识技能,还要以培养学生的数学能力及合作探究的意识为目标。为此,我在设计本节课的教学环......

    《乘法公式》教学反思

    《乘法公式》教学反思 《乘法公式》教学反思1 根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的......