公式法求根(5篇材料)

时间:2019-05-15 05:37:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公式法求根》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公式法求根》。

第一篇:公式法求根

教学内容

1.一元二次方程求根公式的推导过程;

2.公式法的概念;

3.利用公式法解一元二次方程.

教学目标

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.

重难点关键

1.重点:求根公式的推导和公式法的应用.

2.难点与关键:一元二次方程求根公式法的推导.

教学过程

一、复习引入

(学生活动)用配方法解下列方程

(1)6x2-7x+1=0

(2)4x2-3x=52

(老师点评)(1)移项,得:6x2-7x=-1

二次项系数化为1,得:x2-x=-

配方,得:x2-x+()2=-+()2

(x-)2= x-=±

x1= + = =1 x2=-+ ==

(2)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)移项;

(2)化二次项系数为1;

(3)方程两边都加上一次项系数的一半的平方;

(4)原方程变形为(x+m)2=n的形式;

(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

二、探索新知

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2=

分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+ x=-

配方,得:x2+ x+()2=-+()2

即(x+)2=

∵b2-4ac≥0且4a2>0

∴ ≥0

直接开平方,得:x+ =±

即x=

∴x1=,x2=

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,•将a、b、c代入式子x=就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1.用公式法解下列方程.

(1)2x2-4x-1=0

(2)5x+2=3x2

(3)(x-2)(3x-5)=0

(4)4x2-3x+1=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

解:(1)a=2,b=-4,c=-1

b2-4ac=(-4)2-4×2×(-1)=24>0

x=

∴x1=,x2=

(2)将方程化为一般形式

3x2-5x-2=0

a=3,b=-5,c=-2

b2-4ac=(-5)2-4×3×(-2)=49>0

x=

x1=2,x2=-

(3)将方程化为一般形式

3x2-11x+9=0

a=3,b=-11,c=9

b2-4ac=(-11)2-4×3×9=13>0

∴x=

∴x1=,x2=

(3)a=4,b=-3,c=1

b2-4ac=(-3)2-4×4×1=-7<0

因为在实数范围内,负数不能开平方,所以方程无实数根.

三、巩固练习

教材P42 练习1.(1)、(3)、(5)

四、应用拓展

例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.

(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.

(2)若使方程为一元二次方程m是否存在?若存在,请求出.

你能解决这个问题吗?

分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.

(2)要使它为一元一次方程,必须满足: ① 或②或③

解:(1)存在.根据题意,得:m2+1=2

m2=1 m=±1

当m=1时,m+1=1+1=2≠0

当m=-1时,m+1=-1+1=0(不合题意,舍去)

∴当m=1时,方程为2x2-1-x=0

a=2,b=-1,c=-1

b2-4ac=(-1)2-4×2×(-1)=1+8=9

x=

x1=,x2=-

因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.

(2)存在.根据题意,得:①m2+1=1,m2=0,m=0

因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0

所以m=0满足题意.

②当m2+1=0,m不存在.

③当m+1=0,即m=-1时,m-2=-3≠0

所以m=-1也满足题意.

当m=0时,一元一次方程是x-2x-1=0,解得:x=-1

当m=-1时,一元一次方程是-3x-1=0

解得x=-

因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-.

五、归纳小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程;

(4)初步了解一元二次方程根的情况.

六、布置作业

1.教材P45 复习巩固4.

2.选用作业设计:

一、选择题

1.用公式法解方程4x2-12x=3,得到(). A.x=

B.x=

C.x=

D.x=

2.方程 x2+4 x+6 =0的根是(). A.x1=,x2=

B.x1=6,x2= C.x1=2,x2=

D.x1=x2=-

3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().

A.4

B.-2

C.4或-2

D.-4或2

二、填空题

1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.

2.当x=______时,代数式x2-8x+12的值是-4.

3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.

三、综合提高题

1.用公式法解关于x的方程:x2-2ax-b2+a2=0.

2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2= ;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.

3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,•那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时元收费.

(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(•用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况

月份 4

答案:

一、1.D 2.D 3.C

二、1.x=,b2-4ac≥0

2.4 3.-3

三、1.x= =a±│b│

2.(1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1=,x2=

∴x1+x2==-,x1·x2= · =

(2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0

原式=ax13+bx12+c1x1+ax23+bx22+cx2

=x1(ax12+bx1+c)+x2(ax22+bx2+c)

=0 3.(1)超过部分电费=(90-A)· =-A2+ A(2)依题意,得:(80-A)· =15,A1=30(舍去),A2=50

用电量(千瓦时)

交电费总金额(元)

根据上表数据,求电厂规定的A值为多少?

第二篇:一元二次方程求根公式推导的教案

一元二次方程的解法(求根公式法)

教学目标

(一)使学生掌握一元二次方程求根公式的推导过程;

(二)要求学生熟练掌握用公式法解一元二次方程;

(三)培养计算能力。渗透“一般与特殊”的观点。

教学重点和难点

重点:一元二次方程的求根公式解法。难点:用配方法推导求根公式。

教学过程设计

(一)引入

1、复习配方法的步骤;

2、问题:一个一元二次方程如果不能用因式分解或者直接开平方法,那么一定就可以用先配方再开平方来求解。但是配方比较麻烦,而且总在重复相同的解题过程。那么能否推导一个一元二次方程的求根公式,从而可以直接代公式求解?

这就是本节课要解决的问题。

新课(在教师的引导下完成以下的推导)推导求根公式

2axbxc0

a0

(1)

解:因为a0,两边同时除以a,得

x2bcx0aa,把常数项移到方程的右边,并在两边加上一次项系数一半的平方,得

bbbcx2xa2a2aa 22即

bb24acx2a4a2, 2因为a0,4a2>0,得

bb24acx,2a2a

2当b4ac0时,所以

bb24acx,2a

2

bb24acbb24acx1,x2,2a2a即

公式(2)叫做一元二次方程的求根公式。

2、运用求根公式求一元二次方程的根。注意两点:

2(1)一元二次方程axbxc0

a0的根的值是由系数a,b,c确定的,所以在代入求根公式前,务必认准所求题目中a,b,c所取值是多少(特别容易在正、负号上出错).2(2)方程axbxc0

a0不一定有实数解,为此,在代公式之前,先

222bb4ac判断一下的值很有必要,4ac0,方程有实数解。若b4ac<0时,方程无实数解,就没有必要代入求根公式了。

解题举例

2例

1、解方程:2x4x30

解:(1)因为: a2,b4,c3

22b4ac(4)42

3所以

= 80

即原方程无实数解

例2

解方程:xx17(x1)2(x2).解:(1)先把方程化为一元二次方程的一般形式 x6x110.因为 a1,b6,c1所以

22b4ac6411180, 代入求根公式

bb24ac64

5即

x,2a2

所以

x1325, x2325.225x23x.2x43x2203、x22x30

1、练习:

1、2、三、小结

1、用公式解一元二次方程时要注意的条件;

22、b4ac的值与一元二次方程的根之间的联系:

22b4ac0axbxc0 a0有两个不相等的实数根;

(1)时一元二次方程2

2(2)b4ac0时一元二次方程axbxc0 a0有两个相等的实数根;

(3)b4ac0 时一元二次方程axbxc0 a0没有实数根;

四、作业

1.用求根公式法解下列方程:

122x3x028

(1)、x2x20;(2)、222x2axba;

(3)、

第三篇:公式法教学设计

第二章

一元二次方程

3.公式法

杜寨初级中学 九年级

一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析

公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力

三、教学过程分析

本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:公式的推导;第三环节:看一看、练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;回忆巩固 活动内容:

①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找两位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 x27x30 1 配方:加上再减去一次项系数一半的平方 x27x(7)24930

24162即:(x7)2250

416725(x)2416两边开平方取“±” 得:

x75 44x75 44 写出方程的根 ∴ x1=3 , x2=1

2第二题: 3x+2x+1=0 解:两边都除以一次项系数:3 x22x10

332 配方:加上再减去一次项系数一半的平方 x22x(1)2130

3392即:(x1)2250

318125

(x)2318∵250

18∴原方程无解 活动目的:(1)进一步夯实用配方法解方程的一班步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。

(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.活动的实际效果:

通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。

第二环节 公式的推导 活动内容:

提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a x2bxc0

aa 2 问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方

bb2b2cxx()20a2a4aa2即: b2b24ac

(x)a4a2 b2b24ac(x)0a4a2 问:现在可以两边开平方吗?

答:不可以,因为不能保证 b4ac0

24a2 问:什么情况下 b4ac0 24a2 学生讨论后回答:

答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2只要 b2-4ac≥0即可

∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac

2a4a2bb24ac xa2a xbb4ac

2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解 活动目的:

学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。活动的实际效果:

学生的主要问题通常出现在这样的几个地方:(1)

中b2c运算的符号出现错误和通分出现错误 bb2b2cxx()204a2aa2a4aa2(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方

(3)两边开平方,忽略取“±”。

大部分学生需要在教师的帮助下,才能完善公式的推导。第三环节:练一练,巩固新知 活动内容:

1、判断下列方程是否有解:(学生口答)

22(1)2x+3=7x(2)x-7x=18(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断是否有根

问第(3)题的判断,与第一环节中的第(2)题对比,那种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题 例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×3=25>0 ∴bb4ac

2x2a72575224写出方程的根 即x1=3,x2=-1

2问:与第一环节中的第(1)题对比,哪种解法更简捷?

(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)

3、课本随堂练习2.一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。

活动目的:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。活动实际效果:教师引导学生分析,学生口答、板书,笔答,对比,评价,总结.大部分学生能够正确、熟练的用公式法解方程。

出现的问题

1、对于(1)(2)(5)小题,有个别学生因为没有化成一般形式,从而把a,b,c的符号弄错了;、学生比较容易得出当a,c异号时,方程一定有解。第四环节:收获与感悟 活动内容: 提出问题:

1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?

2、用公式法解方程应注意的问题是什么?

3、你在解方程的过程中有哪些小技巧?

让学生在四人小组中进行回顾与反思后,进行组间交流发言。活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。

活动实际效果:学生通过回顾本节课的学习,感受到公式推导的全过程,发展了逻辑思维能力,提高了推理技能,在使用公式解方程的过程中,感受到有的一元二次方程的有根,而有的没有根,通过解方程,进一步提高了学生的运算能力。第五环节:布置作业 用公式法解下列方程(教师可根据实际情况选用)2x2-4x-1=0 5x+2=3x2

(x-2)(3x-5)=0 2x2+7x=4 x2-22x+2=0 列方程解应用题

1、已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少? 2、一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽

3、某商场销售一批衬衫,平均每天可以售出20件,没见盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,如果每件降价1元,商场每天可以多销售2件,(1)若商场平均每天要盈利1200元,每件衬衫要降价多少元?

(2)选作题(供学有余力的学生选作)每件衬衫降价多少元时,商场平均每天盈利最多?

四、教学反思

1、要创造性的使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。

2、要为学生的终身学习奠基

这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.5

第四篇:14.3.2 公式法 教案

14.3.2公式法(2)芦集二中 吴冬梅

教学目标:

1.理解完全平方公式的特点.

2.能较熟悉地运用完全平方公式分解因式. 3.能灵活应用提公因式法、公式法分解因式.

学习重点:

会用完全平方公式分解因式.

学习难点:

灵活应用公式分解因式

教学活动:

问题你还能说出完全平方公式吗?

你能把多项式a22abb2和a22abb2分解因式吗?这两个多项式有什么特点?

学生活动设计

观察上述多项式,与乘法公式中的完全平方公式作比较,容易得到

a22abb2(ab)2.

教师活动设计

学生得到结果后,让学生归纳a2abb(ab),即

两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.

2222同时归纳完全平方式的定义:把形如a2abb和a2abb的式子叫作完全

222平方式.

例5 分解因式

222(1)16x24x9;(2)x4xyy.

学生活动设计

学生在独立思考的基础上进行讨论,在(1)中,16x2=(4x)2,9=32,24x=2×4x×3,所以

16x224x9是一个完全平方式,16x224x9=(4x+3)2.

在(2)中,形式上不满足完全平方式的特点,但是x24xyy2=(x24xyy2),变形后括号内的多项式是完全平方式,可以分解因式.

教师活动设计

在本问题的解决过程中,让学生进一步体会完全平方式的特点,能够灵活地用完全平方式分解因式.

例6 分解因式

(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.

分析:在(1)中有公因式3a,应先提出公因式,再进一步分解. 解:(1)3ax2+6axy+3ay2= 3a(x2+2xy+y2)=3a(x+y)2;

(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2. 练习:1.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1 ;(4)a2+ab+b2. 2.分解因式

(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.

问题把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?

3344(1)xy;(2)abab;

(3)3ax6axy3ay;(4)(xp)(xq);(5)(ab)12(ab)36. 学生活动设计:

观察上述多项式的形式,发现:

(1)可以把x4.y4看作(x2)2.(y2)2,可以利用平方差公式,得到xy=(xy)(xy)而xy还可以利用平方差公式进行分解得到xy=(xy)(xy)=(x-y)(x+y)(xy);(2)(3)中不能用公式,但是各项存在公因式,于是可以先提公因式,然后进行分解,得到

***422222

(2)a3bab3ab(a2b2)ab(ab)(ab);

(3)3ax26axy3ay23a(x22xyy2)3a(xy)2;(4)中若把(x+p)和(x+q)看作一个整体,可以利用平方差公式分解.(5)把(a+b)看作一个整体,恰好是完全平方式. 教师活动设计

让学生讨论如何进行分解因式,体会分解因式的一般步骤,归纳:

(1)先提公因式(有的话);(2)利用公式(可以的话);

(3)分解因式时要分解到不能分解为止. 问题证明:连续两个奇数的平方差可以被8整除. 学生分析:

设连续两个奇数是x、x+2,则有

x2-(x+2)2=(x-x-2)(x+x+2)=-2(2x+2)=-4(x+1),因为x是奇数,所以x+1是偶数,所以-4(x+1)能被8整除. 归纳小结、布置作业

第五篇:《14.3.2 公式法》教案

《14.3.2 公式法》教案

一、教学目标:

用完全平方公式分解因式

二、教学重点:

用完全平方公式分解因式.

三、教学难点:

灵活应用公式分解因式.

四、教学过程:

Ⅰ.提出问题,创设情境

问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?

问题2:把下列各式分解因式.

(1)a+2ab+b222(2)a-2ab+b2 [生]将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式. [师]能不能用语言叙述呢?

[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.问题2其实就是完全平方公式的符号表示.即:a+2ab+b=(a+b),a-2ab+b(a-b).

[师]今天我们就来研究用完全平方公式分解因式. Ⅱ.导入新课

下列各式是不是完全平方式?

(1)a-4a+4(2)x+4x+4y(3)4a+2ab+(5)x-6x-9(6)a+a+0.25 结果:

(1)a-4a+4=a-2×2·a+2=(a-2)(3)4a+2ab+222

222 2

1222

b(4)a-ab+b412111222 b=(2a)+2×2a·b+(b)=(2a+b)42222

2(6)a+a+0.25=a+2·a·0.5+0.5=(a+0.5)(2)、(4)、(5)都不是.

方法总结:分解因式的完全平方公式,左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方.从而达到因式分解的目的. 例题解析

[例1]分解因式:

(1)16x+24x+9(2)-x+4xy-4y [例2]分解因式:

(1)3ax+6axy+3ay(2)(a+b)-12(a+b)+36 [例1](1)分析:在(1)中,16x=(4x),9=3,24x=2·4x·3,所以16x+14x+9是一个完全平方式,即

解:(1)16x+24x+9 =(4x)+2·4x·3+3 =(4x+3).

(2)分析:在(2)中两个平方项前有负号,所以应考虑添括号法则将负号提出,然后再考虑完全平方公式,因为4y=(2y),4xy=2·x·2y.

所以:

2222

解:-x+4xy-4y=-(x-4xy+4y)=-[x-2·x·2y+(2y)] =-(x-2y).

练一练:把下列多项式分解因式:(1)6a-a-9;(2)-8ab-16a-b;(3)2a-a-a;

(4)4x+20(x-x)+25(1-x)Ⅲ.课时小结

引导学生回顾本大节内容,梳理知识,培养学生的总结归纳能力,最后给出分解因式的知识框架图,使学生对这部分知识有一个清晰的了解.22

2232222222

下载公式法求根(5篇材料)word格式文档
下载公式法求根(5篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学放缩法公式

    “放缩法”证明不等式的基本策略1、添加或舍弃一些正项(或负项)例1、已知an2n1(nN*).求证:kn213a1a2a2a3...anan1(nN).*证明: akak1212k111212(2k11)1213.222kk1211.k,k1,2,...,......

    公式法教学设计

    第二章一元二次方程 3.公式法 一、教学目标 知识技能:在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。 数学思......

    22.2公式法教学设计

    22.2.2用公式法解 一元二次方程的教学设计 (数学九年级人教版本上册) 一、学生知识水平分析 学生知识技能基础:学生通过前几节课的学习,认识了一元二次方程的概念,一般形式,并且......

    分解因式-公式法教案

    §15.5.2.1 公式法(一) 教学目标 (一)教学知识点 运用平方差公式分解因式.(二)能力训练要求 1.能说出平方差公式的特点. 2.能较熟练地应用平方差公式分解因式. 3.初步会用提公因式法与公式......

    因式分解公式法(导学案)

    因式分解(二)(导学案) (公式法因式分解) 学习目标:1、会用公式法进行因式分解。2、了解因式分解的步骤。 学习重点:会用公式法进行因式分解。学习难点:熟练应用公式法进行因式分......

    《14.3.2公式法》教学反思

    14.3.2公式法》教学反思 在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的......

    因式分解----公式法教学反思

    教学反思 因式分解这部分的内容是八年级数学第一学期重难点,虽然应用的公式只是三条,但要灵活应用于解题却不容易,所以我在制定这一章书的教学计划时就对教材的教学顺序作出了......

    教学公式法的教学反思

    公式法包括平方差公式和完全平方公式,它是华东师大版八年级上册第12章整式乘除的教学内容,它是初中代数学习的重要组成部分。公式法的学习是在学生学习了幂的运算,整式乘法运算......