第一篇:公式法求根
教学内容
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、复习引入
(学生活动)用配方法解下列方程
(1)6x2-7x+1=0
(2)4x2-3x=52
(老师点评)(1)移项,得:6x2-7x=-1
二次项系数化为1,得:x2-x=-
配方,得:x2-x+()2=-+()2
(x-)2= x-=±
x1= + = =1 x2=-+ ==
(2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
二、探索新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+ x=-
配方,得:x2+ x+()2=-+()2
即(x+)2=
∵b2-4ac≥0且4a2>0
∴ ≥0
直接开平方,得:x+ =±
即x=
∴x1=,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,•将a、b、c代入式子x=就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x2-4x-1=0
(2)5x+2=3x2
(3)(x-2)(3x-5)=0
(4)4x2-3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
解:(1)a=2,b=-4,c=-1
b2-4ac=(-4)2-4×2×(-1)=24>0
x=
∴x1=,x2=
(2)将方程化为一般形式
3x2-5x-2=0
a=3,b=-5,c=-2
b2-4ac=(-5)2-4×3×(-2)=49>0
x=
x1=2,x2=-
(3)将方程化为一般形式
3x2-11x+9=0
a=3,b=-11,c=9
b2-4ac=(-11)2-4×3×9=13>0
∴x=
∴x1=,x2=
(3)a=4,b=-3,c=1
b2-4ac=(-3)2-4×4×1=-7<0
因为在实数范围内,负数不能开平方,所以方程无实数根.
三、巩固练习
教材P42 练习1.(1)、(3)、(5)
四、应用拓展
例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足: ① 或②或③
解:(1)存在.根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
x=
x1=,x2=-
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-.
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到(). A.x=
B.x=
C.x=
D.x=
2.方程 x2+4 x+6 =0的根是(). A.x1=,x2=
B.x1=6,x2= C.x1=2,x2=
D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().
A.4
B.-2
C.4或-2
D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2= ;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,•那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时元收费.
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(•用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
月份 4
答案:
一、1.D 2.D 3.C
二、1.x=,b2-4ac≥0
2.4 3.-3
三、1.x= =a±│b│
2.(1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1=,x2=
∴x1+x2==-,x1·x2= · =
(2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0
原式=ax13+bx12+c1x1+ax23+bx22+cx2
=x1(ax12+bx1+c)+x2(ax22+bx2+c)
=0 3.(1)超过部分电费=(90-A)· =-A2+ A(2)依题意,得:(80-A)· =15,A1=30(舍去),A2=50
用电量(千瓦时)
交电费总金额(元)
根据上表数据,求电厂规定的A值为多少?
第二篇:一元二次方程求根公式推导的教案
一元二次方程的解法(求根公式法)
教学目标
(一)使学生掌握一元二次方程求根公式的推导过程;
(二)要求学生熟练掌握用公式法解一元二次方程;
(三)培养计算能力。渗透“一般与特殊”的观点。
教学重点和难点
重点:一元二次方程的求根公式解法。难点:用配方法推导求根公式。
教学过程设计
(一)引入
1、复习配方法的步骤;
2、问题:一个一元二次方程如果不能用因式分解或者直接开平方法,那么一定就可以用先配方再开平方来求解。但是配方比较麻烦,而且总在重复相同的解题过程。那么能否推导一个一元二次方程的求根公式,从而可以直接代公式求解?
这就是本节课要解决的问题。
新课(在教师的引导下完成以下的推导)推导求根公式
2axbxc0
a0
(1)
解:因为a0,两边同时除以a,得
x2bcx0aa,把常数项移到方程的右边,并在两边加上一次项系数一半的平方,得
bbbcx2xa2a2aa 22即
bb24acx2a4a2, 2因为a0,4a2>0,得
bb24acx,2a2a
2当b4ac0时,所以
bb24acx,2a
2
bb24acbb24acx1,x2,2a2a即
公式(2)叫做一元二次方程的求根公式。
2、运用求根公式求一元二次方程的根。注意两点:
2(1)一元二次方程axbxc0
a0的根的值是由系数a,b,c确定的,所以在代入求根公式前,务必认准所求题目中a,b,c所取值是多少(特别容易在正、负号上出错).2(2)方程axbxc0
a0不一定有实数解,为此,在代公式之前,先
222bb4ac判断一下的值很有必要,4ac0,方程有实数解。若b4ac<0时,方程无实数解,就没有必要代入求根公式了。
解题举例
2例
1、解方程:2x4x30
解:(1)因为: a2,b4,c3
22b4ac(4)42
3所以
= 80
即原方程无实数解
例2
解方程:xx17(x1)2(x2).解:(1)先把方程化为一元二次方程的一般形式 x6x110.因为 a1,b6,c1所以
22b4ac6411180, 代入求根公式
bb24ac64
5即
x,2a2
所以
x1325, x2325.225x23x.2x43x2203、x22x30
1、练习:
1、2、三、小结
1、用公式解一元二次方程时要注意的条件;
22、b4ac的值与一元二次方程的根之间的联系:
22b4ac0axbxc0 a0有两个不相等的实数根;
(1)时一元二次方程2
2(2)b4ac0时一元二次方程axbxc0 a0有两个相等的实数根;
(3)b4ac0 时一元二次方程axbxc0 a0没有实数根;
四、作业
1.用求根公式法解下列方程:
122x3x028
(1)、x2x20;(2)、222x2axba;
(3)、
第三篇:公式法教学设计
第二章
一元二次方程
3.公式法
杜寨初级中学 九年级
一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析
公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力
三、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:公式的推导;第三环节:看一看、练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固 活动内容:
①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找两位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 x27x30 1 配方:加上再减去一次项系数一半的平方 x27x(7)24930
24162即:(x7)2250
416725(x)2416两边开平方取“±” 得:
x75 44x75 44 写出方程的根 ∴ x1=3 , x2=1
2第二题: 3x+2x+1=0 解:两边都除以一次项系数:3 x22x10
332 配方:加上再减去一次项系数一半的平方 x22x(1)2130
3392即:(x1)2250
318125
(x)2318∵250
18∴原方程无解 活动目的:(1)进一步夯实用配方法解方程的一班步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。
(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.活动的实际效果:
通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。
第二环节 公式的推导 活动内容:
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a x2bxc0
aa 2 问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方
bb2b2cxx()20a2a4aa2即: b2b24ac
(x)a4a2 b2b24ac(x)0a4a2 问:现在可以两边开平方吗?
答:不可以,因为不能保证 b4ac0
24a2 问:什么情况下 b4ac0 24a2 学生讨论后回答:
答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2只要 b2-4ac≥0即可
∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac
2a4a2bb24ac xa2a xbb4ac
2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解 活动目的:
学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。活动的实际效果:
学生的主要问题通常出现在这样的几个地方:(1)
中b2c运算的符号出现错误和通分出现错误 bb2b2cxx()204a2aa2a4aa2(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方
(3)两边开平方,忽略取“±”。
大部分学生需要在教师的帮助下,才能完善公式的推导。第三环节:练一练,巩固新知 活动内容:
1、判断下列方程是否有解:(学生口答)
22(1)2x+3=7x(2)x-7x=18(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断是否有根
问第(3)题的判断,与第一环节中的第(2)题对比,那种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题 例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×3=25>0 ∴bb4ac
2x2a72575224写出方程的根 即x1=3,x2=-1
2问:与第一环节中的第(1)题对比,哪种解法更简捷?
(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)
3、课本随堂练习2.一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。
活动目的:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。活动实际效果:教师引导学生分析,学生口答、板书,笔答,对比,评价,总结.大部分学生能够正确、熟练的用公式法解方程。
出现的问题
1、对于(1)(2)(5)小题,有个别学生因为没有化成一般形式,从而把a,b,c的符号弄错了;、学生比较容易得出当a,c异号时,方程一定有解。第四环节:收获与感悟 活动内容: 提出问题:
1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?
2、用公式法解方程应注意的问题是什么?
3、你在解方程的过程中有哪些小技巧?
让学生在四人小组中进行回顾与反思后,进行组间交流发言。活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。
活动实际效果:学生通过回顾本节课的学习,感受到公式推导的全过程,发展了逻辑思维能力,提高了推理技能,在使用公式解方程的过程中,感受到有的一元二次方程的有根,而有的没有根,通过解方程,进一步提高了学生的运算能力。第五环节:布置作业 用公式法解下列方程(教师可根据实际情况选用)2x2-4x-1=0 5x+2=3x2
(x-2)(3x-5)=0 2x2+7x=4 x2-22x+2=0 列方程解应用题
1、已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少? 2、一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽
3、某商场销售一批衬衫,平均每天可以售出20件,没见盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,如果每件降价1元,商场每天可以多销售2件,(1)若商场平均每天要盈利1200元,每件衬衫要降价多少元?
(2)选作题(供学有余力的学生选作)每件衬衫降价多少元时,商场平均每天盈利最多?
四、教学反思
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。
2、要为学生的终身学习奠基
这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.5
第四篇:14.3.2 公式法 教案
14.3.2公式法(2)芦集二中 吴冬梅
教学目标:
1.理解完全平方公式的特点.
2.能较熟悉地运用完全平方公式分解因式. 3.能灵活应用提公因式法、公式法分解因式.
学习重点:
会用完全平方公式分解因式.
学习难点:
灵活应用公式分解因式
教学活动:
问题你还能说出完全平方公式吗?
你能把多项式a22abb2和a22abb2分解因式吗?这两个多项式有什么特点?
学生活动设计
观察上述多项式,与乘法公式中的完全平方公式作比较,容易得到
a22abb2(ab)2.
教师活动设计
学生得到结果后,让学生归纳a2abb(ab),即
两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.
2222同时归纳完全平方式的定义:把形如a2abb和a2abb的式子叫作完全
222平方式.
例5 分解因式
222(1)16x24x9;(2)x4xyy.
学生活动设计
学生在独立思考的基础上进行讨论,在(1)中,16x2=(4x)2,9=32,24x=2×4x×3,所以
16x224x9是一个完全平方式,16x224x9=(4x+3)2.
在(2)中,形式上不满足完全平方式的特点,但是x24xyy2=(x24xyy2),变形后括号内的多项式是完全平方式,可以分解因式.
教师活动设计
在本问题的解决过程中,让学生进一步体会完全平方式的特点,能够灵活地用完全平方式分解因式.
例6 分解因式
(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.
分析:在(1)中有公因式3a,应先提出公因式,再进一步分解. 解:(1)3ax2+6axy+3ay2= 3a(x2+2xy+y2)=3a(x+y)2;
(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2. 练习:1.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1 ;(4)a2+ab+b2. 2.分解因式
(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.
问题把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?
3344(1)xy;(2)abab;
(3)3ax6axy3ay;(4)(xp)(xq);(5)(ab)12(ab)36. 学生活动设计:
观察上述多项式的形式,发现:
(1)可以把x4.y4看作(x2)2.(y2)2,可以利用平方差公式,得到xy=(xy)(xy)而xy还可以利用平方差公式进行分解得到xy=(xy)(xy)=(x-y)(x+y)(xy);(2)(3)中不能用公式,但是各项存在公因式,于是可以先提公因式,然后进行分解,得到
***422222
(2)a3bab3ab(a2b2)ab(ab)(ab);
(3)3ax26axy3ay23a(x22xyy2)3a(xy)2;(4)中若把(x+p)和(x+q)看作一个整体,可以利用平方差公式分解.(5)把(a+b)看作一个整体,恰好是完全平方式. 教师活动设计
让学生讨论如何进行分解因式,体会分解因式的一般步骤,归纳:
(1)先提公因式(有的话);(2)利用公式(可以的话);
(3)分解因式时要分解到不能分解为止. 问题证明:连续两个奇数的平方差可以被8整除. 学生分析:
设连续两个奇数是x、x+2,则有
x2-(x+2)2=(x-x-2)(x+x+2)=-2(2x+2)=-4(x+1),因为x是奇数,所以x+1是偶数,所以-4(x+1)能被8整除. 归纳小结、布置作业
第五篇:《14.3.2 公式法》教案
《14.3.2 公式法》教案
一、教学目标:
用完全平方公式分解因式
二、教学重点:
用完全平方公式分解因式.
三、教学难点:
灵活应用公式分解因式.
四、教学过程:
Ⅰ.提出问题,创设情境
问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?
问题2:把下列各式分解因式.
(1)a+2ab+b222(2)a-2ab+b2 [生]将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式. [师]能不能用语言叙述呢?
[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.问题2其实就是完全平方公式的符号表示.即:a+2ab+b=(a+b),a-2ab+b(a-b).
[师]今天我们就来研究用完全平方公式分解因式. Ⅱ.导入新课
下列各式是不是完全平方式?
(1)a-4a+4(2)x+4x+4y(3)4a+2ab+(5)x-6x-9(6)a+a+0.25 结果:
(1)a-4a+4=a-2×2·a+2=(a-2)(3)4a+2ab+222
222 2
1222
b(4)a-ab+b412111222 b=(2a)+2×2a·b+(b)=(2a+b)42222
2(6)a+a+0.25=a+2·a·0.5+0.5=(a+0.5)(2)、(4)、(5)都不是.
方法总结:分解因式的完全平方公式,左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方.从而达到因式分解的目的. 例题解析
[例1]分解因式:
(1)16x+24x+9(2)-x+4xy-4y [例2]分解因式:
(1)3ax+6axy+3ay(2)(a+b)-12(a+b)+36 [例1](1)分析:在(1)中,16x=(4x),9=3,24x=2·4x·3,所以16x+14x+9是一个完全平方式,即
解:(1)16x+24x+9 =(4x)+2·4x·3+3 =(4x+3).
(2)分析:在(2)中两个平方项前有负号,所以应考虑添括号法则将负号提出,然后再考虑完全平方公式,因为4y=(2y),4xy=2·x·2y.
所以:
2222
解:-x+4xy-4y=-(x-4xy+4y)=-[x-2·x·2y+(2y)] =-(x-2y).
练一练:把下列多项式分解因式:(1)6a-a-9;(2)-8ab-16a-b;(3)2a-a-a;
(4)4x+20(x-x)+25(1-x)Ⅲ.课时小结
引导学生回顾本大节内容,梳理知识,培养学生的总结归纳能力,最后给出分解因式的知识框架图,使学生对这部分知识有一个清晰的了解.22
2232222222