初中几何教学中基本图形浅议[推荐5篇]

时间:2019-05-15 06:15:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中几何教学中基本图形浅议》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中几何教学中基本图形浅议》。

第一篇:初中几何教学中基本图形浅议

初中几何教学中基本图形浅议

初中几何是集逻辑思维、抽象思维和形象思维于一体的一门学科,知识涉及面广、知识点多,几何图形往往是纷繁复杂、千变万化的,学生在解题过程中难以抓住图形的本质和重点,找不到解决问题的突破口导致无从下手,这是造成学生觉得几何难学的主要原因.我在平时的教学中注重渗透基本图形的教学,让学生记住这些基本图形的性质和特点,就会在一些比较复杂的图形中,辨认出或者构造出这些基本图形,产生一种似曾相识的感觉,从而轻而易举地解决问题.通过基本图形,就好像通过一道门户,豁然开朗,达到学会一例、驾驭一批的境界.一、基本图形的类型

《数学课程标准》在几何方面的学习要求学生“能从较复杂的图形中分解出基本图形,并能分析其中的基本元素及其关系,利用直观来进行思考”.那么什么是基本图形呢?关于基本图形的含义,学界并没有一个统一的界定,人们在长期的教学实践过程中对基本图形形成了一些相对稳固的约定与共同的认识.它主要分为以下两类:第一类,初中平面几何课本中的定义、公理、定理以及推论所对应的图形都叫作理论型基本图形.例如:等腰三角形、正方形、圆等,每一个几何概念对应着一个基本图形.又如:角平分线上的点到角两边的距离相等,直角三角形斜边上的中线等于斜边的一半,等等,每一条定理也对应着一个基本图形.这类基本图形大致将教科书上的平面几何知识点包括在内.教师在几何定理教学中要让学生结合基本图形来掌握定理,加深学生对基本图形的认知,帮助学生建立图形与定理的密切联系,训练、提高学生的识图能力.第二类,具有一定典型性的例题、习题所对应的常用图形叫作经验型基本图形.此类基本图形是在教学过程中,或是学生的学习过程中遇到的,具有一定代表性的、典型的基本图形,是一个开放的系统,通常具有从经验中积累的特点.教师在几何教学过程中要有意识地指导学生熟记此类图形所包含的几何性质、结论等,如“母子相似直角三角形”“角平分线加平行线会有等腰三角形”等.每个人都可以在自己的经验积累的基础上进行总结,这样的范例式图形越丰富,学生学起几何来也就越容易.一般综合性较大、学生感到困难的几何题,究其本质也就是一些基本图形的叠加与组合.二、利用基本图形作为重要载体,理解和记忆几何概念

几何概念和代数概念的显著区别就在于几何概念以陈述性概念为主,且它的定义必须以直观图形为基础.所以,几何概念教学尤其要重视概念理解与基本图形的认知相结合.例如:在“三线八角”图中识别同位角、内错角和同旁内角,是学生学习的难点,经常会产生错误.在教学时,可以借助于基本图形,在不同位置上寻找不变的位置关系,从而很好地掌握理解同位角、内错角和同旁内角这三类角的概念和含义.如图所示,同位角应该是在两条直线的同侧,在第三条直线的同旁,如∠ 1和∠ 5,两个角的边构成“F”字形,利用提炼出的这个基本图形可以很快地找出∠ 2和∠ 6,∠ 3和∠ 7,∠ 4和∠ 8.内错角应该是在两条直线的内部,在第三条直线的两侧,如∠ 1和∠ 7,∠ 4和∠6,两个角的边构成“Z”字形.同旁内角应该是在两直线的内部,在第三条直线同旁,如∠1和∠ 6,∠ 4和∠ 7,两个角的边构成“U”字形.有了这些基本图形,实现了图与概念的统一,在复杂图形中找出同位角、内错角和同旁内角就非常容易了.三、运用基本图形分解复杂图形,解决几何难题

当我们遇到一个较复杂的几何题时,首先要认真观察、分析它的图形.任何一个复杂的几何图形都是由相关的基本图形所构建、整合而成的,也就是说一个几何题往往是多个知识点的有机整合.因此,对复杂图形进行合理分解,从中分离出基本图形(有时需要添加辅助线,构造基本图形),然后运用基本图形的性质去推理或计算,可以为学生寻找到解题的突破口.例如:已知△ABC中,BE,CF是边AC,AB边上的高,M是BC的中点,N是EF的中点.求证:MN ⊥EF.分析本题的图形结构,高、中点的已知条件不知如何进行运用,学生会感觉无从下手,但只要基本图形熟练,不难“分割”并“重组”出一些基本图形.看到直角三角形和斜边上的中点就会联想到“直角三角形斜边上的中线等于斜边的一半”这个基本图形,自然就想到通过添加辅助线“连接MF,ME ”从而构造出MF,ME分别为Rt△BFC和Rt△BEC斜边上的中线的基本图形,利用这个基本图形的性质很容易就得到ME = MF.又根据 ME = MF,N为EF的中点,又构成等腰三角形三线合一的基本图形,于是求证MN⊥EF的问题就迎刃而解.证(略).波利亚曾说过:“解题的成功,要靠正确地转化.”教师在教学中要不断引导学生进行解题回顾与反思,帮助学生梳理、提炼基本图形,遇到问题时分离出基本图形,基本图形残缺时,构造基本图形,这样可以以这些基本图形为载体,培养学生的识图能力、分析推理能力.实践证明:它是一种非常重要的行之有效的方法.可以说:一张基本图形胜似千言万语!

第二篇:用基本图形分析法证几何题

用基本图形分析法证几何题

—— 谢老师

无论多复杂的几何图形,拆散后都是由一些基本图形组成的。因此,利用基本图形的特性分析证明几何题就能起到化难为易、简明快捷的作用。下面略举几例:

基本图形一:角平分线+平行线等腰三角形出现

1、已知,如图,△ABC中,∠B的平分线与∠C的外角平分线交于M。过M的平行线分别交AB、AC与E、F。

A求证:EF=BE﹣CF FEM

D BC

2、如图,已知,△ABC中,AD是∠BAC的平分线,M是BC边上的中点,MF∥DA交AB和CA的延长线于E、F。

1求证:BE=CF=(AB+AC)

2FEBAMDC例

3、已知,如图,□ABCD中,AB>AD,∠A、∠D的平分线交于E,∠B、∠C的平分线交于F。

DC求证:EF=AB﹣AD

EF

AB 变式练习:

1、如图,已知,□ABCD中,AD=2AB,将AB向两方分别延长至E、F,使AE=AB=BF,求证:CE⊥DF

DC

EF AB2、如图,四边形ABCD中,AD∥BC,AB=AD+BC,E是CD中点。

求证:AE、BE分别是∠DAB和∠ABC的平分线

AD

E

BC3、已知,(1)如图,E是正方形ABCD的边CD的中点,F是CE中点,求证:∠BAF=2∠DAE

EFC D

B A

(2)、如图,正方形ABCD中,E是BC中点,F是CD上的一点,且AF=FC+CB。

F求证:BE平分∠CBF

DC

E

BA 基本图形二:角平分线+角平分线的垂线等腰三角形出现

4、如图,△ABC中,BC=3AB,BO是角平分线,CD⊥BO交BO的延长线于D。求证:DO=BO,D AO

BC

变式练习

如图,已知,△ABC中,∠A=90°,AB=AC,BD是角平分线,CE⊥BD于E。求证:BD=2CE

5、如图,已知,△ABC中,BD、CE是角平分线,AF⊥CE于F,AG⊥BD于G。求证:(1)FG∥BC;

(2)FG=

1(AB +AC ﹣BC)2AEFGDCB变式练习

(1)如图,已知,BD、CE是△ABC的∠B、∠C的外角平分线,AF⊥BD于F,AG⊥CE于G,求证:(1)FG∥BC;

(2)FG=

1(AB +BC +AC)2ADE

FG

BC

(2)、如图,已知,△ABC中,BE、BF分别是∠B和∠B的外角平分线,AG⊥BF于G,AH⊥BE于H,过G、H的直线分别交AB、AC于M、N。

M NGH

CB

(3)、已知,如图,△ABC中,∠ABC=2∠C,AD是角平分线,E是BC的中点,EF⊥AD交AD、AB的延长线于F、G。

A求证:BD=2BG

DBC EF G

1求证(1)四边形AGBH是矩形;

(2)MN=BC

2AFE基本图形三:用平行线证比例线段

7、如图,已知,C、D、E、F是∠AOB的两边上的四点,且OC∶OD=CE:DF,CE、DF的延长线交于G。

DB求证:GE=GF C

AOEF

G

8、如图,△ABC中,直线MN分别交边AB、AC于F、E,交BC的延长线于D,求证:

9、已知,△ABC中,D是AC边上的一点,长线交BC于F。AFBDCE··=1 BFCDAEMFAEBCDNAD1=,E是BD的中点,AE的延CD2BF1 求证:CF

3ADEBFC变式练习

1、已知,△ABC中,D、E分别是AB、AC上的点,且线交BC的延长线于F。

求证:

AD3CE2,,DE的延长BD4AE3AE

BFC

2、如图,已知,△ABC中,D是BC中点,E是AD上的任意一点,CE的延长线交AB于F。求证:EF7 DF10DAE2AF

DEBFA

FE

CB

D

3、已知,PA与⊙O相切于A,割线PBC过O且与⊙O相交于B、C,AD⊥BC。求证:POOB PCCDACODBP

第三篇:初中几何教学.

各位老师大家好, 离吃饭还有一段时间。我就我自己对初二几何教学的理解在此和大家 交流一次。

几何,特别是初二几何,是初中生普遍认为难学的一部分内容。首先是初二几何为什么难:

1、数学研究对象:初中数学是一个从小学的 “形象数学”到高中的“抽象数学”的过 度阶段。

2、几何逻辑推理:初中几何对学生的要求不仅是计算,更多是要求学生能进行逻辑推 理,而这是小学段未曾涉足的。

3、语言表达形式:初中数学语言表达方式,是一个从“生活语言”到“数学语言”的 转换过程。

而以上三方面转变过程最明显的是初二。对比初一与初三, 我们可以感受到教学内容及 教学方式上的区别明显。很多老师都常会说这样一句话“初三的学生就不举手的啦!” 我觉 得这不仅仅是学生的问题。这个问题与教学内容、教学方式都有关系;初一的教学内容更多 是直接面对生活的、直观的,到了初三其内容更多的是高于生活的、抽象的。初一学生对数 学课堂的兴趣可以是来自对生活的兴趣(温度计、教堂 , 而初三学生则不是, 初三学生对数 学课堂的兴趣, 他更多的是来自对数学自身的兴趣。简单的说就是 “因为我喜欢数学、所以 喜欢数学课”。

对于这些问题下面我说说的解决方案:

1、对于研究对象改变的问题: 新课时:应重视“节前语”的教学,创设学生感兴趣的生活情景,通过实践活动让学生 经历从实际问题抽象成数学模型, 感受抽象的数学是来自直观的生活。通过这些活动让学生 从喜欢生活逐步转变成喜欢数学。

试题讲解课:则努力将抽象问题形象化。当然必须让同学们对问题先有一个抽象思考的 过程。即让学生自己先抽象思考,然后再通过多媒体等教学手段使问题形象化。

例:如图,等腰直角三角形中,∠ABC=90°, AB=BC=4, AC=P 从点 A 开始沿 AC 边以每秒 2个单位的速度运动, 点 P 运动到点 C 即止。求几秒后, ⊿ ABP 成为等腰三角形?(本身是个抽象的动态过程,通过多媒体手段,使问题变 得形象、直观。但是考试的时候是没有几何画板给学生观。所以需学生自己先思考解得一番,再给学生看演示动画。这样才能提高兴趣的同时也提高学生抽象的空间想象力。

A

2、对于学生几何逻辑推理的培养: 一方面从初一开始就逐步开始渗透三种思维方式:(1正向思维。从已知条件出发,探究能得出什么样结论。这个思想方法是最常用的, 贯穿着我们初中三年几何问题的始末。

(2逆向思维。这个思维方式,也是我们常用的思维方式。但它却未必是学生常用的思 维方式, 在三年的教学中只有初二下的中存在一个课时。但是逆向思维在解难题时却是最为 有效。特别是题目给你的已知条件复杂多样时, 能使学生快且更准的找到切入口。所以我在 接触几何之初就开始慢慢的渗透。

(3正逆结合。从已知条件中看根据已知能得出什么结论,再想想为了得出结论,需要 什么样的条件,它们是否正好能对应的上。这一方法一般较少使用,主要用于解各种难题。

例如:已知:如图 , △ ABC 中 , ∠ C=90°, AD 是∠ BAC 的平分线, DE ⊥ AB ,垂足为 E , F在 AC 上, BD=DF.求证:CF=EB.另一方面我注重学生对简单几何图形结构的深入认知。这样学生在解题时更容易形成思路, 并节约大量的思考时间。

例如:“等腰三角形三线合一”。进一步探究可以发现, 若三角形二线合一也必然是等腰三角 形。

(金华 2011 如图,在平面直角坐标系中,点 A(10, 0 ,以 OA 为直径在第一象限内作半圆 C ,点 B 是

该半圆周上一动点,连接 OB、AB ,并延长 AB 至 点 D ,使 DB=AB,过点 D 作 x 轴垂线,分别交 x 轴、直线 OB 于点 E、F ,点 E 为垂足,连接 CF.(1当∠ AOB=30°时,求弧 AB 的长度;(2当 DE=8时,求线段 EF 的长;(看见中点及垂直先想得等腰三角形的存在

再如:“等腰直角三角形与正方形的关系” ,有正方形必然有等腰直角三角形,反之有等 腰直角三角形,才可能够成正方形。

(2011江西已知:抛物线 2(2 y a x b =-+(0 ab <的顶点 为 A ,与 x 轴的交点为 B , C(点 B 在点 C 的左侧.(1直接写出抛物线对称轴方程;(2若抛物线经过原点,且△ ABC 为直角三角形, 求 a , b 的值;(3若 D 为抛物线对称轴上一点,则以 A , B , C , D 为顶点 的四边形能否为正方形?若能,请写出 a , b 满足的关系式;A C B D E

若不能,说明理由。

3、几何语言表述难的问题

问题一:∵两直线平行同位角相等 ∴ ∠ 1=∠ 2 问题二∶∵ ∠ 1=∠ 2

∴ BC=AC 问题三:有很多学生作辅助线时,一条线常常让其满足两个或两个以上的条件。

例如∶连结 AD 使 A D ⊥ BC。

问题四:∵ ∠ 1=∠ 2 ∴ BC=AC(等腰三角形的两底角相等

在书写证明题过程中, 学生有各种各样的错误书写和看不懂的证明过程大量存在。这些 问题的出现, 我想并不能简单地说是我们的学生努力不够, 没有认真学习造成的, 它的形成 原因很多。很多时候是我们强调的不够,解释的不清晰造成。

我认为第一我们应重视定理的双语教学∶文字语言、几何语言。例如∶① 文字语言∶在同一个三角形中,等角对等边

② 几何语言∶∵在△ ABC 中,∠ A=∠ B ∴ AB=AC 当然几何语言必须建立在图形基础上, 建议任何定理在教学时, 板书都能画出符合文字 语言意思的图形, 并将定理的文字语言转化为几何语言。我们在证明题书写中, 用的是定理 的几何语言而非文字语言;“ 问题一 ” 的写法,主要原因就是不清楚这一点。

第二、让学生知道各种定理的条件个数和结论个数有不同的对应关系∶ ①一对一 ∶ ∵ AB=AC ∴∠ B=∠ C ②一对多∶ ∵ △ ABC ≌△ DEF ∴ AB=DE,∠ A=∠ D, „„ ③多对一∶ ∵ AB=DE,BC=EF,AC=DF ∴ △ ABC ≌△ DEF ④多对多∶ ∵ AB=AC,BD=CD ∴ AD ⊥ BC, ∠ BAD=∠ CAD C O

当然多条结论时, 结论部分不用全部摆出。一般是此证明题后面需哪些条件, 则摆哪些, 不需要的不用摆出。

第三、通过对比教学,加深对部分判断定理与性质定理这些互逆定理的认识。

∵ AB ∥ CD ∵ ∠ 1=∠ 2(∴ ∠ 1=∠ 2(∴ AB ∥ CD 第四、连结:线段已经唯一存在了不可再有其它条件,延长方向已经确定了,只能在长 度上可加以限定。

第五、注意课堂板书, 对于学生学习都是从模仿开始的!就像刚才金老师课堂中分类讨 论的板书,就十分必要、也十分的到位。

第六、勤发现、勤纠正、勤强调。作业批改一定要细,尽量挤时间对学生一一面对面纠 错。舍得花功夫在批改作业中;对学生作业中出现的各种各样问题, 一定要及时纠正强调指 出。其实这些问题大多学生只要有一两次的予以指出他们还是能很快的改进的。只要有几天 的坚持,作业就会有明显的改观。

以上这些是我个人对初二几何教学的一些看法, 不一定都正确, 但它都是我这几年对教 学认知不断深入后的认识,给大家分享,有不同看法或有更好的方法希望大家也不要吝啬, 回头通过 QQ 和我说说。

B C B C

第四篇:图形与几何领域教学中的策略

图形与几何领域教学中的策略

郭琳琳

“空间与图形”主要研究现实世界中物体和几何图形的形状、大小、位置关系及其变换,它们是人们认识和描述生活空间、进行交流的重要工具。在小学阶段,其主要内容包括图形的认识、测量、图形与变换和图形与位置等。

“空间观念”是物体的形状大小及其相互关系在人脑中的表象,对于小学生来说这些是最难于想像的。学生要根据生活实践经验,依靠直觉观察,反复实验,形成几何图形的认识,完成由直观表象思维为主向抽象逻辑思维为主过渡。所以我们要让学生亲自看到图形,让图形动起来,透过现象看本质。在我们的课堂教学中多引导学生在“看一看、摸一摸、比一比、猜一猜、想一想、验一验”的过程中,调动各种感官,建立空间观念,形成鲜明表象,从而达到培养和发展空间观念的目的。

但是学生们在“空间与图形”部分内容的学习中还是会存在着一些问题:

①孩子们不重视推导过程,死记公式,面对问题不能变通。

②孩子们对操作很有兴趣,但却不能建立操作实感、生活实例与图形表象的有机联系。

③空间想象能力差,对于较抽象或较复杂的问题有畏难、浮躁情绪,缺乏探索精神。

我们教师在教学中要高度重视学生对图形表象的建立,培养学生的空间观念。在今后的空间与图形教学中贯彻以下策略:

一、密切和现实生活联系为空间发展奠定基础 根据学生实际发展空间观念。培养空间观念往往是从学生熟悉的事物入手的,只有在头脑中具备了较为清楚的表象,学生才可能脱离实际物体,在头脑中形成清楚的图形。

二、通过观察使学生获得初步的空间观念

教学中加强模型观察,让学生建立比较清晰的感性认识,为抽象出几何图形的概念打好基础。空间智力的核心是准确感觉直观世界的能力,依靠人最初的感性认识形成变换和做出修正,即使在缺少相关的物质刺激的情况下,也能重建人的直观经验。

三、注重动手操作、形成和巩固空间观念

好奇、爱动手是小孩的天性,我就利用这点引导学生。先让学生要动脑想一想,这样有利于促进思维发展;让后进行动手操作,在整个操作过程中,不断培养和发展学生的空间观念。

总之,在今后的教学中,要打破传统的教学观念和方法,用符合学生的新理念和新方法去进行教学。

第五篇:《几何与图形》教学建议

《几何与图形》教学建议

作为《数学课程标准》(简称标准)的四个领域之一,“空间与图形”主要研究现实世界中的物体和几何图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。“空间与图形”的内容主要分为四个方面:图形的认识、图形的测量、图形与变换、图形与位置。如何立足课堂,把握好本领域的教学实践,我们提出以下建议:

一、领会《标准》理念,熟知教学目标

《标准》理念是我们进行课堂教学的依据,教学目标是我们进行课堂教学的达成方向,二者的重要性不言而喻,所以我们必须要达到“领会”与“熟知”的程度,才能做到教学设计更贴切,教学策略更得当,教学效果更显著。

我国的数学教学大纲、教材也经历数次变革,但从“几何”的课程内容和目标看,小学阶段主要侧重于长度、面积和体积的计算,较少涉及三维空间的内容,缺少与现实生活的紧密联系,使“几何”直观的优势没有得到充分的发挥;过分强调演绎推理和“形式化”。同时,由于教学内容呈现方式比较单一,也使学生的空间观念、空间想像力难以得到真正有效的发展。虽然“教学大纲”也有关于“空间观念”的表述,如“能够由形状简单的实物想像出几何图形,由几何图形想像出实物的形状”等等,但在具体的教学内容和教学要求中却鲜见与之有关的解释和说明。《标准》旨在克服我国义务教育课程目标过于偏重基础知识与技能的倾向,克服重“概念与技能”,忽视“情感与态度、体验与反思、过程与自主创新”的弊端,努力构建以人的发展为中心的数学课程内容体系:强调内容的现实背景,联系学生的生活经验和活动经验;增加了图形变换、位置的确定等内容;加强了几何建模以及探究过程,强调几何直觉,培养空间观念;突出“空间与图形” 的文化价值。如:《标准》中提出了“通过建筑、艺术上的实例了解黄金分割”“通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值”等要求,使学生了解“空间与图形”有着丰富的历史渊源;重视量与测量,并把它融合在有关内容中,加强测量的实践性等。

《标准》指出,在整个小学阶段空间与图形部分的知识与技能目标为:经历直观认识简单几何体和平面图形的过程,经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形及基本特征,感受平移、旋转、对称现象,能对简单图形进行变换,能初步描述物体的相对位置,能初步确定物体的位置,获得并逐步发展初步的测量(包括估测)、识图、作图等技能。数学思考的目标为:在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。解决问题的目标为:在解决问题的活动中,初步学会与他人合作,并能与他人交流思维的过程和结果。情感与态度的目标为:感受数学思考过程的合理性通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。

我们把这些目标鲜明的摘录出来,一方面便于教师进行领会、记忆与熟知,另一方面也是提醒我们要把每一堂课的教学融入整体目标的大背景下,这样对于空间与图形部分的教学才是系统的,不割裂的。

特别说明的是“空间与图形"课程的核心目标是发展学生的空间观念。

1、怎样算具备了空间观念呢?《标准》理念指出:空间观念主要表现在能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。这就是我们发展学生空间观念的方向。

为了培养和发展学生的空间观念,《标准》不仅在“空间观念”的提法上加入了一些新的元素,而且在内容上做了相应的安排,提出了一些新的具体目标。

[如: “辨认从正面、侧面、上面观察到的简单物体的形状”“会用上、下、左、右、前、后描述物体的相对位置”“会看简单的路线图”,以及有关变换的直观内容;“能辨认从不同方位看到的物体的形状和相对位置”“认识长方体、正方体和圆柱的展开图”,以及丰富的变换、坐标的内容。这些内容的设置,成为培养学生空间观念的重要学习资源,并且空间和空间观念从孩子入学的那一刻开始就伴随他们成长了。]

2、发展学生的空间观念不是孤立的,有的老师认为好像只是观察物体等特定内容在培养学生的空间观念。实际上,图形的认识、图形与变换、图形与位置、图形的测量,都对培养学生的空间观念有着重要的价值,在教学中应该进行有机整合。

二、建立课堂模型,明确教学思路

在把握了《标准》理念与教学目标后,教师可能更为关心的如何上好一节有关空间与图形知识的课。《标准》中“空间与图形”的四方面内容都以图形为载体,以培养空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的学习态度和情感。《标准》提倡以“问题情景—建立模型—解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程,不采用“公理定义→定理性质→例题→习题”的结构形式。

在这里,我们根据空间与图形的不同内容分类提供相应的课堂模型建议:

(一)图形的认识

图形的认识是空间与图形领域中的重要内容。其内容包括:点线面体的认识长方体、正方体、圆柱和球,长方形、正方形,线及其相互关系,角、三角形、四边形、园,圆锥,三维视图等图形。在进行图形的认识类知识教学时,我们建议的教学模式,基本的课堂教学环节如下:经历情境,抽象图形

实践操作,感知特点

欣赏拓展,回归生活。即在教学中一定要注重使学生在现实世界中积累有关图形的经验基础上,认识常见的立体图形和平面图形;在丰富的现实背景中,通过观察、操作、比较、概括等体验常见的图形的性质,并运用他们解决实际问题;在观察物体、拼摆图形、设计图案等活动中,构建空间观念;欣赏丰富多彩的图形世界,体会图形在现实世界中的广泛存在。具体阐述为:

1、让学生经历从现实情境中抽象出图形的全过程,从立体图形到平面图形展开学习在教学中,要创设生活情境,让学生在生活的空间中发现图形,经历从现实源泉中抽象出数学模型的过程,体会数学图形与现实世界的密切联系。过程如下:

生活实物

实物图

几何图形(模型)

回归生活 【案例1】 如在角的认识一课中,一位老师设计了以下教学步骤:(1)、说说生活中看到的角:学生说的兴高采烈:扇子,红领巾、书本、五角星、桌面、墙角等等五花八门,体现了生活情境的引入。

(2)、用多媒体课件展示生活中实物如扇面、红领巾,桌面等,并把有角的部分用红色醒目标示出来,体现了由生活实物到实物图的初步抽象。

(3)、去掉课件中的实物部分,只留下红色显示的角的图形,再让学生直观观察角的特点。就完成也由实物到几何图形的抽象。

分析:在这个案例中我们可以看出教师依据学生的生活背景与知识背景,逐步完成由实物到几何图形的抽象观察,非常符合学生的认知规律,而且学生对角的认识也更加立体。

2、让学生经历实践操作等活动,在活动中感知图形的基本性质

“感知”是根据相应的学习材料,通过手、口、脑的并用,初步地感受和认识。学生空间观念的发展、活动经验的积累、图形性质的体验等都是在观察、操作、思考、想象、交流等数学实践活动中进行的。这里,我们要特别强调动手操作的重要性。学生通过折叠、剪拼、画图、测量、建造模型、分类等活动,对图形的多方面性质有了亲身感受,这不仅为正式地学习图形的性质奠定了基础,同时积累了数学活动经验,发展了空间观念。所以我们提倡学生人人拿学具进行操作实践,这样远比只是让学生看一下教师的示范和课件演示要获得远远多的对图形的“洞察”和体验。尤其是对长方形,正方形、平行四边形、圆形等图形的认识,我们都要通过让学生看一看、摸一摸、折一折、叠一叠、拼一拼、剪一剪、量一量、画一画、描一描、比一比、分一分、做一做等基本的实践操作活动,为正式的学习图形的性质奠定基础。【案例2】如探究长方形的特征教学片断:

(1)、创造图形:课前老师给每组发了一袋材料,你能利用这些材料或是你自己身边的材料想办法创造一个长方形吗?(2)、展示成果:教师巡视,指名实物投影摆放。

方法有:摆小棒、画点子格、拼三角板、拼小正方形等等。

(3)、思考讨论:这些长方形有什么共同的特点? 你用什么方法可以证明?(先想一想你打算用什么办法验证?再操作验证, 并把你的发现和其他同学交流讨论,看哪组想的办法多)。

(4)、汇报交流: 长方形对边相等,四个角都是直角。逐一演示:比一比、量一量、数一数、折一折。

分析:在这个案例中我们可以看出在教师的指导下,学生进行了充分的实践操作活动,如“比一比、量一量、数一数、折一折”,对长方形的特点感知也就更加充分。

【案例3】如观察物体教学设计 观察教室

师:全体起立,观察教室的前面,说一说你看到了什么? 生:国旗、黑板、课程表„„

师:全体向后转,观察教室的后面,你看到了什么? 生:奖状、学习园地„„ 师:向左转,你看到了什么? 生:两个门、一个窗户„„

师:观察教室的右面,说你看到了什么? 生:„„.师:通过刚才的观察活动,我们了解到从不同的位置观察物体,我们看到的结果是不一样的。

观察讲桌

师:同学们学习离不开课桌,老师讲课离不开讲桌,老师请4名同学来观察一下讲桌。

请你们分别站在讲桌的前面、后面、左面、后面,说一说你看到了什么? 生:„„

师:4位同学看同一张讲桌,为什么看到的不同呢? 生:„„

师:因为从不同的位置去观察物体,看到的结果有时是不一样的。观察大公鸡

师:看老师为你们带来了什么? 生:大公鸡。

师:请4名同学到前面来观察公鸡,你们分别站在公鸡的前面、后面、左面和右面。说一说你都看到了什么?

生:„„ 师:左面和右面看到的是不是一样的? 追问:不一样,哪不一样?

生:站在左面看到尾巴在左边、头在右边;站在右面看到尾巴在右边、头在左边。

师表扬:同学们观察的可真仔细。

分析:同样我们能够看出在这节课上老师让学生经历了从不同的方位、由上到下、由远及近的观察过程;让学生在观察、操作、想象、思考、交流的过程中,不断发现实物与他们所观察到的图形之间的联系,从而形成他们对三维空间与二维平面之间的看法。

3、了解并欣赏一些有趣的图形,感受图形世界的丰富多彩

图形的认识的教学设计,要注意为学生提供丰富多彩的图形世界,以开阔学生的视野,激发数学学习的兴趣,感受图形世界的神奇。

【案例4】如在认识完轴对称图形的特点后,教师安排了这样的环节: 回归生活,赏析对称美

教师提供的素材主题有:京剧脸谱、剪纸艺术、建筑物体、平面图形、字母等。

分析:一下子把学生带到美妙的数学生活中,既再一次体会了轴对称图形的特点,又充分感悟到生活中轴对称的美,感悟到数学之美,实现了课堂的升华。

(二)、图形的测量

同传统教学相比,《标准》在图形的测量部分加强对量的实际意义的了解。结合生活实际,注重动手操作,掌握测量的方法。注意对测量工具和计量单位的选择,并对测量结果进行解释(误差)。重视估测,弱化了单纯的计算(周长、面积、体积)为中心的传统框架和无实际意义的单纯量的单位换算。据此,我们建议的教学模式,基本的课堂教学环节如下:结合情境,理解量的意义

操作体验,建立单位的表象

探讨方法,解决实际的问题。具体阐述为:

1、在具体问题情境中注意对所测量的量的实际意义的理解

对于周长、面积、体积等的学习,首先要理解它们的意义。这不等同于记忆他们的定义,而是在具体的情境中体会它们的实际意义。

【案例5】如《周长》教学,教学情境如下:(1)、创设情境

感知概念

①.动画引出“一周”“首尾相连”(板书一周)。

②.揭示“首尾相连的图形”就是“封闭图形”(板书封闭图形)。(2)、判断封闭图形为揭示概念打基础

①.先判断,找出封闭图形。

②.描出这些封闭图形的一周。

③.揭示定义封闭图形一周的长度就是这个图形的周长。

(板书及时补充完整)(3)、联系实际生活

摸一摸身边图形的周长。

学生:桌面

数学书封面

一些实物。

老师:摸黑板封面(体现没有摸满一周)。(4)、小组合作,测量周长

①.出示问题,讨论交流。

师:你用什么方法测量下列图形的周长呢?

师:每种图形分别用到了哪些测量工具呢?

②.提问测量方法及使用工具。

③.请测量它们的周长并填写在报告单上。

④.实物投影展示测量结果。(5)、总结

①.这节课你有什么收获吗?

②.在实际生活中都有那些地方用到了周长呢?

分析:本案例通过创设动画情境、活动情境在活动中感悟周长的概念,使学生较好的理解了周长的意义。尤其突出了充分探索测量周长的方法。]

2、在测量过程中,体会建立测量单位的必要性,理解度量单位的实际意义 对于测量单位的学习,首先要提供给学生实际测量的机会,鼓励学生选择不同的测量方法,并在彼此交流的过程中体会到建立统一计量单位的必要性。

如:讲长度单位,让学生先经历用不同的工具测量同一物体的长度,在学生得出这个物体的长度是“几个一乍的长度”“几个一支铅笔的长度”“几个一本书的长度”“几个一把尺子的长度”等,再引出长度单位,这样做就是为了使学生感悟建立统一单位的必要性,产生继续学习的愿望,获得对度量单位的初步体验。] 学生还需要通过实际活动建立对度量单位实际意义的体验,1cm到底有多长,1cm 到底有多大,1cm 到底占多少空间,要使这些单位变得直观具体,必须让学生通过各种实践操作活动,并让学生列举生活实例加以说明。

[【案例6】下面是一位教师在教完“千米的认识”后写的教学随笔。我校的操场地面是用水泥方砖铺成的,我带孩子们去数方砖,再计算出操场的长度,长度正好是50米,一个来回是100米,我让孩子们走了一个来回,10个来回是1000米,又叫做1千米。

我留下了家庭作业,“从家到学校大约多少千米。”让家长协助完成,学生和家长共同行走一千米的路程,对一千米都有了很好的感知体验。另外,我还留下了让孩子们了解和搜集各种交通工具的时速问题,让孩子们自己测一下自己的步行速度„„

分析:通过教师的教学与作业布置我们可以感受到,教师特别注重学生在实际活动中经历对度量单位实际意义的体验,从而建立对度量单位的表象,可以说学生不仅仅记住了一个计量单位一个名称,更重要的是感知了这个量的大小多少,这个认识是丰富的、立体的。

3、重视估测,掌握估测方法

在测量的学习中,应该始终重视估测的重要性。估测有助于儿童理解测量的特征和过程,并获得对测量单位大小的认识。

如,在长度单位的学习中,要安排估计身高,步长、臂长、凳子的长度等活动;对面积单位的学习中,要安排估计数学书封面的面积、教室地面的面积、学校操场的面积;对容积的学习,我们可以安排估算粉笔盒的容积、卡车汽油箱的容积,水桶的容积等活动。这些活动会加深学生对量及其实际单位的理解,发展学生灵活运用知识解决实际问题的能力。要坚持先估测后验证的原则。

对大数目的估测,要关注学生的估测方法。如,对于长度1千米的估测,当然可以让学生实地走一走,再回头看一看,脑海里想一想有多长,我们也可以先让学生确定100米的长度,再定500米的长度,500米里有5个这样的100米长度,最后再感悟1千米有两个500米的长度,这里不是简单的数学推理,更主要的是让学生真正的感悟1千米到底有多长。

4、探索规则图形的面积和体积公式,并能运用公式解决问题。

不能将主要精力放在套用公式进行计算上,以至于将这部分内容简单地处理为计算问题。实际上,对于规则图形面积和体积公式的探索和应用,不仅有利于学生解决实际问题,并且对于学生认识图形的特征和图形间的相互关系,体会重要的数学思想,对发展空间观念也是大有好处的。对于这部分内容的教学,教师应鼓励学生在具体的情境中,让学生经历猜测、观察、操作、归纳、建立数学模型、实践应用的数学发现过程。可以用布鲁纳的发现法教学长方形、正方形的面积和长方体、正方体、圆锥体的体积;可以用转化思路教学三角形、平行四边形、梯形和圆形的面积和圆柱的体积(包含不规则的图形)。

【案例7】如教学《长方形的面积》 师:同学们,你们学过长方形的面积吗? 生:没有。

师:今天我们学习长方形的面积,请你们先看看书,想一想:怎样求长方形的面积?

学生看书后汇报:书中先讲了用数方格的方法求长方形的面积,长方形的面积等于长乘宽。

教师:(板书:长方形的面积=长×宽),你们齐读三边。学生:齐读三遍。

师:用字母怎样表示哪? 用字母表示就是s=a×b或s=ab 师:好,我们讲应用题。分析:这就是一个教学反例。在案例中,老师没有引导学生对长方形的面积公式进行有效的探究,学生靠机械记忆知道了长方形的面积=长×宽,却并不理解公式的由来与意义,对公式的掌握就不会深刻熟练。再看下面的环节老师要“讲应用题”也可以想象出是对公式的单纯应用,而不是解决生活中的实际问题,知识的价值性就无从体现了。]

(三)、图形与变换

这部分内容包括平移、旋转、反射和对称,分别在二、五下、六年级学习。了解图形的变换,对学生认识丰富多彩的现实世界、形成初步的空间观念,以及对图形美的感受和欣赏都是十分重要的。通过画简单的对称图形和运用平移、对称和旋转设计有趣的图案,有利于学生初步了解图形之间的关系,有利于发展学生的空间观念。针对这部分内容我们建议的教学模式,基本的课堂教学环节如下:发掘现象,感悟特征

实际操作,体验方法

灵活运用,创新实践。具体阐述为:

1、在生活情境中认识变换现象,能在方格纸上画出一个简单图形经过变换后的图形。

其实,学生很早就有了物体和图形运动的经验,他们通过折纸、转风车、照镜子等等获得诸如平移、旋转、反射和对称的体验。我们要让学生举出生活中大量的变换现象,如旗帜升起、螺旋桨转动等以及建筑、植物(枫叶)、动物(蝴蝶)等来感知认识变换现象的整体特征。画出平移后的图形,是教学重点也是难点,要讲清方法,关注学困生。

2、组织学生进行实际操作,体验图形变换的方法

考虑到学生的语言表达能力和动手操作能力有所提高,所以“图形与变换” 中四条具体目标的阐述有着明显的特点——每条目标都对图形变换的操作方式作出了明确的界定,比如,“用折纸等方法„„”“利用方格纸等形式„„”“在方格纸上将„„平移或旋转”“在方格纸上设计图案”等。这种阐述旨在要求以直观操作的方式引导学生初步认识“图形与变换”的数学内涵。因此,我们在教学实践中,不应单纯地介绍图形变换的知识,而应组织学生实际操作,从而体验图形变换的方法。

[如,可要求学生利用图形变换制作一个美丽的图案。这是一个开放式的活动,学生可以从一个或几个简单的图形出发,按照自己的设想进行变换,得到新的图案,并可以不断地改变操作过程,使所得的图案更美,进而相互交流各自图案的特点,相互欣赏、评价图案的美以及设计的创新]

3、注意让学生欣赏并体验图形变换在现实生活中的广泛应用,灵活运用轴对称、平移和旋转组合进行图形设计

我们要充分的利用教材(或多媒体手段)呈现的美丽图案,让学生在观察图形时,发现熟悉的图形;运用数学的眼光分析图案是否运用了变换;欣赏各具特色的图案,发现其中蕴涵的对称美、和谐美、简洁美;将以此为启发,发挥学生的个性和创造力,亲自动手设计图案以灵活运用所学知识和技能,并从中体会创造的乐趣和辛苦,领略图形世界的神奇。

(四)、图形与位置

这部分内容包括“位置”——上下、前后、左右;“位置与方向”——东、南、西、北等;“位置与方向”——含有横轴、竖轴和夹角的坐标图;“位置”—— 坐标数及综合。分别安排在一下、三下、四下、六上年级学习。我们建议这部内容的教学模式,基本的课堂教学环节如下:联系生活,感悟知识

活动结合,掌握方法

拓展延伸,体现应用。具体阐述为;

1、结合知识与学生生活实际的联系进行教学。

图形与位置这部分内容与小学生的实际生活具有天然的联系,应该充分利用学生生活中感兴趣的事物,引导学生探索图形的特性,有利于唤起学生已有的生活常识和经验,提高感知的效果。

【案例8】如关于“方向和路线图”的教学:可以把学生带到操场上,让他们说一说早晨的太阳在什么方向。让学生面向东站好,告诉他们背对着的方向是西;再让学生伸开两臂,左手指的方向是北,右手指的方向是南。从而利用学生已有的前、后、左、右的方位知识与东、南、西、北建立起联系,帮助他们认识这四个方向。然后,结合学校的具体情况,让学生说出校园内的四个方向各有什么建筑物,使学生进一步熟悉东、南、西、北这四个方向,并能用这些词语描述建筑物所在的位置。

2、注重结合丰富的活动情境开展教学

[【案例9】如在“确定位置”教学中教师可以设计以下活动:

(1)让个别同学介绍自己在第几组第几个,从说自己的座位抽象出“数对”这个概念。

(2)通过口头练习,让学生看一看用数对的方式说一说自己的位置。(3)让学生用所学的数对方式向大家介绍家乡的美丽风光。(4)引导学生用所学知识进行设计创造。

分析:这样就能集合学生的参与性、活动性、体验性,提高了学生的学习兴趣。]

3、回归生活,运用学到的方法解决实际问题

[【案例10】如方向与路线的课尾环节,可以安排由学生描述从家到学校的路线、途经的主要建筑物(参照物)以及相应的距离等,并根据描述画出简单示意图,在交流中加以修改、完善。

分析:在这样的过程中,学生不仅学会了“借助不同参照物确定物体的位置,并画出示意图”,这样一个数学方法,而且体会到了这个方法在生活中的应用。] 需要提醒的是在教学这部分内容,要注意:(1)、不要死记硬背,通过活动感悟、理解概念;(2)、允许学生有个认识过程,有些知识如“左右,南北”等不是一节课就能使学生人人都过关的,是要经历反复的经常的认识过程;

(3)、认识图上的位置和实际位置相结合;(4)、室内教学和室外教学相结合;

(5)、左右有相对性,以“人的左右意识”为标准。

三、完善教学策略,优化教学效果

有了课堂模式(基本的课堂教学环节),可以说是有了上课的框架(这种教学模式是动态的,不是一成不变的),但在具体实施中,还需要相应的教学策略相支撑。在空间与图形部分,我们给出教学策略建议为:

教学策略一:联系学生的生活经验和活动经验,呈现现实情景

丰富多彩的图形世界,给“空间与图形”的学习提供了大量现实的有趣的素材。几何教学的过程就是把各种对象由具体的事物变成抽象的几何体进行研究。学生理解几何知识时,需要把几何体与具体的事物联系起来,经过比较、分析、综合、抽象、概括、判断、推理等思维活动来实现,因此,学习这部分内容,需要感性直观材料的支持。

1、提供“生活化”的学习材料,让学生在情境中体验

选取与呈现现实生活情景和生活现象作为“空间与图形”学习的内容,可使数学由“陌生”变为“熟悉”,由“严肃” 变为“亲切”,有助于增强数学与生活的密切联系,使学生感觉到数学就在自己的身边,从而愿意亲近数学,想学数学。

【案例11】如“直线和线段”的教学就可以呈现“四组镜头”让学生观察。镜头一:妈妈织毛衣的场景,突出散落在地上的绕来绕去的毛线。镜头二;大桥上一根根斜拉的钢索。镜头三:一个女孩在打电话,用手指绕着弯弯曲曲的电话线。镜头四:建筑工地上用绳子栓住重物往上拉的画面,突出表现笔直的钢丝绳。然后提问:“刚才你在屏幕上看到了什么?你能给这些线分类吗?说说你的好办法。”

分析:这些熟悉的生活现象不仅唤起学生对生活的回忆,更激起了学生的探索欲望,为学生提供了“做数学”的机会。

2、回归生活,让学生在应用中体验

小学生对“图形与空间”方面的内容已有一定的认识,利用几何知识解释生活现象,让数学回归生活,使学生获得学有所用的积极情感体验。在学习了“圆的认识”后,可以组织学生对“车轮为什么是圆的”这一生活问题作深入探究。在实际应用中,体验到生活中处处有数学,处处用数学,体验到用数学知识解决生活问题所带来的愉悦和成功。

教学策略二:引导学生通过观察比较,发现几何特征

观察是学生获得“空间与图形”知识体验的主要途径之一。教学中要组织多种多样的观察活动,一年级辨认图形的观察活动(辨认长方体、圆柱、球等立体图形,选定参照物辨认方向等);对演示实验或操作的观察(对三角形稳定性的实验);对实物、模型的观察(认识长方体时,按照面、棱、顶点的顺序让学生一一观察;利用实验或演示发现棱与面,面与面,以及面、棱、顶点之间的关系„„这样,有关长方体的空间观念就比较容易形成。

教学策略三:提倡“动手实践、自主探索、合作交流”的学习方式 自主探索、合作交流与实践操作是数学课标倡导的学生学习方式,也应该是我们课堂教学的组织方式。根据这一方式,提出解决重点、难点问题的三部曲:

1、独立探究,发展个性。让学生在具体问题情境中进行充分的独立探索,学生发现的每一种方法,每一个特点、性质、规律都是学生自己的,从一定意义上讲,都是一种创造,从而弘扬和发展了学生个性,培养了学生创新意识和能力。

2、组内交流,学会互助。要求学生把各自的想法在小组内交流讨论,得出小组内的结论,也要求组内学生互帮互学,共同进步。这一步对培养学生合作交流能力尤为重要,我们要以知识为桥梁,也就是说借助知识来培养学生学会交流,学会表达,学会倾听,学会质疑。我们要不断探索培养学生合作交流能力的方法和策略,二人交流是基础,三人交流是关键,四至六人交流是提升。

3、组组交流,全班展示。在组内交流阶段,学生都已经尝试了解决问题的过程,找到了方法,得出了结论,但是每组的结论方法和叙述形式不尽相同,这就为组组交流、全班展示提供了可能性和必要性。同时,不同的思路、方法、结论,也是课堂新的生成,是新的课程资源。我们教师要引导学生不仅要清晰表达本组的意见,还要倾听他组的意见,我们要通过学生组组质疑、组组争论、组组辩驳这一讨论形式,最终形成教师指导下的全班同学自己的知识或结论。

关于 “三部曲”要注意四点:(1)教师要做好创设问题情境的设计。(2)自主探索时间必须要充分,还学生发展个性的空间。(3)合作交流的必要性和时间的充分性,蜻蜓点水的讨论不仅达不到思维碰撞的效果,而且会使学困生一无所获。(4)教师需要发挥指导作用,树立“教师引导下的学生活动”的理念。

教学策略四:充分利用现代化教学手段

教师在课堂教学设计中,要尽可能地创设出优化的学习环境,以促进学生的高效率学习。计算机被人们认为是“教学过程中优化学习环境、辅助学生学习的有效的认知工具”。它在帮助学生掌握知识及技能、激发学生主动探索知识等方面创设的学习环境,有其自身独到的优越性。利用计算机进行课堂演示,通过精心设计的动画、插图和音频等,可以缩短了客观事物与学生之间的距离,更好地帮助学生思考知识间的联系,促进新的认知结构的形成。把运动和变化展现在学生面前,使学生由形象的认识提高为抽象的概括,这对于培养学生良好的思维习惯会起到很好的效果。尤其是在空间观念的建立、理解上,有些时候语言的描述繁琐、苍白,甚至无能为力。通过课件展示就能把抽象的数学问题形象化,从而也帮助学生打通了具体直观与空间想象之间的障碍,培养他们的空间想象力,建立起空间观念。

下载初中几何教学中基本图形浅议[推荐5篇]word格式文档
下载初中几何教学中基本图形浅议[推荐5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    图形与几何教学设计

    【教学内容】教材第110页第3题,练习二十五第8~13题。【教学目标】1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。2.进一步掌握轴对称和平移,能画......

    初中几何基本知识点总结(精简版)

    初中几何基本知识点总结(精简版) 1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直......

    初中几何教学设计

    初中几何教学设计 初中几何教学设计1 1问题提出义务教育数学课程标准(20xx版)(下称“课标”)倡导积极思考、动手实践、自主探索的数学学习方式,强调数学教学过程中要鼓励学生自主......

    初中几何入门教学

    初中几何入门教学 学生学习几何学得好与否,与教师对几何入门的教学有着最直接的联系。我们教师在教学的过程中倘若稍有不注意,就会导致学生的成绩两极分化,以致使学生丧失学习......

    平面图形与几何教学设计

    篇一:图形与几何教学设计程河镇中心小学数学导学案 程河镇中心小学数学导学案 程河镇中心小学数学导学案篇二:几何图形教学设计 4.1.1几何图形 教学设计教学目标 1.知识与技......

    初中数学几何与图形学习的心得体会

    初中数学几何与图形学习的心得体会 通过学习了庄老师“图形与几何”的教学分析与案例评析专题讲座后,我深有体会,就以下几个方面谈谈感想: 一、空间观念的培养 作为数学学习的......

    相似三角形中的基本图形教学设计方案

    《相似三角形中几个基本图形的应用》 文峰中学 龚道群 教学目标:1、深刻理解并掌握“平行截比例”、“平行截相似”、“比例出平行”等平行与相似的关系. 2、增强识图能力,能......

    相似三角形中的基本图形教学设计方案

    《相似三角形中的基本图形》教学设计方案 公园路中学康军 教材分析:本课件选自人民教育出版社《九年义务教育三年制初级中学几何第二册》相似三角形复习课.相似形这一章是初......