第一篇:再谈初中数学教学中的几何直观
再谈初中数学教学中的几何直观
[摘 要] 几何直观不仅仅是核心概念,也是一种教学思路.几何直观的综合描述,就是利用数学图形进行数学思考.对几何直观的理解,可以视之为一种学习模型,可以引导教师的教学思路.培养学生的几何直观,通常从作图、图形加工、图形描述三个方面进行.[关键词] 初中数学;几何直观;数学理解
几何直观被《义务教育数学课程标准》(2011版)描述为十个核心概念之一,对于几何直观的理解,通常是从“几何”与“直观”两个关键词上进行的:几何通常是指几何图形,这一理解与数学是研究数与形的科学的理解是一致的,对于初中数学而言,这里的几何更多的是指欧几里得几何,即基于点、线而构建起来的以简洁为特征的几何图形;直观一定程度上是一个心理学概念,通常是指基于实际看到的物体进行数学抽象后的产物――看到的对象是基础,数学抽象后形成的有效表象是目的.因此,几何直观说得简单一点,就是“利用几何图形进行数学思考与想象”.在初中数学教学实践中,笔者总体感觉自己对几何直观的理解还显得比较粗糙,实际教学中体现得也不太充分,因此进行了深入探究,取得了些许认识.现总结出来,供方家批评、指正.几何直观作为学习模型的存在
首先需要指出的是,对几何直观的理解不能仅限于几何学习,其应当成为数学学习的一个重要思路.笔者将几何直观理解为一种学习模型,主要是从建立数学理解的角度来认识的.有研究者指出,几何直观是在“数学―几何―图形”的关系链中体现其价值的,笔者就琢磨并思考:这种价值是一种什么样的价值呢?
从宏观上来看,数学是学科总称,也是学习内容总称,而几何作为数学的一个重要组成部分,其又是以图形为主要加工对象的.在初中数学教学中,图形所起的作用绝对不仅仅是习题的载体,而应当是学生理解数学规律的重要工具.正如希尔伯特所说的那样,“图形可以帮助我们发现、描述研究的问题;可以帮我们寻找解决问题的思路;可以帮我们理解和记得得到的结果”.那么,在初中数学教学中,教师所起的作用就是帮学生理解这段描述中“帮”的作用,因为学生借助图形去发现、描述研究问题的本领并非天然形成的,利用图形去理解和记忆所得到的结果,也需要教师加以引导.而这种引导的途径,与几何直观建立的过程几乎完全重合,因此几何直观建立的过程,就可以理解为初中生数学学习过程中遇到与图形相关时的思维过程.于是,一种新的教学图式就出现在我们面前:对于初中数学教学中与图形相关的学习内容,通过对图形的分析来让学生生成对图形的分析、理解能力,并在这种能力的辅助之下形成对数学规律的理解,这就是数学能力形成的过程.以“勾股定理”为例,可以肯定的一点是,无论是教师还是已经学过勾股定理的学生,提到勾股定理时,大脑里一定会同时出现直角三角形的表象,并基于此表象迅速得到直角三角形两直角边平方之和等于斜边的平方的认识.这个现象对于熟悉勾股定理的人来说,似乎没有什么值得强调的,因为这就是一种直觉.而笔者意识到其中的价值正在于此,什么叫直觉?其与直观有什么样的区别?笔者的回答是:直观作为一种分析、思考的过程,其最高结果正是形成良好的直觉.因此,在初中数学涉图教学中,利用几何直观来让学生形成一种良好的直觉,进而形成一种高水平的思维定式,就成为教学的一个重要目标.几何直观作为教学思路的存在
既然形成了初中数学涉图教学的几何直观教学思路,那就需要厘清这一思路的具体内涵与外延.笔者经过分析形成如下两点认识.1.几何直观是对初中数学学习内容与学习方法的概括
初中数学中的大部分内容基本上都具有“数”与“形”的特征.譬如函数,严格来讲,是以解析式为基本特征的数学关系,但这种关系可以在平面直角坐标系上用图形表示出来.这种图形普遍存在的事实,使得几何直观在初中数学教学中具有普遍的价值,因而让学生在“数学”学习中通过对“图形”的分析来理解“几何”意义,也就成为数学教师的教学思路之一(当然,这里也涉及数形结合思想,限于篇幅与文章主题,这里就不详细讨论了).重要的是,几何直观强调的是思维的参与,也就是说,学生头脑中所加工的几何对象不是孤立、僵化的,而是联系性强、可变性强的对象.如上面所举的“勾股定理”例子,从教材一般引用的毕达哥拉斯研究地砖的故事开始,教师就需要引导学生形成将实际事物抽象成数学图形的思想(数学抽象的存在),当学生从地面图案中抽象出由三个正方形的各一条边组成的直角三角形时,这是一种意义重大的变换,意味着学生的思维里不再是实际的地面图案,而是抽象的数学图形.同时,这一图形的形成,又将直角三角形延伸为三个正方形的面积,于是问题解决的思路也就获得了突破.事实上,通过面积关系来得到勾股定理作为最简洁的方法引入初中数学教材,其目的与意义也正在于此.在此过程中,学生的思维是不断变化的,思维加工的对象也是不断变化的,但思维发展的脉络又是清晰的,通过对实际事物的抽象,形成几何图形,进而通过面积关系寻找直角三角形三边的关系,这就是一个对图形进行数学思考的过程,也是一个几何直观建立的过程.2.几何直观的思想可以引导数学有效教学
如果说上一点是对已有教学的归纳,那如果演绎开去还可以发现,几何直观其实可以引导数学的有效教学思路.初中数学教学有两个特别明显的主线:一是经验;二是逻辑.基于合情推理得出的基本数学概念,通常也都是基于学生的生活经验而建构的,而此外更多的数学概念其实都是在基本概念的基础上,通过数学逻辑建立的.在几何直观的理解中,对图形的认识常常需要经验的支撑,而对图形的思考与想象,其实是直觉与逻辑共同作用的结果.因此,对数学学习过程的描述就可以是这样的:初中数学学习,就是学生利用经验、直觉去推理,得出新的数学概念或规律的过程.有了这样的理解,可以帮初中生形成对数学学习的宏观认识,这从学习心理上来看,很有利于学生建立数学学习的认识,并化解不必要的心理障碍;从数学知识建构的角度来看,无论什么样的数学知识的学习,都是经验、直觉加推理的过程.如在“整式”的学习中,常常有一些实际问题如船在静水与流水中顺行、逆行的问题,面积问题等,学生在这些问题的解决过程中,如果有了良好的画图意识(实际上是将实际问题抽象成数学图形),那就有了基本正确的解题思路(此时就是几何直观在起作用),待到正确的问题解决方法出现之后,学生反过来又会认识到画图这一步骤的重要性(实际上是高水平的几何直观认识的形成).以上两点分析是对初中数学教学中几何直观内涵的挖掘,以及对实际教学的启示、描述.从教学策略的角度讲,这里还面临着一个很直接的问题,那就是在实际教学中如何有效地培养学生的几何直观.如何有效培养学生的几何直观
要回答这一问题,需要结合教学经验去总结,需要借鉴同行的智慧去分析.具体总结为三点.1.一定要有画图意识
画图是数学学习的法宝之一,画图是一个将文字转换为图形的过程,这个过程是人与生俱来的本能之一,是将复杂、抽象对象简洁化、形象化的重要过程.对于初中数学教学而言,只要有画图的机会,教师都不能放过,简单的要让学生自己去画,难度较大的要在学生画不出的情况下教师画.一旦画图意识形成,几何直观就有了坚实的基础.2.要学会加工图形
对图形的加工除了简单的数据标入之外,还有两个要点:一是作图的准确性,作图是一个学生经验支撑的过程,有时由于对题意理解不透,会出现图形失真、比例失调的情形,这其实是培养学生良好作图能力的重要机会,教师此时不能越位,要让学生充分??图之后再给予指导;二是图形的由静变动,这个过程是学生借助自身的想象力来完成的(在比较困难的情况下,可以借助几何画板来呈现动态图形,但一定要先让学生自己想,通常不能直接呈现),是培养学生数学抽象与思维能力的好机会.3.学会描述图形
描述图形也是一个重要的数学能力形成的机会,但通常得不到教师的重视,因为解题思路一旦形成,教师通常都会让学生去解题、去求答案,少有让学生基于图形进行思路描述.事实上,这是一个将隐性知识显性化的过程,这个过程可以让学生对数学语言的掌握更精确,教师不能感觉浪费时间而忽视此过程.从另一个角度讲,描述图形也是对原有思路的重新整理,常常可以让模糊的认识变得清晰.综上所述,初中数学教学中对几何直观的重视,可以加深学生对数学教学的理解,从而让学生的学习变得更加高效.
第二篇:小学数学教学中如何运用几何直观
小学数学教学中如何运用几何直观
小学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。突破几何教学这一难点,关键不仅仅在于教材的改变和教学形式表面变化,更应该在于用先进的数学思想和方法去引领教学,这样才能使几何教学活起来,让我们的学生在获得几何知识的同时,建构对几何知识的概念、性质、方法、意义的理解,有效提高学生分析问题和解决问题的能力。
(一)以图沟通联系
某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了。比如这样一个例子:生说自然数就像条射线,它们都有个起点,没有终点,可以无限延长。这位学生惊人的发现无不体现了知识间是相通的,把代数中的自然数概念和空间形式联系起来,不但缩短了知识间的距离,而且还减少记忆容量。8
(二)以图渗透数形结合思想
“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。
利用直观的图形,学生能积极地思考图中正方形的面积的变化和算式之间的联系。在此基础上用数学式子表达它的规律。从而发现;n个奇数相加的和等于n×n;借助“形”的直观,能促进小学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。
(三)以图有助于数学方法的再创造
直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。
借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。
第三篇:几何直观在小学数学教学中的运用
几何直观在小学数学教学中的运用
几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。小学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。
(一)以图连线—搭建桥梁,沟通联系
“在传统领域之间界限的日趋消失是现代数学的特性之一,而几何直观在其间起着联络作用。”某些问题的信息之间,某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了
(二)以图促思—渗透数形结合思想
“数无形不直观,形无数难入微”,“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。
(三)以图求解—有助于数学方法的再创造
直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。
借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。
第四篇:几何直观在小学数学教学中的运用
几何直观在小学数学教学中的运用
小学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。
(一)以图连线—搭建桥梁,沟通联系
“在传统领域之间界限的日趋消失是现代数学的特性之一,而几何直观在其间起着联络作用。”某些问题的信息之间,某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了。比如俞止强老师的讲座中提到这样个例子:生说自然数就像条射线,它们都有个起点,没有终点,可以无限延长。这位学生惊人的发现无不体现了知识间是相通的,把代数中的自然数概念和空间形式联系起来,不但缩短了知识间的距离,而且还减少记忆容量。
(二)以图促思—渗透数形结合思想
“数无形不直观,形无数难入微”,“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。
利用直观的图形,学生能积极地思考图中正方形的面积的变化和算式之间的联系。在此基础上用数学式子表达它的规律。从而发现;n个奇数相加的和等于n×n;再如,教学“连除两步计算问题”时,学校图书室买来200本新书,放在2个书架上,每个书架有4层。平均每层放了多少本书?最初可以出示书架的实物模刑,逐步用长方形的图示代替来说明解决问题的过程。①先算每个书架放了几本?②先算两个书架共有几层?③先算两个书架的一层共放几本书?以数形结合的方式帮助学生感悟用连除两步计算解决问题的数学本质。借助“形”的直观,能促进小学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。
(三)以图求解—有助于数学方法的再创造
直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。
借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。
第五篇:初中数学教学中的学生“几何直观”能力培养分析
初中数学教学中的学生“几何直观”能力培养分析
摘 要: 教师要采取合理有效的措施,加强对学生几何直观能力的培养,这不仅有利于学生独立的发现问题,解决问题,而且能够使学生在这个过程中形成良好的图形感知,进而提高思维想象能力,在面对问题时能够全方位、多角度地思考问题、解答问题,将复杂的问题简单化。教师要全面贯彻落实新课改,增强学生的几何直观能力。
关键词: 初中数学教学 几何直观 能力培养
一、实施图景结合教学,培养学生想象力
教师在教学过程中,要采取科学、有效的教学策略,提高学生观察事物、分析事物的能力,在课堂教学中融入相应的图景教学,丰富学生的图景体验,注重学生对几何的直观感知能力的培养。当然这不是一蹴而就的,对几何的直观感知需要长期不断积累,更需要学生充分实践与探索,加强学生对几何直观的理解与认识。
比如,在学习矩形、菱形这一章节时,为了提高学生对图形特点的认识与区分,教师可以在课前让学生进行实践训练,手工制作出可灵活变动的平行四边形。平行四边形是之前就学过的章节,学生对平行四边形的特性已经有了基本的掌握,平行四边形与矩形又有着联系与区别,这对与矩形的学习有一定的帮助。教师要指导学生对平行四边形的边进行转动,使其成90度角,然后让学生观察得到的四边形与之前的平行四边形有什么异同。学生能够发现这个四边形四个角都是直角,且对边相等。接下来,对矩形进行对折,可以从中看出不管是上下对折还是左右对折,两边的图形都会完全重合在一起,这就是轴对称图形。这种真实的图景体验能够使学生直观认识到矩形的特点,即使不通过课本也能够总结出矩形的相关概念及性质。在这种课堂模式下,教师为学生提供了实践的平台,使学生充分参与到课堂自主探究活动中,亲自动手实验,尤其是在几何图形的学习过程中,学生将所要学习的图形进行裁剪、折叠,不仅提高了学生的学习兴趣,而且培养了学生的动手能力,进而提高了学生几何直观的能力,为学生对问题的有效解决奠定了基础。
二、实施多媒体教学,丰富学生课堂体验
新课标实施以来,要求教师要转变教学观念,丰富课堂教学形式,注重对学生综合素质的培养。体现在数学教学中,就是要不断提高学生的逻辑思维能力,激发学生自主探究问题的兴趣。多媒体教学集视频、图片、声音于一体,具有生动性与丰富性,打破了传统教学的单一模式,给学生丰富的课堂体验,这种多媒体形式下的“几何直观”教学,能够充分调动学生的感官,激发学生的想象力与创造力,进而提高学生的几何直观能力。
比如,在人教版的初中数学中,学习圆与圆的位置关系这一章节时,学生理解起来比较吃力,而且圆与圆的位置关系并不是单一的,而是随着不同的距离而变化的,形成了多种复杂的位置关系。教师在教学过程中,受条件与环境的限制,不能为学生生动地展示这些位置变化的情况,因此必须借助多媒体手段进行演示。教师可以在课前根据教材制作一些动画课件。在多媒体技术的支持下,始终保持一个圆的位置不变,然后对另一个圆进行不同的位置变换,分别向学生演示什么是外离,什么是外切,什么是相交,等等,让学生直观明了地对这些知识形成基本的认识,不同的位置关系用不同的颜色标记出来,加强对这些重点知识的理解与记忆。有关圆与圆位置关系的概念及性质有很多,既有一定的相似性,又有着明显的区别,学生在学习过程中容易混淆。因此,教师要通过多媒体形式将这些圆的位置关系充分展现出来,多媒体动画的演示方便快捷,而且更直观、明了,能够帮助学生正确理解知识,避免陷入误区。
三、实施数形结合,提高学生看图能力
在数学学习过程中,很多问题都是可以用图形的形式解决的。数形结合在函数、二元一次方程组等都得到了广泛应用,有利于学生对问题的准确把握。举个例子,在学习不等式的解法时,也同样可以将不等式转化为直观的图形,使学生的解题思路更清晰。例:求满足22,|x-1|<5,然后对这两个不等式分别解出,最终得到答案。本题相对容易一些,一旦遇到更复杂的问题,这种解题方法往往是行不通的。因此,教师有针对性地培养学生采用数形结合的方式解答问题。对于本题,可以用数轴向学生演示,将题目中间的一部分也就是|x-1|看做是一个整体,然后再结合数轴,可以知道这道题的意思就是x与1之间的距离大于2且小于5,那么从数轴上可以得出符合条件的整数,避免那种复杂的分情况讨论的方式,为学生的解题提供了方便,也降低了题目的难度与复杂性,这也是学生解题的一种有效途径,能够进一步提高学生的几何直观能力。
简单来说,几何直观就是将复杂的数学问题,用图表现出来,并通过图分析问题的实质,理清问题的思路,使其更简洁明了,帮助学生有效地解决问题。这一方面能够培养学生的逻辑思维能力,另一方面能够激发学生的探索精神与创新精神,在整个数学教学过程中占有不可替代的作用。上文针对初中数学教学中学生“几何直观”能力的培养进行探讨,为学生“几何直观”能力的培养提出具有可行性的策略。