第一篇:《课程标准(2011年版)》中的几何直观
《课程标准(2011年版)》中的几何直观
在《普通高中数学课程标准(实验)》中也对几何直观十分关注:“三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。”在《课程标准(2011年版)》中,把几何直观作为数学课程标准l0个核心概念之一,这是一个进步。《课程标准(2011年版)》明确指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”
在数学课程中,几何内容是很重要的一部分。几何课程的教育价值,最主要的应该有两个方面:一方面,几何能培养学生的逻辑推理能力;另一方面,它也能培养学生几何直观能力。但目前,在部分教师中对此在认识上存在着一定的局限性,在几何教学中他们仅仅重视培养逻辑推理能力,忽视了对学生几何直观能力的培养。我们应全面地理解几何教育价值,重视几何直观。
在义务教育阶段教学和指导学生学习时,认识和理解“几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用”这一点是非常重要的。它表明,我们不仅在几何内容教学中要重视几何直观,在整个数学教学中都应该重视几何直观,培养几何直观能力应该贯穿义务教育数学课程的始终。正如前面所指出的,图形有助于发现、描述问题,有助于探索、发现解决问题的思路,也有助于我们理解和记忆得到的结果。总之,图形可以帮助我们把困难的数学问题变容易,把抽象的数学问题变简单,对于数学研究是这样,对于学习数学也是如此。学会用图形思考、想象问题是研究数学,也是学习数学的基本能力。这种几何直观能力能使我们更好地感知数学、领悟数学:数学逻辑和数学直观对数学都是重要的,他们也是相互交织、关联的,直观中有逻辑,逻辑中有直观。
在义务教育阶段,许多重要的数学内容、概念都具有“数”和“形”两方面的本质特征(如小学的分数概念、路程问题等),学会从两个方面认识数学的这些对象是非常重要的,即数形结合是认识数学的基本角度,与其说是方法,不如说这是基本要求。从这一点看,不注重数形结合在数学上就没有学明白。
第二篇:关于几何直观的思考
关于几何直观的思考
作者:秦德生,„ 文章来源:《中学数学教学参考》2005年第10期 [摘要] 随着数学课程标准提出培养和发展学生的几何直观能力,几何直观已经成为数学教育中的一个关注问题。本文从几何课程基本要求的演变出发,探讨几何直观的概念以及与相关概念的辨析,追溯几何直观的哲学基础,提倡“直观型”的课程设计,挖掘几何直观能力培养的教育价值。
[关键词] 几何直观;课程标准;哲学基础;教育价值
当前,数学教育界都在关注数学课程标准[1][2]的制订与实施,关注数学课程改革,而几何直观是数学中生动的、不断增长的而且迷人的课题,在内容上、意义上和方法上远远超出对几何图形本身的研究意义。正如弗莱登塔尔所说,“几何直观能告诉我们什么是可能重要、可能有意义和可接近的,并使我们在课题、概念与方法的荒漠之中免于陷入歧途之苦。”这也与康德的“缺乏概念的直观是空虚的,缺乏直观的概念是盲目的”观念是相同的。随着《普通高中数学课程标准》[2]提出培养和发展学生的几何直观能力,几何直观成为数学教育中的一个关注问题;经过适当的发展,相信对几何直观的研究能够成为数学教育的核心问题。
在此,笔者试图从几何课程基本要求的演变出发,探讨几何直观的概念以及与相关概念辨析,追溯几何直观的哲学基础,挖掘几何直观能力培养的教育价值。现将自己的一些想法就正于各位同行专家.
1.我国对几何课程基本要求的演变
我国解放后首次制定(1952年)的中小学数学教学大纲中提出,小学“算术教学应该培养和发展儿童的逻辑思维”,中学数学应“发展学生生动的空间想像力,发展学生逻辑的思维力和判断力”[3]。以后的中小学数学教学在能力培养方面的要求一直是“通过数学教学,发展学生的逻辑思维和空间想像力”。1963年根据华罗庚、关肇直等专家的意见,中小学数学教学的能力培养任务修改为“计算能力、逻辑推理能力和空间想像力”(传统的三大能力)。1978年的中小学数学教学大纲中,又增加了“培养学生分析问题和解决问题的能力”。1988年的九年义务教育数学教学大纲中,能力培养任务改为“培养运算能力,发展逻辑思维能力和空间观念”,这种要求一直持续至今。《义务教育阶段国家数学课程标准》
(征求意见稿,2000年)在发展性领域中,明确提出能力培养任务是思维能力的培养,“应使学生在定量思维、空间观念、合情推理的演绎论证等方面获得发展”。2000年3月颁布的《九年义务教育全日制小学数学教学大纲(试用修订版)》中指出,要“培养初步的思维能力和空间观念”。
2001年颁布的《全日制义务教育数学课程标准(实验稿)》[1]提出“丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维”[1].2003年颁布的《普通高中数学课程标准》[2]指出:“几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辩论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力、以及几何直观能力,是高中阶段数学课程的基本要求。”[2] 从我国几何课程基本要求的演变来看,从空间想象能力到空间观念,再到几何直观能力,对几何教学的要求不尽相同,那么,什么是几何直观,它与直觉、空间观念、空间想像能力等名词之间有联系或者区别么?我们来进一步探讨。
2.几何直观概念的内涵及典型观点辨析 2.1 什么是直观
数学家克莱因认为,“数学的直观就是对概念、证明的直接把握”[4];而西方哲学家通常认为“直观就是未经充分逻辑推理而对事物本质的一种直接洞察,直接把握对象的全貌和对本质的认识”;心理学家则认为“直观是从感觉的具体的对象背后,发现抽象的、理想的能力”。
蒋文蔚指出,几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态[5]。
徐利治先生提出,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知[6]。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。
他们从数学、哲学、心理学等角度给直观包括几何直观下了定义,但我们认为直观一般有两种:一是透过现象看本质;二是一眼能看出不同事物之间的关联,2
可见,直观是一种感知,一种有洞察力的定势。
2.2 直观与直觉
直观与知觉在英文中都是单词Intuition,但二者并不是完全相同,直觉不等于直观。
从研究对象来看直觉的对象不一定是可视的对象,直观的对象一定是可视的。从过程来看,直观与个人的经验、经历有关,直观有层次性,直观是从一个层次看到更深刻的层次或本质;在同一个层次不是直观而是直觉,直觉是有原因与结果的关联,是一个平面上的,属于同一个层次。从功能来看,直观是用来发现定理的,而直觉用来证明定理的。
2.3 直观与想象
传统的数学教学中,空间想像力“指的是人们对客观事物的空间形式进行观察、分析和抽象的能力。麦吉(Megee,1979)认为,空间想像力包括“在心理上操作、旋转、翻转或逆转形象刺激物的能力”,朱文芳认为“空间想像能力是完成空间认知任务的桥梁,空间思维能力起着决定性的核心作用”[7]。心理学家通常认为,想像(imagination)以表象为基本材料,但不是表象的简单再现,是指“在头脑中对已有表象进行加工、改造、重新组合形成新形象的心理过程”。
我们认为,空间想象能力是指脱离背景也能想象出图形的形状、关系的能力。直观是在有背景的条件下进行,想象是没有背景的;几何中的推理证明始终在利用几何直观,在想象图形。
所以,我们建议:普通高中数学课程标准中对几何目标的叙述修改为“培养和发展学生的几何直观能力和借助几何直观进行推理论证的能力,从而培养运用图形语言进行交流的能力以及空间想象能力,是高中阶段数学课程的基本要求。”这样叙述应该更恰当和准确。
3.几何直观的哲学分析 3.1 直观主义
直观化,本来是数学基础中的直观主义流派,出于数学概念和方法的“可信性”考虑而提出的基本主张,其中心内容是“存在必须是被构造”。可见数学中的直观主义就是哲学中的康德主义,主张数学的概念由人类理性构造而成。数学对象的构造就是人们先验地在直观中画出与概念相应的图形,所以构造数学对象 3
需要非经验的直观。人们在这种纯粹直观中构造出一个具体的图形,这一图形能够代表所有与某概念相应的图形,这说明人们在纯直观中构造的图形具有与概念相同的普遍意义,因此在几何直观中构造出了具体的图形就是构造出了相应的概念与数学实体。
笛卡儿认为,直观是纯粹理性的,但作为理性的东西并不能完全摆脱或无视某些经验,可见这二者是矛盾的,直观的确定性与与非逻辑性相矛盾,直观不能保证普遍原理的确定性,直观具有发现真理功能,但不能兼备证明真理、确保真理可靠性的功能。
3.2 几何直观的历史性
毕达哥拉斯时代,人们的数学直观里浸透了整数是万物本质的哲理;非欧几何产生以前,人类的数学直观里有着欧氏公理是先验不变的真理的观念;非标准分析又使一度失去了对无穷小的直观在更抽象的层次上恢复;而今计算机造成的外移动的超立体的图象,又对我们关于高维空间的抽象直观充实了具体感性。所以数学直观是历史概念,数学直观在每个历史时期,其抽象性和直观性都具有不同的内涵。
数学中的抽象性带有理论和哲学色彩,几何直观带有经验、思想和感情因素。复数的引入,是因逻辑上的需要而直接引进的“理想元素”,被赋予某种实际意义后,以几何直观解释为中介,同现实世界建立了间接联系,从而提高了它的可信性。复数,在它被引入后的最初两个半世纪中一直“给人虚无缥缈的感觉”,直至维塞尔、高斯等人相继对它作出了几何解释与代数解释,把它与平面向量a+bi或数偶 对应,才“帮助人们直观地理解它的真实意义”,并取得了实际应用.所以,它不仅被数学理论所决定,并随着数学理论的发展而发展,而且它也避免不了当时人类整个文化情境对个人心理上的影响。直观是随着人类理性的进步而进步的。换言之,几何直观的建立和发展是一个历史过程。它并不是一个从古到今就一直存在着的永恒的人类用来认识数学现象的中性框架,几何直观是一种进化的产物,可以进行更高层次的创造性活动。因此一个人在不同年龄阶段所表现出的数学直观能力可以看作是整个人类在这方面历史发展过程的缩影。
3.3 直观与形式的统一
数学作为一门精确科学,其研究活动必须以量和质、形式和内容的分离为前 4
提,把前者从自然界的普遍联系中抽取出来,加以抽象,在不断形式化的过程中实现它的精确性,这个过程就是数学化,换言之,就是数学抽象发展与现实世界的紧密结合,它既可以描述具体问题的数学模型,也可以反映各种层次的数学概念或规律的更高层次抽象.数学抽象概念发展的“直观——形式——直观”模式,是一般科学概念发展的“具体——抽象——具体”模式的特殊表现形式,它深刻地反映了数学活动的基本矛盾,数学通过形式化而实现精确性,又因为形式化而减弱客观性,直观化具有原始的创造性,它的历史性决定不允许完全客观的有理化.
直观与形式之间矛盾的解决,只有在形式化和直观化的矛盾运动中才可能实现,正是二者之间的矛盾推动了数学的发展以及科学的发展。从创造力来看,直观能引出数学的发明,直观能决定理论的形式和研究方向;从在数学证明上看,直观常常提供证明的思路和技巧,有时严格的逻辑证明无非是直观思考的严格化和数学加工。数学直观的世界与因果感觉的世界是对立的,数学思维不能完全形式化,数学思想是独立于语言的形式之外,但数学又必须通过形式来表达,使其严格化。因此,数学经过形式化而趋于完美,又通过直观化而返朴归真,这正是数学发展的辩证过程。
4.几何直观的课程设计
课程设计已经走向多流派、多元化。而强调知识之间有机地融合、依赖几何直观的“直观型”课程成为数学课程设计的主流之一。我国新课程已经把几何直观看作是贯穿高中数学课程的线索之一。从函数的图象教学、三角函数的单位圆、到导数的图象判断;从不等式的直观解释到线性规划的区域刻画,此外,还有数系扩充中复数、概率统计中的直观图以及向量的使用等等。几何课程设计更离不开几何直观。可见,几何直观是高中数学教学中必不可少的有效工具。因此,要充分利用几何直观来揭示研究对象的性质和关系,使学生认识几何直观在数学学习中的意义和作用,同时也学会数学的一种思考方式和学习方式。
当然,我们也要注意不能用几何直观来代替证明、注意几何直观带来的认识上的片面性。例如,对指数函数 与直线 的关系的认识,因为教材中通常都是以2或10为底来给出指数函数的图形,在这两种情况下,指数函数 的图形都在直线 的上方,于是,便认为指数函数 的图形都在直线 的上方。教学中应避免这 5
种因特殊赋值和特殊位置的几何直观得到的结果所带来的对有关概念和结论本质认识的片面性和错误判断。[2] 5.几何直观能力培养的教育价值
几何通常被喻为“心智的磨刀石”,几何在数学研究中起着其实、联络、理解、甚至提供方法的作用,而几何直观具有发现功能,同时也是理解数学的有效渠道。数学家依赖直观来推动对数学的思考,数学教育家们依赖直观来加强对数学的理解。直观推动了数学和科学的发展。而数学概念经过多级抽象充分形式化后,有必要以相对直观可信的数学对象为基础进行理性重建,从而达到思维直观化的理想目标和可应用性要求,这要求数学的直观与形式的统一,才使得数学的完美。
首先,几何直观是一种创造性思维,是一种很重要的科学研究方式,在科学发现过程中起到不可磨灭的作用。对于数学中的很多问题,灵感往往来自于几何直观。数学家总是力求把他们研究的问题尽量变成可借用的几何直观问题,使他们成为数学发现的向导,随着现代科技的发展,几何直观在计算机图形学、图象处理、图象控制等领域都有诱人的前景。
其次,几何直观是认识论问题,是认识的基础, 有助于学生对数学的理解。借助于几何直观、几何解释,能启迪思路,可以帮助我们理解和接受抽象的内容和方法,抽象观念、形式化语言的直观背景和几何形象,都为学生创造了一个自己主动思考的机会,揭示经验的策略,创设不同的数学情景,使学生从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历反思性循环,体验和感受数学发现的过程;使学生从非形式化的、算法的、直觉相互作用与矛盾中形成数学观。
最后,几何直观是揭示现代数学本质的有力工具,有助于形成科学正确的世界观和方法论。借助几何直观,揭示研究对象的性质和关系,使思维很容易转向更高级更抽象的空间形式,使学生体验数学创造性工作历程,能够开发学生的创造激情,形成良好的思维品质。
几何直观已经成为数学界和数学教育界关注的问题,那么如何培养学生的几何直观能力、如何更好地发挥几何直观性的教学价值,是每个数学教育工作者都应该深思的问题。
[参考文献] [1]中华人民共和国教育部制订.全日制义务教育数学课程标准(实验稿)[M],北京师范大学出版社,2001.[2]中华人民共和国教育部制订.普通高中数学课程标准(实验稿)[M],人民教育出版社,2003.[3]建国以来中小学《数学教学大纲汇编(1949—1985)》[M],国家教委编印,1986.[4]M.克莱因.古今数学思想[M],第四册.上海:上海科技出版社,1979.[5]蒋文蔚.几何直观思维在科学研究及数学教学研究中的作用[J],数学教育学报.1997(4)[6]徐利治.谈谈我的一些数学治学经验[J],数学通报,2000(5)[7]朱文芳.关于义务教育阶段对空间能力培养的思考[J],课程·教材·教法.2001(3)[8]数学课程标准研制组,普通高中数学课程标准(实验稿)解读[M].江苏教育出版社,2004.[9]史宁中.关于数学的反思[J],东北师大学报(哲学社会科学版), 1997(2)[10]M.阿蒂亚.数学的统一性[M].南京:江苏教育出版社,1995.
第三篇:小学数学教学中如何运用几何直观
小学数学教学中如何运用几何直观
小学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。突破几何教学这一难点,关键不仅仅在于教材的改变和教学形式表面变化,更应该在于用先进的数学思想和方法去引领教学,这样才能使几何教学活起来,让我们的学生在获得几何知识的同时,建构对几何知识的概念、性质、方法、意义的理解,有效提高学生分析问题和解决问题的能力。
(一)以图沟通联系
某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了。比如这样一个例子:生说自然数就像条射线,它们都有个起点,没有终点,可以无限延长。这位学生惊人的发现无不体现了知识间是相通的,把代数中的自然数概念和空间形式联系起来,不但缩短了知识间的距离,而且还减少记忆容量。8
(二)以图渗透数形结合思想
“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。
利用直观的图形,学生能积极地思考图中正方形的面积的变化和算式之间的联系。在此基础上用数学式子表达它的规律。从而发现;n个奇数相加的和等于n×n;借助“形”的直观,能促进小学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。
(三)以图有助于数学方法的再创造
直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。
借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。
第四篇:对外汉语教案设计:几何直观教学法
对外汉语教案设计:几何直观教学法
教学目标:
使学生了解“听说”的概念
教学流程: 一.1.让学生A任意说一句话。
如:“我去学校。” 2.问学生B:A说了什么?
B回答:“我去学校。” 3.问:“我去学校。”这句话是谁说的。回:A说的 4.问:“我去学校。”这句话是谁听到的。回:B听到的 5.问学生,句子中“我”指谁?
回:A。
对B而言A是用哪个词指代? 回:他。
修改句型,去引号,改“我”为“他”。6.可省略A A说:“我去学校。” B听A说:“我去学校。” B听A说他去学校。B听说他去学校。
二.解释:别人说的话由听到人转述。三.总结语法结构:A听说+ SOV.B听说+ SOV.四.再给出一系列句子,让同学们“用听”说来转述。
最终使学生能够了解并实际运用“听说”这个词。
教案来源 儒森对外汉语教师 吴思思
第五篇:几何直观学习心得
几何直观教学学习心得体会 开元小学韩金玲
9月30日,我们在黄山实验小学,在主持人牛向华老师的带领下,参加了《几何直观能力培养》这一教学研讨会。会议开始之前,李鹏主任给我们布置了一个作业,让我们写一写你认为几何直观是指哪些方面?你在教学中是如何培养学生的直观能力的?刚开始我的概念模糊,错以为是指几何图形的直观培养,诸如:长方形,正方形,三角形等平面图形和长方体正方体等立体图形,直观体验和空间能力的培养,所以回答的偏离了本次交流的主题。经过不断的听课研究,听取了实验二小三年级杨清秀老师的《简单的搭配问题》,开元小学梁杰老师的《植树问题》,实验一小刘元跃老师的《简单的排列》,王莹老师的《稍复杂的分数乘法应用题》,并听取了夏冬梅,赵红叶,韩梅老师的专题发言一下子就豁然开朗了,哦,原来如此。原来,我们已经尝试过不少的运用几何直观来解决复杂问题的实践,只是理解的一个概念错误而已,看来还是研究课标不够啊!以后要改变这种只是抄课标的学习方法,要在研究课标方面多下功夫,多写一些关于课标的自己的实践方面的问题或思考。我迅速联系自己的教学实践一下子想到了一年级学过的比大小、移多补少问题,二年级的倍数问题,除法问题,不少低年级的难以理解的问题不都是通过图形直观的展示出来,再让孩子们充分理解的吗?几何直观确实帮助孩子们从根本上理解了问题的内涵,明白了算理。还有倍数问题,相遇问题,等等这不都是利用几何直观解决比较难的问题吗?经过观课,听取主题发言,我的思路渐渐清晰,并回忆实践中自己的一些有关教学片段。下面我将从三个方面谈谈在参加研讨会的一些体会:
一、对于几何直观的具体含义
几何直观是指利用图形描述和分析数学问题,探索解决问题的思路帮助理解较难的重点。数学是抽象的科学,对于小学生特别是低年级学生来说,还是以具象思维为主,如何让学生理解抽象复杂的数量关系,需要在学生心中搭建勾连的桥梁,那就是几何直观。但经过了解我们也发现,在实际的学习当中学生并不会用图形帮助自己分析和解决问题,这主要是因为在教学中老师对此关注的很少,学生不习惯使用,再有即使是直观图形的呈现,也不是与生俱来的,需要用具体的例子在对学生进行逐步培养,才能让学生真正认识到几何直观的价值,学会其中的方法。我对自己的课堂教学进行了反思。我查阅了课标中所说的几何直观,是借助图形分析和解决问题中的“图形”具有更广泛的含义,几何直观并不仅指简单的图形直观。在中小学数学中,几何直观具体表现为如下四种表现形式:一是实物直观,二是简约符号直观,三是图形直观,四是替代物直观。实物直观。即实物层面的几何直观,是指借助与研究对象有着一定关联的现实世界中的实际存在物,借助其与研究对象之间的关联,进行简捷、形象的思考,获得针对研究对象的深刻判断。简约符号直观,即简约符号层面的几何直观,是在实物直观的基础上,进行一定程度的抽象,所形成的、半符号化的直观。图形直观是以明确的几何图形为载体的几何直观。替代物直观则是一种复合的几何直观,既可以依托简捷的直观图形,又可以依托用语言或学科表征物所代表的直观形式,还可以是实物直观、简约符号直观、图形直观的复合物。“替代物直观”则是在现实模型基础上的进一步抽象,已经具备一定的抽象高度。以计数器为例,与 “小棒”相比,计数器已经将数位的含义明确表示出来(具有普适性和公共的约定性),而不是某些人的人为规定。借助几何直观可以把复杂的数学问题变得简明、形象,促进数学的理解;通过图形进行观察,有利于信息回忆和方法的促成;根据直观认识来研究图形的性质和相关问题有助于数学问题结构的揭示。可以说,几何直观不仅解决“图形与几何”的学习中存在的问题,并且贯穿在整个数学学习过程中。
二、浅谈几何直观在教学中的应用
(一)在困惑中产生画图的需求,初步培养学生借助几何直观理解和分析问题的意识。新课程强调:有效的教学活动是学生学与教师教的统一,学在前,教在后,教只有贴合学,方能有效。基于此认识,我认为数学教学,一定要从学生的需要与困惑出发。如果教师以自己的机械指导过度牵制学生的自主体验;如果教师以自己的教学讲解全盘替代学生的主体思维,那我们培养的学生多数会是解题的领袖,而非数学思考的领袖!课堂是学生学习、发展的场所,做教师的一定要设法把课堂还给学生,让学生去尝试、让学生去讲解,让学生由被动的接受变为主动的建构。例如现在我教学的二年级乘法口诀的教学,没有很多老师给予太多的关注,能够熟背口诀是最基本的教学任务,有些家长早已让孩子背的滚瓜烂熟。而我在教学乘法口诀时,更注重让学生理解口诀的意义。我利用图形来讲,我认为要把自己的意思说清楚,让学生听明白,孩子需要借助图形。图形的直观,不但帮助学生理解算式的含义,同时帮助学生正确的表达。此时,采用直观的画图的方法已经成为学生自觉的一种需求。所以说如果从低年级开始就注重学生几何直观意识的培养,将有利于学生掌握更多的解题策略,发展学生的空间观念,提高学生解决问题的能力。还有去年教一年级时移多补少问题,也是比较难与理解的知识,通过用画图形,来代替实物,让孩子们更好的理解了解决的思路和方法,很快学会了解决这类问题的方法。
(二)让学生经历几何直观呈现的过程,发挥几何直观在数学学习中的价值。在以往的教学中,对借助图形帮助学生解决问题也是有一定实践认识的。例如以前的相遇问题,就是让孩子们先示范走一走,再用线段图画一画,还有现在执教的二年级上册《求一个数的几倍是多少》的时候,我对教材进行了深入的思考,都采用了用线段图帮助学生理解数量关系的形式。那么为什么要出现线段图呢,应该怎样呈现呢,带着这些问题我对学生进行了前测和访谈。首先学生看到求一个数的几倍的问题,虽然会列式,但是不会解释为什么要这样列式,而几何直观恰恰能建立起倍的概念和乘法的意思之间的联系,其次对于二年级学生来说,线段图这种高度抽象的几何直观学生没有认识,完全空白,理解起来有一定的困难。所以说不能忽略学生的认识水平,而是要让学生经历线段图的形成过程,在润物无声的引导之下,初步培养学生画图的能力,为中、高年级的学习奠定能力的基础。从这个设计中可以看出,由实物抽象出符号,学生有这个能力,但从符号到线段图就太过抽象,学生不好理解。所以我通过直观演示数量的增加,让学生体会到数量太多了,用符号一个一个的画也很麻烦,进而想到用一个图形来表示多个数量(集合圈),从而初步认识了线段图。就因为学生有了这样的经历,所以虽然我们不要求学生用线段图来表示数量关系,但在学生解决问题中依然认可了线段图,使用了线段图,为后面的学习打下了良好的基础。
(三)实物拼摆探规律,恍然大悟表述清
去年,数的组成的学习时,有几个孩子9的组成不知道,我临时设置情境,采用小组动手分一分的形式完成下面的问题。在分的过程中,我让学生自己想办法分一分,并能给把自己组分的过程呈现出来给大家说明白。各小组通过不同的模型操作得出结果后,到讲台前给大家演示并讲解:我请每个组的学生到黑板上讲解自己分的过程,有的小组借助磁力圆片,有的小组直接在黑板上画图分析,有的小组用班里的人代表苹果,都说出了自己分的过程。学生借助各种模型,直观形象的感受着数的组成与加法之间的关系,“抽象的加减法”不再只是学生看到眼里,而且是能够操作出来的,理解在心里的!在这里,几何直观操作,帮助学生理解,并为知识的进一步应用奠定了能力基础。
(四)通过几何直观探究数学本质,帮助学生充分理解概念 几何直观是为更好的数学理解而服务的。我们不能只限于形式化的表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在“形式化的海洋里”。想到以前教过的乘法分配律,有的老师曾说:乘法分配律讲着明白,就是不会用,一让简算就爱出错。总是和乘法结合律混,每天都练习几个这样的简算,可到考试时还是错。学生的困惑成因是什么呢?一是学生能机械模仿,但对于ac±bc为什么等于(a±b)×c,四个数的运算怎么就变成了三个数的运算,弄不明白,因此解题思路不清晰。二是乘法分配律是老师教给学生的,不是学生自主探究得出的,学生缺少亲身经历,因此,对乘法分配律印象不深,凭想当然解题。老师讲,学生听,然后让学生记住乘法分配律公式,最后解题,这种传统的讲解式教学方式已经不能让每一个正常的学生学会乘法分配律,所以我们不妨尝试新的学习方式,让学生借助直观图形亲自参与到实验中,让归纳推理、概括总结的过程由学生自己得出,这样,学生自己得出的结论,用起来才能得心应手。让学生进一步观察等式左右两边的算式的特点,并与对应的图形相结合,再让学生说说乘法分配律是什么意思,这时学生能够就头脑中的表象很好的进行描述。学生充分的理解了乘法分配律的含义,运用起来才会得心应手。
总之,通过研讨会的学习,几何直观是小学阶段一个重要的数学思维,从课标出台到现在,我在课堂中实践着“借助几何直观提高学生解题能力”的研究,取得了一定的实践经验,但也存在着一些困惑。我想研究就是如此,不是所有的研究都能解决所有的问题,留在纸上的是思想的足迹,化作动力的是思想的延伸。出现了困惑表示研究的路正在向前伸展。